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Abstract

The popularity of Java and recent advances in compilation and execution tech-
nology for Java are making the language one of the preferred ones in the field of
high-performance scientific and engineering computing. A distributed Java Virtual
Machine supports transparent parallel execution of multi-threaded Java programs
on a cluster of computers. It provides an alternative platform for high-performance
scientific computations. In this paper, we present the design of a global object space
for a distributed JVM. It virtualizes a single Java object heap across machine
boundaries to facilitate transparent object accesses. We leverage runtime object
connectivity information to detect distributed-shared objects (DSOs) that are reach-
able from threads at different nodes to facilitate efficient memory management in
the distributed JVM. Based on the concept of DSO, we propose a framework to
characterize object access patterns, along three orthogonal dimensions. With this
framework, we are able to effectively calibrate the runtime memory access patterns
and dynamically apply optimized cache coherence protocols to minimize consistency
maintenance overhead. The optimization devices include an object home migration
method that optimizes the single-writer access pattern, synchronized method migra-
tion that allows the execution of a synchronized method to take place remotely at
the home node of its locked object, and connectivity-based object pushing that uses
object connectivity information to optimize the producer-consumer access pattern.
Several benchmark applications in scientific computing have been tested on our dis-
tributed JVM. We report the performance results and give an in-depth analysis of
the effects of the proposed adaptive solutions.
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1 Introduction

The Java programming language [1] supports concurrent programming with
multiple threads, which makes it a potential language for parallel computing
without the need to learn a new parallel language. Recent advances in Java
compilation and execution technology, such as just-in-time compiler and the
hotspot technology [2], add to the attractiveness of Java as a language for
high performance scientific and engineering computing [3]. Some performance
benchmark results even indicate that Java can outperform the C programming
language in some numerical computations [4].

On the other hand, cluster [5,6] has gradually been accepted as a scalable
and affordable parallel computing platform by both academia and industry in
recent years. Several research projects have been conducted to support trans-
parent and parallel execution of multi-threaded Java programs on clusters [7–
11]. Among them, Java/DSM [9], cJVM [10], and JESSICA [11] introduced the
idea of a distributed JVM that runs on a cluster of computers. A distributed
JVM appears as a middleware that presents a single system image (SSI) [12]
of the cluster to Java applications. With a distributed JVM, the Java threads
created within one program can be run on different cluster nodes to achieve
a higher degree of execution parallelism. In addition, cluster-wide resources
such as memory, I/O, and network bandwidth can be unified and used as a
whole to solve large-sized problems.

The adoption of the distributed JVM for parallel Java computing can also
boost programming productivity. Given that the distributed JVM conforms
to the JVM specification, any Java program can run on the distributed JVM
without any modification. The steep learning curve can thus be avoided since
the programmers do not need to learn a new parallel language, a new mes-
sage passing library, or a new tool in order to develop parallel programs. It
is also convenient for program development as the parallel algorithms can
be implemented and tested in a single machine before it is submitted to a
parallel computer for execution. Finally, many existing multi-threaded Java
applications, especially server applications, can be ported to clusters when a
cost-effective parallel platform is sought for.

In a distributed JVM, the shared memory nature of Java threads call for a
global object space (GOS) that “virtualizes” a single Java object heap spanning
multiple nodes or the entire cluster to facilitate transparent object access [11].
The GOS is indeed a distributed shared memory (DSM) service in an object-
oriented system. The memory consistency semantics of the GOS are defined
based on the Java memory model (Chapter 8 of the JVM specification [13]).
The performance of the distributed JVM hinges on the GOS’s ability to mini-
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mize the communication and coordination overheads in maintaining the single
object heap illusion.

Many distributed JVMs use a page-based DSM to build the GOS [9,11]. This
is an easy approach because all the memory consistency and cache coherence
issues are handled by the page-based DSM. It however suffers from problems
due to a mismatch between the object-based memory model of Java and the
underlying page-based implementation of the distributed object heap subsys-
tem. One of these is the false sharing problem which occurs because of the
incompatible sharing granularities of the variable-sized Java objects and the
fixed-size virtual memory pages [14]. This mismatch has also prevented further
optimizations in the cache coherence protocol implementing the Java memory
model.

Object-based DSMs can be good candidates for implementing the GOS. Most
existing object-based DSM systems are language-based [15–18], and rely on
the compiler to extract object sharing information in the user’s program. Such
information comes usually from annotations by the programmers. Therefore,
the approach cannot fit into our distributed JVM scenario because as a runtime
component, the GOS cannot rely on the programmer to provide the sharing
information.

Scientific applications exhibit diverse execution patterns. To execute these ap-
plications efficiently in software DSM systems, many cache coherence protocols
have been proposed. Home-based protocols [19] assign a home node to each
shared data object from which all copies are derived. It is widely believed that
home-based protocols are more scalable than homeless protocols [20], for the
reason that the former has less memory consumption and can eliminate diff

accumulation. The home in a home-based protocol can be either fixed [19] or
mobile [21]. There is also variation for the coherence operations, such as a
multiple-writer protocol, or a single-writer protocol. The multiple-writer pro-
tocol introduced in Munin [17] supports concurrent writes on different copies
using the diff technique. It may however incur heavy diff overhead compared
with conventional single-writer protocols. Another choice is between the up-
date protocol (e.g., Orca [15]) and the invalidate protocol used in many page-
based DSM systems such as TreadMarks [20] and JUMP [21]. The update
protocol can do prefetching to make the data available before the access, but
it may send much unneeded data when compared with the invalidate protocol.
Indeed, the choice of a good coherence protocol is often application-dependent.
That is, the particular memory access patterns in an application speak for the
more suitable protocol. That motivates us to go after an adaptive protocol.

In this paper, we propose a new global object space design for the distributed
JVM. In our design, we use an object-based adaptive cache coherence proto-
col to implement the Java memory model. We believe that adaptive protocols
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are superior to non-adaptive ones due to their adaptability to object access
patterns in applications. An adaptive cache coherence protocol is able to de-
tect the current access pattern and adjusts itself accordingly. Some DSMs
(e.g., Munin [17]) support multiple cache coherence protocols and allow the
programmer to explicitly associate a specific protocol with the shared data.
This is not transparent to the programmer and it is difficult to dynamically
switch between different protocols in response to changes in the access pattern.
Several page-based DSM systems [22][23] support adaptive protocols that can
automatically adapt to the access pattern at runtime. However, the access pat-
tern observed by these systems is the page-level approximation of the actual
pattern. They may not be effective if the approximation deviates substantially
from the actual pattern, which can easily be the case if the application has
fine-grained sharing granularity. An object-based adaptive protocol, on the
other hand, should be more flexible.

The challenges of designing an effective and efficient adaptive cache coherence
protocol are: (1) whether we can determine those important access patterns
that occur frequently or those that contribute a significant amount of overhead
to the GOS, and (2) whether the runtime system can efficiently and correctly
identify such target access patterns and apply the corresponding adaptations
in a timely fashion.

To further understand the first challenge and to overcome it, we propose the
access pattern space as a framework to characterize object access behavior.
This space has three dimensions—number of writers, synchronization, and rep-
etition. We identify some basic access patterns along each dimension: multiple-
writers, single-writer, and read-only for the number-of-writers dimension; mu-
tual exclusion and condition for the synchronization dimension; and patterns
with different numbers of consecutive repetitions for repetition dimension.
Some combination of different basic patterns along the three dimensions then
portrays an actual runtime memory access pattern. This 3-D access pattern
space serves as a foundation on which we can identify those significant object
access patterns in the distributed JVM. We can then choose the right adapta-
tions to match with these access patterns and improve the overall performance
of the GOS.

To meet the second challenge, we take advantage of the fact that the GOS
is implemented by modifying the heap subsystem of the JVM. Our adaptive
protocol can leverage all runtime object types and access information to effi-
ciently and accurately identify the access patterns worthy of special focus. We
leverage runtime object connectivity information to detect distributed-shared
objects (DSOs). DSOs are the objects that are reachable from at least two
threads located at different cluster nodes in the distributed JVM. The iden-
tification of DSOs allows us to handle the memory consistency problem more
precisely and efficiently. For example, in Java, synchronization primitives are
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not only used to protect critical sections but also to maintain memory consis-
tency. Clearly, only synchronization of DSOs may involve multiple threads on
different nodes. Thus, the identification of DSOs can reduce the frequency of
consistency-related memory operations. Moreover, since only DSOs that are
replicated on multiple nodes would be involved in consistency maintenance,
the detection of DSOs therefore leads to a more efficient implementation of
the consistency protocol.

We apply three different protocol adaptations to the basic home-based multi-
ple writer cache coherence protocol in three respective situations in the access
pattern space: (1) object home migration which optimizes the single-writer ac-
cess pattern by moving the object’s home to the writing node according to the
access history; (2) synchronized method migration which chooses between de-
fault object (data) movement and optional method (control flow) movement
in order to optimize the execution of critical section methods according to
some prior knowledge; (3) connectivity-based object pushing which scales the
transfer unit to optimize the producer-consumer access pattern according to
object connectivity information.

The rest of the paper is organized as follows. Section 2 introduces the access
pattern space. Section 3 defines DSO, and explains the lightweight DSO detec-
tion scheme and how we use the concept of DSO to address both the memory
consistency issue and the memory management issue in the GOS. Section 4
presents the adaptive cache coherence protocol. We conducted experiments
to measure the performance of the prototype based on our design, which we
report in Section 5. In section 6, related work is discussed and compared with
our GOS. The final section gives the conclusion and presents a possible agenda
for future work.

2 Access Pattern Specification

In this section, we first introduce the Java memory model which influences
memory behavior, and then propose the access pattern space for specifying
object access behavior in Java. Although we discuss access patterns in the
context of Java, the access pattern space concept should be applicable to
other shared memory systems.

2.1 Java Memory Model

The Java memory model (JMM) defines memory consistency semantics of
multi-threaded Java programs. There is a lock associated with each object
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in Java. Based on the JMM proposed in [24], when a thread T1 acquires a
lock that was most recently released by another thread T2, all writes that are
visible to T2 at the time of releasing the lock become visible to T1. This is the
release consistency [25].

The Java language provides the synchronized keyword, used in either a syn-
chronized method or a synchronized statement, for synchronization among
multiple threads. Entering or exiting a synchronized block corresponds to ac-
quiring or releasing a lock of the specified object. A synchronized method or
a synchronized statement is used not only to guarantee exclusive access in the
critical section, but also to maintain memory consistency of objects among all
threads that have performed synchronization operations on the same lock.

We follow the operations defined in the JVM specification to implement this
memory model. Before a thread releases a lock, it must copy all assigned values
in its private working memory back to the main memory which is shared
by all threads. Before a thread acquires a lock, it must flush (invalidate) all
variables in its working memory; and later uses will load the values from the
main memory. Therefore, an object’s access behavior can be described as a set
of reads and writes performed on the object, with interleaving synchronization
actions such as locks and unlocks. Locks and unlocks on the same object are
executed sequentially. Among all the accesses from different threads, a partial
order is established by the synchronization actions.

The complexity of the implementation of the JMM stems from the fact that
these reads and writes as well as locks and unlocks may be issued concurrently
by multiple threads. In particular, the locks and unlocks invoked on a particu-
lar object may influence other objects’ access behavior of different threads. A
straight-forward implementation of the JMM will result in poor performance,
especially in a cluster environment.

2.2 Access Pattern Space

Three orthogonal dimensions capturing the characteristics of object access
behavior can be defined: number of writers, synchronization, and repetition.
They form a 3-dimensional access pattern space, as shown in Fig. 1.

Number of writers. This says how many nodes there are in which some
thread is writing to the object. We distinguish three cases:

• Multiple writers : the object is written by multiple nodes.
• Single writer : the object is written by a single node. Exclusive access is a

special case where where the object is accessed (written and read) by only
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Fig. 1. The object access pattern space: items in normal font are the access patterns;
items in italic font are the corresponding adaptations; the basic protocol is not
shown.

one node. Object home migration is used to optimize this pattern, which
will be discussed in Section 4.1.

• Read only : no node writes to the object.

Synchronization. This characterizes the execution order of accesses by dif-
ferent threads. When the object is accessed by multiple threads and at least
one thread is a writer, the threads must be well synchronized to avoid data
race. There are three cases:

• Accumulator : the object accesses are mutually exclusive. The object is
updated by multiple threads concurrently, and therefore all the updating
should happen in a critical section. That is, the read/write should be pre-
ceded by a lock and followed by an unlock.

• Assignment : the object accesses obey the precedence constraint. The object
is used to safely transfer a value from one thread to another thread. The
source thread writes to the object first, followed by the destination thread
reading it. Synchronization actions should be used to enforce that the write
happens before the read according to the memory model. Java provides
the wait and notify methods in the Object class to help implement the
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assignment pattern.
• No synchronization: synchronization is unnecessary.

We use synchronized method shipping to optimize synchronization-related
patterns, which will be discussed in Section 4.2.

Repetition. This indicates the number of consecutive repetitions of an access
pattern. It is desirable that an access pattern will repeat for a number of times
so that the GOS will be able to detect the pattern using history information
and then to apply optimization on the re-occurrence of the pattern. Such
a pattern will appear on the right side of the adaptation point along the
repetition axis. The adaptation point is an internal threshold parameter in
the GOS. When the pattern repeats for more times than what the adaptation
point indicates, the corresponding adaptation will be automatically performed.
The single-writer pattern can be optimized using this approach. On the other
hand, some important patterns appear on the left of the adaptation point, such
as the producer-consumer pattern, which is also called the single assignment.
We use connectivity-based object pushing to optimize those patterns that have
little repetition as we cannot rely on the history information to detect them.
The detail is presented in Section 4.3.

3 Distributed-shared Object

In this section, we define distributed-shared object and the benefits it brings
to our GOS. We then present a lightweight mechanism for the detection of
DSOs and the basic cache coherence protocol used in the GOS.

3.1 Definitions

In the JVM, connectivity exists between two Java objects if one object contains
a reference to another. Therefore, we can conceive the whole picture of an ob-
ject heap to be a connectivity graph, where vertices represent objects and edges
represent references. Reachability describes the transitive referential relation-
ship between a Java thread and an object based on the connectivity graph.
An object is reachable from a thread if its reference resides in the thread’s
stack, or if there is some path existing in the connectivity graph between this
object and some known reachable object.

By the escape analysis technique [26], if an object is reachable from only
one thread, it is called thread-local object. The opposite is a thread-escaping
object, which is reachable from multiple threads. Thread-local objects can be
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separated from thread-escaping objects at compile time using escape analysis.

In a distributed JVM, Java threads are distributed to different nodes, and
so we need to extend the concepts of thread-local object and thread-escaping
object. We define the following.

• A node-local object (DSO) is an object reachable from thread(s) in the same
node. It is either a thread-local object or a thread-escaping object.

• A distributed-shared object (NLO) is an object reachable from at least two
threads located at different nodes.

3.2 Benefits from Detection of DSOs

The detection of DSOs can help reduce the memory consistency maintenance
overhead. According to the JVM specification, there are two memory consis-
tency problems in a distributed JVM. The first one, local consistency, exists
among working memories of threads and the main memory inside one node.
The second one, distributed consistency, exists among multiple main memo-
ries of different nodes. The issue of local consistency should be addressed by
any JVM implementation, whereas the issue of distributed consistency is only
present in the distributed JVM. The cost to maintain distributed consistency
is much more than that of its local counterpart due to the communication in-
curred. As we have mentioned before, synchronization in Java is used not only
to protect critical sections but also to enforce memory consistency. However,
synchronization actions on NLOs do not need to trigger distributed consis-
tency maintenance, because all threads that are able to acquire or release
the lock of an NLO must reside in the same node, and therefore would not
experience distributed inconsistency throughout.

Only DSOs are involved in distributed consistency maintenance since they
have multiple copies in different nodes. With the detection of DSOs, only
DSOs need to be visited to make sure that they are in a consistent state
during distributed consistency maintenance.

According to the JVM specification, one vital responsibility of the GOS is
to perform automatic memory management in the distributed environment—
distributed garbage collection (DGC) [27]. The detection of DSOs also helps
improve the memory management in the GOS in this regard. Being aware
of the existence of DSOs, local garbage collectors can perform asynchronous
collection of garbage. The detection of DSOs enables independent memory
management in each node.
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3.3 Lightweight DSO Detection and Reclamation

In the distributed JVM, whether an object is a DSO or an NLO is determined
by the relative location of the object and the threads reaching it. Compile-time
solutions, such as escape analysis, are not useful as the location of objects and
threads can only be determined at runtime. We propose a runtime lightweight
DSO detection scheme which leverages Java’s runtime type information.

Java is a strongly typed language. Each variable, either object field that is in
the heap or thread-local variable in some Java thread stack, has a type. The
type is either a reference type or a primitive type such as integer, char, or
float. The type information is known at compile time and written into class
files generated by the compiler. At runtime, the class subsystem builds up type
information from the class files. Thus, by looking up runtime type information,
we can identify those variables that are of the reference type. Therefore, object
connectivity can be determined at runtime. The object connectivity graph is
dynamic since connectivity between objects may change from time to time
through the reassignment of objects fields.

DSO detection is performed when there are some JVM runtime data to be
transmitted across node boundary, which could be thread stack context for
thread relocation, object content for remote object access, or diff data for up-
date propagation. On both the sending and the receiving side, these data are
examined for identification of object references contained within. A transmit-
ted object reference indicates the object is a DSO since it is reachable from
threads located at different nodes. On the sending side, if the object has not
been marked as a DSO, it is marked at this moment. On the receiving side,
when a received remote reference first emerges, an empty object of correspond-
ing type will be created to be associated with it, so that the reference will not
become a dangling pointer. The object’s access state will be set to be invalid.
When it is accessed later, its up-to-date content will be “faulted in”. In this
scheme, only those objects whose references appear in multiple nodes will be
identified as DSOs.

We detect DSO in a lazy fashion. Since at anytime it is unknown whether an
object will be accessed by its reaching thread in the future or not, we choose
to postpone the detection to as close to the actual access as possible, thus
making the detection scheme lightweight.

To correctly reflect the sharing status of objects in the GOS, we rely on dis-
tributed garbage collection to convert a DSO back to an NLO. If all the cached
copies of a DSO have become garbage, the DSO can be converted back to an
NLO. A DGC algorithm, indirect reference listing (IRL) [28], is adopted to
collect DSOs that have turned into garbage. With the IRL in place, each node

10



independently garbage-collects its local heap using a mark-sweep collector [29].
Timely invocation of DGC can avoid the unnecessary overheads in handling
the consistency problem.

3.4 Basic Cache Coherence Protocol

Our basic cache coherence protocol is a home-based, multiple-writer cache
coherence protocol. Fig.2 shows a state transition graph depicting the lifecycle
of an object from its creation to possible collection based on the proposed DSO
concept.

An object is the unit of coherence. When a DSO is detected, the node where
the object is first created is made its home node. The home copy of a DSO
is always valid. A non-home copy of a DSO can be in one of three possible
access states: invalid, read (read-only), or write (writable). Accesses to invalid
copies of DSOs will fault in the contents from their home node. Upon releasing
a lock of a DSO, all updated values to non-home copies of DSOs should be
written to their corresponding home nodes. Upon acquiring a lock, a flush
action is required to set the access state of the non-home copies of DSOs
invalid, which guarantees that the up-to-date contents will be faulted in from
the home nodes when they are accessed later. Before the flush, all updated
values to non-home copies of DSOs should be written to the corresponding
home nodes. In this way, a thread is able to see the up-to-date contents of the
DSOs after it acquires the proper lock. Note that along the number-of-writers
dimension in the access pattern space, the multiple-writers pattern can be
treated as a generalized form of all patterns, with the single-writer pattern
and the read-only pattern being special cases (with some dumb writers).

Since a lock can be considered a special field of an object, all the operations
on a lock, including acquire, release, as well as wait and notify that are
the methods of the Object class, are executed in the object’s home node.
Thus, the object’s home node acts as the object’s lock manager. A multiple-
writer protocol permits concurrent writing to the copies of a DSO, which is
implemented using the twin and diff technique [20]. On the first write to a
non-home copy of the DSO, a twin will be created, which is an exact copy of
the object. On lock acquiring and releasing, the diff, i.e., the modified portion
of the object, is created by comparing the twin with the current object content
word by word, and sent to the home node.

With the availability of object type information, it is possible to invoke dif-
ferent coherence protocols according to the type of the objects. For example,
immutable objects, such as instances of class String, Integer, and Float,
can be simply replicated and treated as an NLO. Some objects are consid-
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Fig. 2. State transition graph depicting object lifecycle in the GOS

ered node-dependent resources, such as instances of class File. When node-
dependent objects are detected as DSOs, object replication should be denied.
Instead, accesses to them should be transparently redirected to their home
nodes. This is an important issue in the provision of a complete single system
image to Java applications.

12



4 Adaptive Cache Coherence Protocol

In the last section, we presented the home-based multiple-writer cache coher-
ence protocol for dealing with the consistency issues. However, as explained
before, the non-adaptive protocol can not be optimal in all circumstances.
The adaptive protocols are superior to non-adaptive ones because of their
adaptability to applications’ access patterns. In this section, we discuss the
adaptations we add to the basic protocol based on the proposed access pattern
space.

4.1 Object Home Migration

With a home-based cache coherence protocol, each DSO has a home node
to which all writes are propagated and from which all copies are derived.
Therefore, the home node of a DSO plays a special role among all nodes holding
a copy. Accesses happening in the non-home nodes will incur communication
with the home node, while accesses in the home node can proceed in full speed.

We propose a runtime mechanism to determine the optimal location of the
home of an object and perform object home migration accordingly. Object
home migration may have negative impacts on performance. In order to no-
tify a node which is not aware of the home migration, a redirection message
should be sent. Improper migration will result in a large number of unnec-
essary redirection messages in the network. Therefore, we only apply object
home migration to those DSOs exhibiting the single-writer access pattern. If
a DSO exhibits the multiple-writers pattern, all the non-home nodes can still
communicate with the original home node in order to obtain the up-to-date
copy and propagate the writes. It does not matter which is the home node as
long as long as the home node is one of the writing nodes.

If a DSO exhibits the single-writer pattern and its home is made the only
writing node, the overhead of creating and applying diff can be eliminated.
If the DSO further exhibits an exclusive access pattern, all the accesses will
happen in the home node, and therefore no communication will be necessary.

In order to detect the single-writer access pattern, the GOS monitors all home
accesses as well as non-home accesses at the home node. With the cache co-
herence protocol, the object request can be considered a remote read, and a
diff received on synchronization points can be considered a remote write. To
monitor the home accesses, the access state of the home copy will be set to
invalid on acquiring a lock and to read on releasing a lock. Therefore, home
access faults can be trapped and a return can be made after the access is
recorded.
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To minimize the overhead in detecting the single-writer pattern, the GOS
records consecutive writes that are from the same remote node and that not
interleaved by the writes from other nodes. We follow a heuristic that an object
is in the single-writer pattern if the number of consecutive writes exceeds a
predefined threshold. A relatively small threshold is used because the number
of consecutive writes reflects the synchronization periods during which the
object was only updated by that node.

The cost incurred by object home migration is due to monitoring and recording
the consecutive writes. This cost happens when the object request message
or the diff message arrives, as well as the first local write on at-home DSO
happens. Compared with the communication overhead, this cost is negligible
since only a few instructions suffice to update the object’s current consecutive
write counter.

If the single-writer pattern is detected, upon request from the writing node, not
only is this object delivered in a reply but also a home migration notification
would be issued. A forwarding pointer is left in the original home node to refer
to the new home.

4.2 Synchronized Method Migration

Synchronized method migration is not meant to directly optimize synchro-
nization related access patterns such as assignment and accumulator. Instead,
it optimizes the execution of the synchronized method itself, which is usually
related to those access patterns.

Java’s synchronization primitives, including synchronized block, as well as the
wait and notify methods of the Object class, are originally designed for
thread synchronization in a shared memory environment. The synchroniza-
tion constructs built upon them are inefficient in a distributed JVM that is
implemented in a distributed memory architecture like clusters.

Fig. 3 shows the skeleton of a Java implementation of the barrier function.
The execution cannot continue until all the threads have invoked the barrier
method. We assume the instance object is a DSO and the node invoking
barrier is not its home node. On entering and exiting the synchronized
barrier method, the invoking node will acquire and then release the lock
of the barrier object, while maintaining distributed consistency. In line 8,
the barrier object will be faulted in. It is a common behavior that the locked
object’s fields will be accessed in a synchronized method. In line 9 and line 11,
the synchronization requests wait and notifyAll respectively, will be issued.
The wait method will also trigger an operation to maintain distributed con-
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1    class Barrier { 
2     int count;               // the number of threads to barrier 
3 private int arrived; // initial value equals to 0 
4   
5 public synchronized void barrier() { 
6         try { 
8  if (++arrived < count)  
9        wait(); 
10  else { 
11       notifyAll(); 
12       arrived = 0; 
13  } 
14        } catch (Exception e) { } 
15  } 
16    } 
 

Fig. 3. Barrier class

sistency according to the JMM. 2 Therefore, there are four synchronization or
object requests sent to the home node and multiple distributed consistency
maintaining operations are involved.

Migrating a synchronized method of a DSO to its home node for execution
will combine multiple round-trip messages into one and reduce the overhead
for maintaining distributed consistency. While object shipping is the default
behavior in the GOS, we apply method shipping particularly to the execution
of synchronized methods of DSOs. With the detection of DSOs, this adaptation
is feasible in our GOS.

The method shipping will cause the workload to be redistributed among the
nodes. However, the synchronized methods are usually short in execution time
and can only be sequentially executed by multiple threads; therefore, synchro-
nized method migration will not affect the load distribution in the distributed
JVM.

4.3 Connectivity-based Object Pushing

Some important patterns, such as the single-writer pattern, tend to repeat
for a considerable number of times, therefore giving the GOS the opportunity
to detect the pattern using history information. However, there are some sig-
nificant access patterns that do not repeat. These latter patterns cannot be
detected using access history information.

2 According to the JMM, wait behaves as if the lock is released first and acquired
later.
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Connectivity-based object pushing is applied in our GOS to the situations
where no history information is available. Essentially, object pushing is a
prefetching strategy which takes advantage of the object connectivity infor-
mation to more accurately pre-store the objects to be accessed by a remote
thread, therefore minimizing the network delay in subsequent remote object
accesses. Connectivity-based object pushing actually improves the reference
locality.

The producer-consumer pattern is one of the patterns that can be optimized
by connectivity-based object pushing. Similar to the assignment pattern, the
producer-consumer pattern obeys the precedence constraint. The write must
happen before the read. However, in the producer-consumer pattern, after
the object is created, it is written and read only once, and then turned into
garbage. Therefore, producer-consumer is single-assignment. The producer-
consumer pattern is popular in Java programs. Usually, in a producer-consumer
pattern, one thread produces an object tree, and prompts another consum-
ing thread to access the tree. In the distributed JVM, the consuming thread
suffers from network delay when requesting objects one by one from the node
where the object tree resides.

In order to apply connectivity-based object pushing, we follow the heuristic
that after an object is accessed by a remote thread, all its reachable objects
in the connectivity graph may be “consumed” by that thread afterwards.
Therefore, upon request for a specific DSO in the object tree, the home node
pushes all the objects that are reachable from it to the requesting node.

Object pushing is better than pull-based prefetching which relies on the re-
questing node to specify explicitly which objects to be pulled according to the
object connectivity information. A fatal drawback of pull-based prefetching is
that the connectivity information contained in an invalid object may be ob-
solete. Therefore, the prefetching accuracy is not guaranteed. Some unneeded
objects, even garbage objects, may be prefetched, which will end up wasting
communication bandwidth. On the contrary, object pushing gives more accu-
rate prefetching since the home node has the up-to-date copies of the objects
and the connectivity information in the home node is always valid.

In our implementation, we rely on an optimal message length, which is the
preferred aggregate size of objects to be delivered to the requesting node.
Reachable objects from the requested object will be copied to the message
buffer until the current message length is larger than the optimal message
length. We use a breadth-first search algorithm to select the objects to be
pushed. If these pushed objects are not DSOs yet, they will be detected. This
way, DSOs are eagerly detected in object pushing.

Since object connectivity information does not guarantee that future accesses
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are bound to happen, object pushing also risks sending unneeded objects.
To reduce such negative impacts, the GOS will not push large-size objects.
It will also not perform object pushing upon request of an array of reference
type, e.g., a multi-dimension array, since such an array usually represents some
workload shared among threads with each thread accessing only a part of it.

5 Performance Evaluation

In this section, we present the performance of the GOS and the effects of the
adaptations discussed in Section 4.

Our distributed JVM implementation is based on the Kaffe JVM [30] which
is an open-source JVM. The GOS is integrated with the bytecode execution
engine in interpreter mode. A Java application is started in one cluster node.
When a Java thread is created, it is automatically dispatched to a free clus-
ter node to achieve parallel execution. Unless specified otherwise, the number
of threads created is the same as the number of cluster nodes in all the ex-
periments. This arrangement should give us the best possible performance in
most cases. We conducted the performance evaluation on the HKU Gideon
300 cluster [31], which is a cluster of PCs with Intel 2GHz P4 CPU, running
Linux kernel 2.4.18, and connected by a Fast Ethernet.

Our application suite consists of four multi-threaded Java programs: (1) ASP,
to compute the shortest paths between any pair of nodes in a graph (of 1024
nodes) using a parallel version of Floyd’s algorithm; (2) SOR, which performs
red-black successive over-relaxation on a 2-D matrix (2048×2048) for a number
of iterations; (3) Nbody, to simulate the motion of particles (2048 of them)
to gravitational forces between each other over a number of simulation steps
using the algorithm of Barnes & Hut; (4) TSP, to solve the Traveling Salesman
Problem by finding the cheapest way of visiting all the cities (12 of them) and
returning to the starting point with a parallel branch-and-bound algorithm.

5.1 Application Performance

Fig. 4 shows the efficiency curves for each application. The sequential perfor-
mance is measured using the original Kaffe JVM.

In the figure, we observe high efficiency can be achieved when we use up to
32 nodes for Nbody and TSP. Among the four applications, TSP is the most
computationally intensive program. Therefore, it is able to achieve over 80%
of efficiency even for a relatively small problem size. TSP prunes large parts
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of the search space by ignoring partial routes that are already longer than
the current best solution. The program divides the whole search tree into
many small ones to build up a job queue in the beginning. Every thread will
obtain jobs from this queue until it becomes empty. In Nbody, the measured
efficiency is higher than 40% in the 32-node case. The efficiency is mainly
affected by the construction of the quadtree in each simulation step as it cannot
be parallelized. When the main thread conducts the construction, all other
threads are waiting. The efficiency decreases while the number of processors
increases.

When 32 nodes are used, the efficiencies of SOR and ASP drop below 40%.
In SOR and ASP, even though the workload is distributed equally among the
threads, they both suffer from the intensive synchronization overhead caused
by the embedded barrier operations. Further analysis is conducted according
to the timing breakdown of various overheads incurred during the execution,
as shown in Fig. 5.

Note that all applications are implemented in a structured and synchronized
manner. Each thread acquires all the needed data objects before it performs
the computation, and all threads are synchronized in some way before it starts
the next iteration. Therefore, we are able to break the total execution time
into four parts, where Comp denotes the average computation time in each
node; Obj the average object access time in each node to fault in up-to-date
copies of invalid objects; Syn the time spent on synchronization operations,
such as lock, unlock, wait, and notify; and GC the average garbage collection
overhead measured at each node. The percentages of the four measurements
with respect to the total execution time are displayed in Fig. 5.

Notice that not every application requires the GC. The Obj and Syn portions
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Fig. 5. Breakdown of normalized execution time against number of processors

are the GOS overhead to maintain a global view of a virtual object heap
shared by physically distributed threads. The Obj and Syn portions not only
include the necessary local management cost and the time spent on the wire
for moving the protocol-related data, but also the possible waiting time on
the requested node.

ASP requires n iterations to solve an n-node graph problem. There is a barrier
at the end of each iteration, which requires participation of all threads. The
Java language does not directly provide any barrier operation among threads,
and so the barrier is implemented using synchronized primitives, as shown
in Fig. 3. We can see in Fig. 5 that the Syn portion increases rapidly as we
increase the number of processors. In SOR, there are two barriers in each
iteration. The situation of SOR is similar to that of ASP. The Syn operation
contributes a significant portion to the execution time when scaled to a large
number of processors.

Nbody also involves synchronization in each simulation step. The synchroniza-
tion overhead becomes a significant part of the overall execution time when
we increase the number of processors. We also observe that when we scale up
the number of processors, the GC portion shrinks due to the reduced memory
requirement on each node. TSP is a computationally intensive program, and
the GOS overhead accounts for less than 5% of the total execution time.

In order to measure the DSO detection overhead, we run the applications on
two nodes, and configure them so that all the to-be-shared objects are allocated
in one node while the working thread is running in the other node. This way we
can have the largest percentage of DSOs and the largest communication traffic
during the execution. Then we add up the DSO detection overhead on the two
nodes, and compare it against the corresponding sequential execution time
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of the applications. The percentage of DSO detection overhead against the
sequential execution time is less than 3% for all applications (more precisely,
1.07% for ASP, 1.68% for SOR, 0.85% for Nbody, and 2.25% for TSP). We
can see that the DSO detection overhead is quite small. For each application,
we choose a very small problem size, and therefore the communication-to-
computation ratio is relatively large. Since the DSO detection overhead always
co-exists with the communication, as the problem size scales up, the proportion
of DSO detection overhead in the execution time will decrease accordingly.

5.2 Effects of Adaptations

In the experiments, all adaptations are disabled initially; and then we would
enable the planned adaptations incrementally. Fig. 6 shows the effects of adap-
tations on the communication, in terms of the number of messages exchanged
between cluster nodes and the communication traffic caused during the execu-
tion. Fig. 7 shows the effects of adaptations on the execution time. We present
the normalized execution time against different problem sizes. In ASP, we scale
the size of the graph; in SOR, we scale the size of the 2-D matrix; in Nbody,
we scale the number of the bodies; in TSP, we scale the number of the cities.
All data are normalized to that when none of the adaptations are enabled. All
tests run on 16 processors. In the legend, “No” denotes no adaptive protocol
enabled, “HM” denotes object home migration, “SMM” denotes synchronized
method migration, and “Push” denotes object pushing.

As can be seen in the figures, object home migration greatly improves the
performance of ASP and SOR. In ASP and SOR, the data are in the 2-D
matrices that are shared by all threads. In Java, a 2-D matrix is implemented
as an array object whose elements are also array objects. Many of these ar-
ray objects exhibit the single-writer access pattern after they are initialized.
However, their original homes are not the writing nodes. Object home migra-
tion automatically makes the writing node the home node in order to reduce
communication. We can see that object home migration dramatically reduces
the number of messages, the communication volume, as well as the execution
time. Also the effect of object home migration is amplified when the problem
size is scaled up in ASP and SOR.

In Nbody, the single-writer access pattern is insignificant, and therefore the
effect of object home migration cannot be observed. In TSP, all threads have
the chance to update the DSO storing the current minimal tour. However,
a certain thread may update it for several times consecutively. In that situ-
ation, the multiple-writers object dynamically changes its pattern to single-
writer for a short while, and then changes back to the multiple-writers pattern.
Subsequent accesses will not claim any performance improvement if they do
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(c) SOR: no. of messages           (d) SOR: communication volume 
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Fig. 6. Effects of adaptations w.r.t. communication
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Fig. 7. Effects of adaptations w.r.t. execution time

not exhibit such a pattern after home migration. They may even experience
some performance loss because some overhead to locate the new home will
be incurred. TSP is one case showing the possible negative impact of home
migration, where our heuristic to detect the single-writer pattern fails. But as
can be seen in Fig. 7(d), the negative impact is well contained, less than one
percent in TSP.

Synchronized method migration optimizes the execution of a synchronized
method of a non-home DSO. Although it does not reduce the communication
volume, it reduces the number of messages significantly, as can be seen in the
ASP and SOR cases. We also observe in Fig. 7(a) and (b) that synchronized
method migration improves ASP and SOR’s overall performance to some ex-
tent, particularly when the problem size is small. ASP requires n barriers
for all the threads in order to solve an n-node graph. The synchronization
is quite heavy in ASP. So synchronized method migration has more positive
effect on ASP. When the problem size is scaled up, the communication-to-
computation ratio decreases, thus the adaptation effect becomes not so ev-
ident. The synchronization overhead comprises not only the processing and
transmission time, but also the waiting time. Sometimes the synchronization
overhead is dominated by the waiting time, which cancels out the benefit from
synchronized method migration. Nbody’s synchronization uses synchronized
block instead of synchronized method, and so synchronized method migration
has no effect here. TSP’s situation is similar to Nbody’s.
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Connectivity-based object pushing is a prefetching strategy which takes ad-
vantage of the object connectivity information to improve reference locality.
Particularly, it improves the producer-consumer pattern greatly. Nbody is a
typical application of the producer-consumer pattern. In Nbody, a quadtree
is constructed by one thread and then accessed by all other threads in each
iteration. The quadtree consists of a lot of small-sized objects. We can see
that object pushing greatly reduces the number of messages for Nbody. Since
object pushing may push unneeded objects as well, the amount of communi-
cation increases slightly. The improvement on execution time due to object
pushing is also significant in Nbody, as seen from Fig. 7(c). However, when the
problem size is scaled up, the communication-to-computation ratio decreases,
thus the effect of object pushing decreases. Notice that communication is rel-
atively little in TSP. Although object pushing could decrease the number of
messages, the improvement on the total execution time due to this optimiza-
tion is still limited. Compared with Nbody and TSP, most DSOs in ASP and
SOR are array objects, and object pushing is not performed on them to reduce
the impact of pushing unneeded objects.

6 Related Work

Java’s popularity and ever-advancing performance make Java a promising can-
didate for high performance computing. There are many research projects
targeting at high performance Java computing in distributed or parallel envi-
ronments [32].

A distributed JVM transparently exploits multi-threading support in Java to
deliver high-performance parallel computing in distributed environments. In
a related effort, our team implemented the JESSICA system [11] which lever-
ages a page-based DSM [21] to build the GOS. All objects are allocated in the
distributed shared memory. Each node manages a segment of shared memory
and creates new objects in its own segment. Although this approach greatly
alleviates the burden of constructing the GOS because all the cache coher-
ence issues, such as object addressing, faulting, replication, and transmission,
can be managed by the page-based DSM, it suffers from certain problems.
First, the false sharing problem is serious due to the incompatible sharing
granularity of Java and that of the page-based DSM. In comparison, the GOS
described in this paper can be considered an object-based DSM. False sharing
therefore is not a significant issue. Second, due to the multi-threading nature,
Java’s synchronization primitives may not be mappable to those provided by
the page-based DSM systems that do not support multi-threading. Moreover,
as a low-level support layer, the page-based DSM is not aware of the runtime
information in JVM, which makes it difficult to look for opportunities to im-
prove the performance of the GOS as we have done in this present work. The
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detailed analysis of various factors contributing to the efficiency of using a
page-based DSM to build the GOS can be found in [14]. Java/DSM [9] has
also built its GOS on top of a page-based DSM.

cJVM [10] uses a master-proxy object model and a method shipping approach
to implement the GOS. A proxy object will be created locally on accessing
a remote object and the remote object becomes the master object. Method
invocation of the proxy object as well as field accessing to the proxy object
are shipped to the node where the master object resides. Several optimiza-
tion techniques were applied to reduce the amount of such shipping [33]. No
consistency issue is involved in this approach. To compare, we adopt a more
aggressive object caching mechanism, and rely on our adaptive cache coher-
ence protocol to handle the consistency issue. Since the method shipping ap-
proach may forward the execution flow to the node where the master object
resides, the workload distribution is determined by the distribution of master
objects in cJVM. Load balancing may be difficult to achieve without an effec-
tive strategy enforced by either the programmer or some runtime mechanism.
In contrast, our synchronized method migration can be considered a selective
method shipping approach, where only those synchronized methods can be the
candidates for method shipping. The synchronized methods are usually short
in execution time and can only be sequentially executed by multiple threads;
therefore, synchronized method migration will not affect the load distribution
in the distributed JVM.

Some other approaches (e.g., Jackal [8], Hyperion [7]) compile multi-threaded
Java program into native code that can run on the cluster. In these systems,
JVM is not involved in the execution while a software DSM is employed to
provide the GOS service. Jackal uses a fine-grain DSM to build the GOS.
The coherence unit is a fixed-size region of 256 bytes. Most of the effort to
improve performance is done at compile time. Jackal’s compiler performs two
optimizations: object-graph aggregation and automatic computation migra-
tion. These two optimizations are similar to our connectivity-based object
pushing and synchronized method migration. Object-graph aggregation uses
a heap approximation algorithm [34] to identify those connected objects. How-
ever, the heap approximation algorithm cannot distinguish between different
objects that are created in the same allocation site. Thus this approach is
effective only for the situation where the related objects are from different
allocation sites. In contrast, our object pushing is a runtime approach and
has no such drawback. Hyperion uses a centralized table of objects in each
node, and references to objects are indexed in this table. This introduces a
redirection overhead on object accessing and may weaken cache locality. No
adaptation is incorporated into the cache coherence protocol in Hyperion.

Most existing object-based DSM systems are language-based. They are either
new parallel programming languages (e.g., Orca [15], Jade [16]), or modifica-
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tions of programming languages such as C (e.g., Munin [17], Midway [18]). In
both cases, the compiler or the preprocessor is leveraged to extract programmer-
annotated object sharing information to direct the runtime system to choose
the proper object placement, object replication policy, or even a cache coher-
ence protocol if there are multiple protocols available. On the contrary, our
GOS does not require the Java programmer to explicitly provide any infor-
mation related to distributed shared objects. Our GOS itself is able to detect
distributed access patterns and optimize them at runtime. Moreover, our GOS
is flexible in the way that it can dynamically change the protocol if the object’s
access behavior changes.

Orca’s runtime system can dynamically decide whether to replicate a shared
object in all nodes, or to withhold the replication. In the latter case, both
the compiler and runtime information are leveraged to make a decision as
to where to place the object. Our GOS follows a simpler but more flexible
approach compared with Orca’s. In our GOS, shared objects are cached on
demand, and the runtime system takes the responsibility to choose the optimal
home node for the object. Also, our GOS incorporates more adaptations in
other dimensions.

Munin can optimize some object access patterns. However, it requires the pro-
grammer to explicitly annotate the object with pattern declarations. Munin
enumerates four access pattern declarations: conventional, read-only, migra-
tory, and write-shared. Each pattern has its own protocol. Among them, read-
only, conventional and write-shared correspond to the three patterns along
the number-of-writers dimension in our access pattern space, while migratory
corresponds to the accumulator pattern. Munin applies a multiple-writer pro-
tocol that corresponds to our basic protocol to the write-shared pattern, and
a single-writer protocol to the conventional pattern. For the migratory pat-
tern, the objects are migrated from machine to machine as critical regions are
entered and exited.

SAM [35] is an object-based DSM runtime system that also has the support
to optimize some object access patterns. SAM enumerates two patterns, cor-
responding to the producer-consumer pattern and the accumulator pattern
in our GOS. SAM lets user explicitly tie the synchronization to the object
accesses in order to perform efficient distributed shared object accesses. SAM
can conduct some prefetching either based on the linkage between the lock
and the data, or by the user request through some particular library calls.

Several page-based DSM systems [22][23] implement adaptive coherence pro-
tocols for a page-based access pattern at runtime. In the context of page-based
DSMs, accesses to different objects residing at the same page are mingled at
the page level. It is difficult to detect access patterns in applications with fine-
grain sharing. In our GOS, on the other hand, accesses to different objects
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can be distinguished. Furthermore, the object type information is available at
runtime. Therefore, object access patterns can be detected more precisely and
efficiently.

DOSA [36] implements a fine-grain DSM support for typed languages such as
Java. Its aim is to keep sharing granularity at the object level but still rely on
the virtual memory mechanism to check the access state as in a page-based
DSM. It introduces a level of indirection on object access. Accesses to objects
will go through a handle table to locate an object’s actual address. Although
software access check is not involved, this approach adds an additional indi-
rection overhead to object accesses and impairs cache locality.

7 Conclusion and Future Work

This paper presents the design of a global object space for a distributed JVM.
With the help of runtime object connectivity information, distributed-shared
objects are separated from node-local objects to facilitate efficient consistency
maintenance and memory management.

We study the object access patterns via the access pattern space. Given the
space as a framework, we were able to apply three adaptations to the cache co-
herence protocol to achieve optimization of certain patterns. The single-writer
access pattern is a popular pattern existing among the regular structured ap-
plications such as SOR and ASP. The object home migration method is useful
in improving the performance of the single-writer pattern. With our GOS’s
ability to identify the object connectivity information at runtime, connectivity-
based object pushing not only can optimize the producer-consumer access pat-
tern, but also improve the reference locality in general. The effect of synchro-
nized method migration is less obvious than that of the other two adaptations,
but it still can improve the performance of synchronization related patterns
to some extent, especially in applications with heavy synchronizations, such
as ASP. After all these adaptations are enabled, considerable performance
improvements have been observed.

In our future work, we plan to investigate more the optimization opportuni-
ties in the access pattern space. For example, read-only access patterns can
be detected using the method similar to that for detecting the single-writer
pattern. We can disable the flush operation on read-only distributed-shared
objects upon synchronization until further notification. Having observed the
fixed relationship between object access and synchronization, we can perform
prefetching to be triggered by synchronization. Therefore, distributed-shared
objects presenting the accumulator pattern should be prefetched on acquiring
the corresponding lock, and those showing the assignment pattern should be
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prefetched on releasing the corresponding lock.

In the current implementation, the GOS is integrated with the bytecode ex-
ecution engine in interpreter mode. We plan to integrate the GOS with a
bytecode execution engine in JIT mode. In JIT mode, software checking of
object access state will likely be a significant overhead. However, this check-
ing overhead can be much reduced by the JIT compiler. For example, access
checks on elements of an array or fields of an object can be batched. Such
techniques have already been demonstrated in some software DSMs, such as
Shasta [37]. The JIT compiler may provide more optimization opportunities.
For example, the objects that will be accessed in one method can be identified
during JIT compilation and prefetched on demand at the later execution.
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