Available online at www.sciencedirect.com

scllucl@oln-cr- Theoretical
Computer Science

ELSEVIER Theoretical Computer Science 325 (2004) 467-478
www.elsevier.com/locate/tcs

Improved competitive algorithms for online
scheduling with partial job values

Francis Y.L. Chin!, Stanley P.Y. Fung*

Department of Computer Science and Information Systems, The University of Hong Kong, Hong Kong

Received 10 October 2003; accepted 20 February 2004

Abstract

This paper considers an online scheduling problem arising from Quality-of-Service (QoS) appli-
cations. We are required to schedule a set of jobs, each with release time, deadline, processing time
and weight. The objective is to maximize the total value obtained for scheduling the jobs. Unlike
the traditional model of this scheduling problem, in our model unfinished jobs also get partial values
proportional to their amounts processed.

No non-timesharing algorithm for this problem with competitive ratio better than 2 is known. We
give a new non-timesharing algorithm GAP that improves this ratio for bounded values of m, where
m can be the number of concurrent jobs or the number of weight classes. The competitive ratio is
improved from 2 to 1.618 (golden ratio) which is optimal for m = 2, and when applied to cases with
m > 2 it still gives a competitive ratio better than 2, e.g. 1.755 when m = 3. We also give a new study
of the problem in the multiprocessor setting, giving an upper bound of 2 and a lower bound of 1.25
for the competitiveness. Finally, we consider resource augmentation and show that O(log a) speedup
or extra processors is sufficient to achieve optimality, where « is the importance ratio. We also give
a tradeoff result, showing that in fact a small amount of extra resources is sufficient for achieving
close-to-optimal competitiveness.
© 2004 Elsevier B.V. All rights reserved.

Keywords: Online algorithms; Scheduling; Partial job values; Resource augmentation

* Corresponding author.
E-mail uddresses: chin@csis.hku.hk (FY.L. Chin), pyfung @csis.hku.hk (S.P.Y. Fung).

! This work is supported by RGC Grant HKU7142/03E.

0304-3975/% - see front matter © 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.tcs.2004.02.046

468 EY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478
1. Introduction

We consider the following online scheduling problem. We are given a set of jobs, each
characterized by a 4-tuple (r, d, p, w) which are the release time, deadline, processing
time and weight (value per unit time of processing) respectively. Preemption is allowed
with no penalty, and the goal is to maximize the total value obtained in processing the
jobs.

In the traditional model of this problem, only jobs that are completed receive their values,
and partially processed jobs receive no value. Recently, there is a new model in which jobs
that are partially processed (but not completed) still receive a partial value proportional to
their amounts processed [3,6,4,5]. This model is more relevant in some problem domains,
and is first described as a Quality-of-Service (QoS) problem concerning the transmission
of large images over a network of low bandwidth [3]. This is also related to a problem
called imprecise computation in real-time systems [11], and has applications in numerical
computation, heuristic search, database query processing, etc.

Jobs arrive online, i.e., no details of a job is known before it is released, and the online
scheduling algorithm has to make its decisions based only on the details of jobs already
released. We assume all details of a job are known at the time it is released. We judge the
performance of online algorithms by their competitive ratios [13,2]. An online algorithm is
c-competitive if, for any instance of jobs, the value obtained by the online algorithm is at
least 1/c that of the offline optimal algorithm.

Tight bounds on the competitive ratio are known for the traditional model: both the upper
and lower bounds are (1 + /)2 [1,9], where & denotes the importance ratio, i.e., the ratio of
maximum to minimum job weights. For previous results on the partial value model, Chang
and Yap first gave 2-competitive algorithms and a lower bound of 1.17 on the competitive
ratio [3]. The upper bound was then improved to e/(e — 1) =~ 1.58 [5,6]. The lower bound
was also improved to 1.236 [6] and most recently to 1.25 [5].

The e/(e — 1)-competitive algorithm makes use of timesharing, i.e., it allows
more than one job running on the processor concurrently, each at reduced speeds so
that the sum of processing speeds at any time does not exceed the processor speed. Time-
sharing can be simulated in non-timesharing systems by alternating jobs at a very high
frequency, however, this may not be desirable since it incurs a high cost. We therefore
require a non-timesharing algorithm to be one that cannot switch jobs at arbitrarily small
time intervals [5]. In particular, when all time parameters are integers, a non-timesharing
algorithm can only change its job at integral times. In fact we proved that timeshar-
ing algorithms are indeed more powerful: non-timesharing algorithms cannot be better
than ¢-competitive, where ¢ = (+/5 + 1)/2 &~ 1.618 is the golden ratio [5]. No non-time-
sharing algorithms are known to have competitive ratio 2 — ¢ for constant ¢ in
general.

We want to develop non-timesharing algorithms for this problem with better competitive
ratios. The best non-timesharing algorithms so far are the FirstFit and EndFit algorithms
given in {3] which are both 2-competitive. In practice, there may be additional constraints
on the job instances, e.g. the job weights may not differ by too much, or fall into fixed
weight classes; or the system would not be too overloaded, i.e., too many jobs released in
a short period of time. We can use these information to devise better algorithms. In [4] we

FY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478 469

give an algorithm which is (2 — 1/([lg«] + 2))-competitive, 2 which gives a better ratio
when the job weights are within a small range.

In Section 3 we consider the case when there are a bounded number of concurrent active
jobs, or bounded number of weight classes. Let m be the bound on either one of these. A
new online algorithm GAP is proposed which is ¢-competitive for m = 2 and is optimal.
This new algorithm, although not optimal for m > 2, gives a competitive ratio better
than 2.

The improvement of the GAP algorithm comes from two observations. First, observe
that if there are two jobs with the same (or very close) weights, we should only consider
scheduling the job with earlier deadline. Similarly, for two jobs with the same or very close
deadlines, one should only consider scheduling the heavier job. We capture this information
by introducing the concept of ‘dominant jobs’, to be defined in Section 2. This also allows
us to unify the two cases mentioned above (bounded number of concurrent jobs, or bounded
number of weight classes).

Second, notice that not only are the job weights important in scheduling decisions, but also
how close the job weights are. For example, with two jobs (0, 1, 1, 1) and (0, 2, 1, 1.01),
scheduling the weight-1.01 job in time [0, 1] gives up the weight-1 job, but the optimal
algorithm can schedule both. The same applies when there are more than two jobs. Thus
the small differences in weights (‘gaps’) should be considered, and one probably should
avoid scheduling jobs with small ‘gap’. Our algorithm gives a balance between scheduling
heavy jobs and jobs with small gaps. This reflects into a better utilization and analysis of the
‘charging scheme’, to be described in the next section, which is the key analysis technique
we used.

All the above results are for the single processor setting, and no previous results for this
problem are known in the multiprocessor setting. In Section 4 we give the first such results:
a 2-competitive algorithm and a lower bound of 1.25 for the competitiveness. They are
generalizations of previous uniprocessor techniques and results.

Using resource augmentation as a means of analyzing online algorithms first appeared
in [12,7]. The idea is to give the online algorithm more resources to compensate for its
lack of future information, and analyze the trade-off between the amount of additional
resources and improvement in performance. Since then, many problems are analyzed using
this approach. We give a new study of applying the resource augmentation analysis to this
problem, by using either a faster processor or more processors. The only known result
is a lower bound of Q(logloga) speedup to achieve optimality (1-competitiveness) [6],
which applies to both the traditional and partial value models. A 4[lg a] upper bound for
the traditional model is known [10,8]. In Section 5 we give the first upper bound results
for the partial value model, showing that a O(log a) factor of more resources (either faster
processors or more processors) can achieve optimality. This is achieved by showing that
a simple earliest-deadline-first algorithm can give optimality for small values of a. This
does not scale up well for large values of «, but we use a grouping technique to improve
the bound. We also give a tradeoff result between the amount of extra resources and the
improvement to competitive ratio. Such tradeoff results also exist for the traditional model

2 1n this paper Ig denotes log to base 2.

470 EY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467-478

[7,10]. Our result shows that using a fairly small amount of extra resources is sufficient to
achieve a close-to-optimal competitive ratio.

2. Preliminaries

Let r(g),d(g) and w(g) denote the release time, deadline and weight of a job g,
respectively. The span of a job is the time interval [r(g), d(g)]. A job is active at time
tift € [r(q), d(q)] and is not completely processed by time z. For an algorithm A, let A(¢)
denote the job running by A at time ¢, and done4(q, t) be the amount of work done of job
g by A by time t. Without confusion, ‘algorithm’ and ‘schedule’ are used interchangeably.
If no job is scheduled on A at time ¢ we call A(¢) a null job. Let OPT denote the offline
optimal algorithm, and let ||S]| denote the value of a schedule S.

A schedule S is canonical if for any two times 7 and 7 (1 < 1), the following is
satisfied: if g = S(¢1), and g2 = S(#2) is not null, then either (i) 7(g2) > #;, or (ii) g; is not
null and d(g1)<d(g2). Intuitively, it means that among the active jobs at any time, S will
either schedule the one with the earliest deadline, or discard it forever. We assume ties on
deadlines are always broken consistently, for the offline optimal algorithm and the online
algorithm, so that we may assume no two deadlines are equal. It can be shown that OPT
is canonical [6].

We bound the competitive ratio of online algorithms by employing a charging scheme
similar to thatin [6]. Let A denote an online algorithm. We charge the values of infinitesimally
small time periods (i.e. the ‘value rates’ or weights) from OPTtothoseinA.Let F :)} —» R
be a function mapping each time in OPT to a time in A. For any time ¢, suppose q is the job
currently running in OPT. If doneppr{(q,t) > dones(q,t), F(t) = t. Otherwise, find the
time u < t when donegpr(q, t) = donea(q, u), and F(t) = u. In both cases the value rate
charged is w(g). It can be seen that all job values in OPT are charged under mapping F.

At any time ¢, there are at most two charges to A (i.e. two times mapped to ¢ by F'), one
from time ¢ and another from a time later than z. See Fig. 1. Define the charging ratio at any
time ¢ to be the sum of values of the charges made to ¢ over the value A is getting at time .
If we can bound the charging ratio at time ¢ for all ¢, this gives a bound on the competitive
ratio of A.

% K;
OPT
donq)m.(qo, t)> doneA (qO’ Z domb},;.(qi, t')= doneA(qi, t)

Ft)=t F(r) =§’

A ! ;

4,

1 :

time = ¥ t’

Fig. 1. Charging scheme.

FEY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478 471
3. An improved non-timesharing algorithm

No non-timesharing algorithms are known to be better than 2-competitive for the gen-
eral case. In this section we give a non-timesharing algorithm that achieves an improved
competitive ratio when the number of concurrent jobs is bounded, or the number of weight
classes is bounded.

An active job x dominates another active job y if w(x)2w(y) and d(x) < d(y). An
active job is dominant if no other active job dominates it. Let w; denote the weight of the
ith heaviest active dominant job at any time. Note that no two active dominant jobs have
equal weight.

3.1. Algorithm GAP

Suppose there are at most m active dominant jobs at any moment, where m is known in
advance. Later we will see that this assumption generalizes the two conditions mentioned
before (bounded number of concurrent jobs or bounded number of weight classes).

The algorithm is designed to exploit the full power of charging schemes. Intuitively,
our algorithm tries to find a sufficiently heavy job which, at the same time, has a weight
far away from other lighter jobs. This helps to give a good charging ratio by avoiding jobs
with similar weights to charge to one point in time. Formally, algorithm GAP uses a para-
meter r > 1, which depends on m, and is the unique positive real root of the equation
r = 1+ r1/0=m) The following table shows some values of r and m.

m 2 3 4 5 10 20 00

r 1.618 1.755 1.819 1.857 1.930 1.965 2

When GAP s invoked, it first finds all active dominant jobs with weights >(1/r)w) (w; isthe
weight of the currently heaviest job). Call this set S. Among jobs in S, find a job g such that,
for any other active dominant job ¢’ with w(g’) < w(g), we have w(g)/w(g’)>r!/"~D,
(Note that ¢’ may not be in S.) Schedule g. (We will show that such a g always exists. If
there are more than one such g then schedule any one of them.) GAP is invoked again when
some job is finished, reached its deadline, or a new job arrives.

3.2. Analysis

Theorem 1. For a system with at most m active dominant jobs at any time, GAP is r-
competitive, where r the unique positive real root of r = 1 + r!/(=m),

Proof. We first show that there must be a job that satisfies the above criteria to be scheduled.
Let wy, wy, ..., w) be the weights of the active dominant jobs in S. If w; /w; 4y >r /(=D
for some i in 1,2,..., p — 1, we are done. Hence suppose w/w, < r®@=D/m=D_jf
there is no other active dominant job outside S, then the job with weight w/, can be sched-
uled. Otherwise, let w4 be the weight of the heaviest active dominant job outside S,

472 EYL. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478

p + 1<m. We have w, > r=P=D/m=Dyy 5p=m=2/m=Dy, and thus wp/wp+1 >

r=m=2/m=1 s(1/r) = r'/m=1_Therefore the job with weight w), can be scheduled.

By the definition of S and the way the algorithm works, we have the following properties
of GAP: for any job y picked by GAP,

1) wy)2wi/r

(2) no other active dominant job x satisfies 71/ w(y) < wx)<w(y).

We use the charging scheme in Section 2. Suppose at time ¢, x and y are the jobs running in

OPT and GAP, respectively. We consider the charges made to job y. y may receive charges

from x and/or charges from y from a later time in OPT. There are three cases:

Case 1: x does not charge to y. In this case charging ratio = w(y)/w(y) = 1.

Case 2: Only x charges to y. Since x must be active in GAP, and GAP always choose jobs
within 1/r of the maximum weight (Property (1)), we have charging ratio = w(x)/w(y)
Sw(x)/(wi/r)<r.

Case 3: Both x and y charge to y. By definition of the mapping F, both x and y should
be active in GAP at time ¢. By the canonical property of OPT, d(x) < d(y). Therefore
w(x) < w(y), or else x dominates y and y would not be scheduled in GAP.

(i) if x is dominant in GAP, then by Property (2) of GAP, w(x)/w(y)<r!/0-m),

(ii) if x is not dominant in GAP, then suppose z # x is the ‘next’ (smaller-weight) active
dominant job after y. By Property (2) of GAP, w(z)/w(y)<r!/(0-™), and we must have
w(x)<w(z) (because y and z are consecutive dominant jobs, there cannot be an active
job with weight > w(z) and deadline < d(y)), so again we have w(x)/w(y)<r/(1—m),

In both cases, the charging ratio = (w(x) + w(y))/w(y) = 1 + w(x)/w(y)<1 4 r/A=-m),

Therefore, in any case charging ratio < max(r, 1+r1/!=™)_This is minimized by setting
r to be the root of r = 1 4 r1/(0=™) In this case, the competitive ratio is r. [J

~ The above proof only uses the assumption that there are at most m active dominant jobs at

any time. Note that whether jobs are active/dominant or not depends on how the algorithm
schedules them, not just the instance itself. This is not desirable. However the theorem is
still true for the following models, which are more realistic and generalized by the above:

Corollary 2. GAP is r-competitive if

(i) at any time t there are at most m jobs with t in their span; or

(ii) there are at most m weight classes, i.e., all jobs are of weight wy, wy, . .., wy, for some
fixed w;’s.

Proof. (i) automatically implies there are at most m active dominant jobs, while (ii) means
there are at most m jobs having different weights at any time, thus at most m active dominant
jobs. O

In [5] it is proved that no non-timesharing algorithms are better than ¢-competitive, and
the construction is for m = 2. When m = 2, GAP chooses r to be the rootof r = 1+ 1/r,
i.e.r = ¢. Thus we have

Corollary 3. GAP is an optimal non-timesharing algorithm with competitive ratio ¢ when
m=2.

EY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467-478 473

GARP as described above assumes the value of m is known a priori. In fact GAP can also
be used even when m is not known in advance: just use the number of active dominant jobs
at the time instance when GAP is invoked and use this as the value of m to compute the
corresponding r. At different times in the course of running GAP, the value of r is therefore
different. Since the proof only bounds the charging ratio at each individual time, the overall
competitive ratio is bounded above by the maximum of all charging ratios, which is the one
when m is largest.

Note that GAP gives a competitive ratio better than 2 when m is bounded, while the
algorithm in [4] has competitive ratio better than 2 when a (the importance ratio) is
bounded.

4. The multiprocessor case

In this section, we consider the partial job value scheduling problem in a multiprocessor
setting. We compare the performance of an online algorithm having M processors with an
offline optimal algorithm also having M processors. We assume jobs are migratory, i.e., jobs
on a processor can be switched to other processors to continue processing, but the same job
cannot be run on more than one processor at any time.

First consider the upper bound. For the uniprocessor case, FirstFit (i.e., always schedule
the heaviest job) is 2-competitive [3]. We show that the same holds for the multiprocessor
case, in which FirstFit always schedules the M heaviest active jobs (if there are less than M
active jobs, then some processors will idle).

Theorem 4. In the multiprocessor setting, FirstFit is 2-competitive, and this is tight.

Proof. We use the charging scheme in Section 2. Suppose at time ¢, jj, ..., ju are the
M jobs running on the processors of FirstFit, w(j1)>w(j2)> ... 2w(jum), and suppose
q1, ..., qum are jobs running on the processors of the offline optimal algorithm. Some of
the g;’s may be the same as some of the j;’s. Without loss of generality assume j; = g;
fori € I C (1,2,..., M} (reordering indices of g;’s as necessary). Consider the charges
to a certain time ¢. For those i € I, j; can charge to time ¢ at most once. For those i ¢ I,
g either do not charge to time ¢, or if they do, then we must have w(g;)<w(jy) since they
are unfinished but not chosen by FirstFit. For these i’s, j; may also charge to ¢ from a later
time in OPT. Thus the charging ratio is given by

< Ziel w(gi) + (M — [IDw(jm) + Z,’g[w(ji)

(I
M w(i)
_ ZiLiwl) + M = 11wy T wii) + Mwiin)
- M : = M . =a
i=1 w(i) Zi:l w(ji)

Consider the following instance of jobs: M copies of (0, 2, 1, 1+¢), and M copies of (0, 1,
1, 1), where ¢ > 0 is very small. (Recall that (r, d, p, w) are the release time, deadline,
processing time and weight respectively.) FirstFit schedules all weight-(1+¢) jobs and misses

474 EYL. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478

: : : : weights

! .l ; : sl

— i 2

: — E P2

: . P4

: : —or 4
I——'——i. 8

=0 1 2 3 4

(M copies each)

Fig. 2. Lower bound construction, showing J3 as an example.

all weight-1 jobs, while OPT can schedule all of them. Thus the competitive ratio >(M +
MO +e) /MO +e))=~2 0O

Next we consider the lower bound. In [5] we proved a randomized lower bound of % for
the uniprocessor case. Here we extend the result to the multiprocessor case with a similar
proof.

Theorem 5. No randomized (and hence deterministic) algorithms can be better than

%-campen’tive for any M (for both timesharing and non-timesharing algorithms).

Proof. We make use of Yao’s principle [14]. Basically, it enables us to find a lower
bound of randomized algorithms by finding a probability distribution of instances, such
that we can bound the ratio of the expected offline optimal value to the expected online
value of the best deterministic algorithm. This ratio will then be a lower bound of random-
ized algorithms (see [2]).

Consider a set of n + 1 instances (see Fig. 2):

Ji = M copies of {(0, 1,1, 1), (0,2, 1,2)},
Ji=J;i_1 UM copiesof {(i —1,i,1,2"7), G —1,i + 1, 1,2},
fori=2,...,n
Jn+1 =Jp UM copies of {(n,n+1,1,2")}.

We form a probability distribution of J;’s with p; being the probability of picking J;:
pi=1/2fori =1,2,...,nand pPny1 = 1/2" Clearly Y p; = 1. Consider the offline
optimal value. Here OPT(J;) means the optimal schedule of instance J;. It is easy to see
that,fori =1,2,...,n,

IOPTUNI =R +2%+---+2)M +21"'m
=QQ -1 +2"HM = 52" - 2)Mm,
IOPT(Jni)l =2 +22+ -+ 2OYM + 2"M
=QQ" - 1)+2"M = 3(2") = 2)M.

EYL. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478 475

Thus
no 52712 32" -2
ElloPTI = 3= 25—+ 2=
n (5 2 2
=,¥(5‘5> (5= 3)
M+Q
2

Fix a deterministic online algorithm A. At any time interval [i — 1, i] where i is an integer, A
is faced with M heavier jobs and M or more lighter jobs. Suppose it spends 8; processor-time
(total amount of time available on all processors) on lighter jobs in this time interval (and
hence M — B; on heavier jobs). The f;’s completely determine the value obtained by this
algorithm (on these instances). We can show that, fori = 1,2,...,n,

IAUDI =By +2(M — Bl +---+ 2B + 2/ (M —ﬁ.-)1+2‘ﬂi,
NAUns DIl =By +2(M =)1+ --- + [2"-‘/3,, +2"(M - ﬁ,,)] +2"M

1 1
ETiAl=ZIAUDI+ 2IAUDI + -+ + =

> AU + = > L AGDIl.
Consider E [l A|}] by its constant terms, coefficients of [3, s, etc. For 1<t<n — 1, coefficient
of f; = L@ + Tr(z' Po2i) 4. 4 L@i-1 = 2)) 4 L@i-1 —2) = 0, and

coefﬁcient of B, = 7—-(2" 4+ 2—(2" 1 _ 27y = 0. Thus E[||A||] only depends on the
constant terms, and

E[1|An]=i-—(z+ MRty

_ i 2(2’ — 1) 2(2" —Zi) + 2" M
n 2

=4 () (3 - 55) M

=2n+ M.

Hence
E[|OPT|]] _ 5n/24+1 5

= -
E[) A} 2n+1 4

as n is very large. Thus no randomized algorithms have competitive ratio better than i—. O

5. Resource augmentation

How much extra resources is required to get 1-competitive algorithms? In this section
we give an algorithm that requires roughly a factor of 1.88 Ig a extra resources to achieve
1-competitiveness, in contrast with the Q(log log) lower bound [6]. It is in parallel to, but
smaller than, the 4[lg] upper bound for the traditional model [10,8].

476 FY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467478
5.1. Earliest deadline first

We first consider the earliest deadline first (EDF) algorithm, which always schedules the
Jjob with the earliest deadline, with a speed-s processor (one which has speed s times that
of a normal processor).

Lemma 6. EDF with a speed-s processor is a/s-competitive.

Proof. We use a charging scheme almost identical to that stated in Section 2. The only dif-
ference is that, when donegpr(q, t) < donegpr(q, t) and doneopr(q, t) = donegpr(q, u)
for u < ¢ (i.e., charge from 7 to u), the charges made to time u is s - w(q), i.e., s times the
weight, to account for the difference in speeds between the offline and online algorithms.

Suppose at time ¢, job go is running in OPT, g; is running in EDF. Note that EDF is
getting a value of s - w(q) every unit time since it is running at speed-s. Consider the
charges to time ¢, it consists of a w(go) charge from time 7 and/or a s - w(q) charge from
a later time.

Case 1: go does not charge to . Charging ratio c<(s - w(q1))/(s - w(qy)) = 1.

Case 2: go charges to 1. Thus g is unfinished at time ¢ in EDF, therefore g1 cannot be null.
Suppose all job weights are normalized to be in the range [1,a], then w(go)<a, w(g;)>1.
If there are no other charges (from later times in OPT), then c<Sw(go)/(s - w(gy))<a/s.
Suppose g; charges from a later time u > ¢ in OPT. Since OPT is canonical, d(go)<d(q1),
thus EDF should schedule gg instead of g;. The only possibility is then 40 = q1, but in this
case we still have c<(s - w(q1))/(s - w(q1)) = 1 since go cannot charge to ¢ at two different
times. [J

Due to its sequential nature, a job cannot be running on two processors simultaneously.
Thus a speed-2 processor is more powerful than two speed-1 processors, since it can sim-
ulate two speed-1 processors by timesharing but not vice versa. However, we still have
the following stronger result, using extra processors instead of higher-speed processor to
achieve 1-competitiveness. We again use EDF, i.e., the s processors P1, ..., Ps schedule
the first, . . ., sth earliest-deadline jobs, respectively. (If there are less than s active jobs then
some processors idle.)

Lemma 7. EDF with s speed-1 processors is o./s-competitive.

Proof. For any time ¢, let gg be the job running in OPT, gy, ..., g, be the jobs running in
P1,..., Ps, respectively. We again use the same charging scheme in Section 2. Consider
the charges to time ¢, which consists of w(gg) from ¢, and/or w(q1), ..., w(g,) from later
times.

Case 1: go does not charge to ¢. Then eS(w(qy) + -+ + w(gs))/(wi(qy) + -+ +
w(gs)) = 1.

Case 2: go chargestot,and all gy, . . ., g, are not null. Suppose job weights are normalized
so that w(go)<a, w(g1), ..., w(gs)>1.

Case 2.1: qo # any one of g;’s. If g; charges to ¢ for some i, then since d(g0)<d(q;)
(OPT is canonical), Pi should schedule g instead. So none of g; can charge to . Hence
cSw(go)/(w(q1) + - - - + w(gs))<a/s.

FEYL. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467—-478 477

Case 2.2: g9 = g; for some i. g; cannot charge to ¢ from a later time in OPT, since
doneopr(g;,t) > donegpr(q;,t) and thus doneopr(q;, u) > donegpr(q;, t) for all later
times u. Thus the set of OPT charges is a subset of the set of EDF jobs, so c<1.

Case 3: qo charges to 1, q1..g; are not null, but g;.;1..gs are null, for some i > 1. (¢ cannot
be null, since gy is unfinished.) If gg is not one of q;..¢;, then ¢; cannot be null since gg
is unfinished. Thus go is one of g;..g;, say g;; in which case g; cannot charge to ¢ from a
later time in OPT. So the set of OPT charges is a subset of the set of EDF jobs, and hence
c<1l. O

5.2. Grouped-EDF

Lemmas 6 and 7 implies that 1-competitiveness can be achieved by using a speed-u
processor or [«] speed-1 processor. In fact this is the best EDF can do. Consider using
a speed-s processor with s < « (assuming « is an integer). Let s = a — 4,0 > 0 and
0 < & < 6/(x— 1 — J). Consider the instance consisting of a job (0, o + ¢, &t -+ &, &) and o
copies of (0, a, &, 1). OPT gets a value of a(x + &) by executing the heaviest job. Speed-s
EDF gets a value of as + ase. It is easy to verify that as 4 ase < a(a + €).

However, we can do better: the following algorithm Grouped-EDF partitions the weight
ranges [1..a] into [log; o] classes, each having weights in the interval [1, 1), [4, /12), A
[Alloeial =1 allogzaly ‘rallogil) Jobs in each class have importance ratio at most A. The
algorithm assigns A speed-1 processors to process jobs in each class using EDF. The total
number of processors used, A[log; a], is minimum when 4 = e (1 = 3 if 1 is restricted to
be an integer).

Theorem 8. Grouped-EDF is 1-competitive using 3[log; &] speed-1 processors.

Proof. We use Grouped-EDF with 4 = 3. Let OPT; and EDF; be the 1-processor optimal
and A-processor EDF schedules for the sub-instance consisting of only the ith class jobs,
respectively. By Lemma 7, ||OPT; || <||EDF;|| for all i. We also have ||OPT||< 3" ||OPT; ||
because the processors in each OPT; can always schedule at least that much obtained by
the subset of jobs in OPT restricted to that class. Thus ||OPT||< 3~ |OPT;||< Y |EDF;|| =
||Grouped-EDF}j. O

Alternatively, Grouped-EDF can assign a speed-4 processor to each class. By Lemma 6
and timesharing to simulate multiple processors, we have:

Theorem 9. Grouped-EDF is 1-competitive with a speed-(e[Ina]) processor, or with
[In o] speed-e processors.

An O(log o)-speed processor may not be practical. If we allow timesharing, we can use
a speed-s version of the algorithm MIX in [5] to give a tradeoff between speedup and
competitive ratio. The proof is similar to the e/(e — 1)-competitiveness upper bound proof
in [5] and is therefore omitted.

478 FY.L. Chin, S.PY. Fung / Theoretical Computer Science 325 (2004) 467—-478

Theorem 10. The speed-s version of MIX is 1/(1 — e™%)-competitive against a speed-1
offline optimal algorithm.

A small amount of additional processing power can give very good competitiveness
results, irrespective of the value of «. For example, with s = 2 we have ¢ = 1.16, with
s = 3,c = 1.05, and with s = 5,¢ = 1.00678, i.e. just 0.68% fewer than the optimal
value.

6. Conclusion

In this paper we consider an online scheduling problem with partial job values, and
give new results in the non-timesharing case, the multiprocessor case, and the resource
augmentation analysis. Some questions remain open. Most importantly, we do not know
whether there are non-timesharing algorithms with competitive ratio better than 2. Another
problem is about the exact speedup required for achieving 1-competitiveness: both the
traditional and partial value models have bounds Q(log log a) and O(log «). Would their
true bounds be different? (The partial value model seems ‘easier’: it has 2-competitive
algorithms whereas there is a lower bound of 4 in the traditional model [1].)

References

[1] S. Baruah, G. Koren, D. Mao, B. Mishra, A. Raghunathan, L. Rosier, D. Shasha, F. Wang, On the
competitiveness of on-line real-time task scheduling, Real-Time Systems 4 (1992) 125-144.
[2] A. Borodin, R. El-Yaniv, Online Computation and Competitive Analysis, Cambridge University Press, New
York, 1998.
[3] E.-C. Chang, C. Yap, Competitive online scheduling with level of service, in: Proc. seventh Internat.
Computing and Combinatorics Conf., Lecture Notes in Computer Science, Vol. 2108,2001, pp. 453-462.
[4] EY.L. Chin, S.P.Y. Fung, Online scheduling with partial job values and bounded importance ratio, in: Proc.
Internat. Computer Symp.,2002, pp. 787-794.
[5] EY.L. Chin, S.P.Y. Fung, Online scheduling with partial job values: does timesharing or randomization help?,
Algorithmica 37 (3) (2003) 149-164.
[6] M. Chrobak, L. Epstein, J. Noga, J. Sgall, R. van Stee, T. Tichy, N. Vakhania, Preemptive scheduling in
overloaded systems, J. Comput. System Sci. 67 (1) (2003) 183-197.
[7] B. Kalyanasunaram, K. Pruhs, Speed is as powerful as clairvoyance, J. ACM 47 (4) (2000) 617-643.
[8] C.-Y. Koo, T.-W. Lam, T.-W. Ngan, K.-K. To, Extra processors versus future information in optimal deadline
scheduling, in: Proc. 15th ACM Symp. on Parallel Algorithms and Architectures,2002, pp. 133-142.
[9]1 G. Koren, D. Shasha, D°V¢": an optimal on-line scheduling algorithm for overloaded uniprocessor real-time
systems, SIAM J. Comput. 24 (1995) 318-339.
{10} T.-W. Lam, K.-K. To, Performance guarantee for online deadline scheduling in the presence of overload, in:
Proc. 12th ACM-SIAM Symp. on Discrete Algorithms,2001, pp. 755-764.
{11] J.WS. Liu, K.-J. Lin, W.-K. Shih, A.C. shi Yu, J.-Y. Chung, W. Zhao, Algorithms for scheduling imprecise
computations, IEEE Comput. 24 (5) (1991) 58-68.
[12] C.A. Philips, C. Stein, E. Torng, J. Wein, Optimal time-critical scheduling via resource augmentation, in:
Proc. 29th ACM Symp. on Theory of Computing,1997, pp. 140-149.
[13] D.D. Sleator, R.E. Tarjan, Amortized efficiency of list update and paging rules, Commun. ACM 28 (2) (1985)
202-~-208.
[14] A.C.-C. Yao, Probabilistic computations: toward a unified measure of complexity, in: Proc. 18th IEEE Symp.
on Foundations of Computer Science,1977, pp. 222-227.

R00087974_TCS_5241
B

