Socket Cloning for Cluster-Based Web Servers*

Yiu-Fai Sit, Cho-Li Wang, Francis Lau

Department of Computer Science and Information Systems
The University of Hong Kong
E-mail: {yfsit, clwang, fcmlau} @csis.hku.hk

Abstract

Cluster-based web server is a popular solution to meet
the demand of the ever-growing web traffic. However, ex-
isting approaches suffer from several limitations to achieve
this. Dispatcher-based systems either can achieve only
coarse-grained load balancing or would introduce heavy
load to the dispatcher. Mechanisms like cooperative
caching consume much network resources when transfer-
ring large cache objects. In this paper, we present a new
network support mechanism, called Socket Cloning (SC), in
which an opened socket can be migrated efficiently between
cluster nodes. With SC, the processing of HTTP requests
can be moved to the node that has a cached copy of the
requested document, thus bypassing any object transfer be-
tween peer servers. A prototype has been implemented and
tests show that SC incurs less overhead than all the men-
tioned approaches. In trace-driven benchmark tests, our
system outperforms these approaches by more than 30%
with a cluster of twelve web server nodes.

1. Introduction

Cluster-based web servers have become a common so-
lution to high-traffic web hosting in recent years. Such a
system usually consists of a dispatcher and a collection of
web server nodes connected to a local area network. Client
requests are distributed to the web server nodes by the dis-
patcher to obtain high throughput. Existing solutions for
improving cluster-based web server performance either fol-
low a dispatcher-based approach to achieve load balancing
or use some special caching mechanisms that can avoid ex-
cessive disk operations.

The dispatcher-based approach emphasizes on request
distribution to achieve load balancing. All the packets from
the clients to the cluster will first reach the dispatcher, which
then routes the packets to the web server nodes based on

*This research is supported by HKU'’s seed funding programmes for
basic and applied research under account code 10203944.

some load balancing policies. There exist many methods
to implement such a request distribution, which can be di-
vided into two categories based on the OSI layer at which
the distribution decision is made [10, 11].

In layer-4 dispatching, e.g., Magicrouter [2] and Net-
work Dispatcher [21], the decision is made according to
the IP address and TCP port number of the client. The dis-
patcher routes packets to the chosen node, which establishes
TCP connection directly with the client. Since the endpoints
in a TCP connection cannot be changed, the dispatcher has
to route the packets of the same connection to the same web
server node. Fine-grained load balancing is therefore diffi-
cult to achieve. The dispatcher cannot change the assigned
node of an established connection even when other nodes
in the cluster become idle. In addition, the centralized dis-
patcher is a single point of failure to the whole cluster. A
solution has been proposed in Distributed Packet Rewrit-
ing [8, 9] that allows several distributed dispatchers to be
present in a cluster. While this approach removes the single
point of failure, it still has the other drawbacks of layer-4
dispatching.

Layer-7 dispatching, often referred to as content-based
distribution, looks into a request to decide which cluster
node should serve the request. Since HTTP request is sent
after the TCP connection is established, the dispatcher has
to first establish a connection with the client before any dis-
tribution decision can be made. After that, the processing
of the request is passed to the chosen web server node. TCP
handoff [6, 7, 13, 25, 27, 31] and TCP splicing [15, 28]
are two mechanisms that support such operation. In TCP
handoff, the connection endpoint in the dispatcher is passed
to the chosen node, which then processes the request and
sends out the response directly to the client. In TCP slicing,
the dispatcher acts like a proxy. The dispatcher receives a
request from the client and then forwards it to the chosen
web server node. The HTTP response is sent back to the
dispatcher, which in turn forwards it to the client. This lim-
its the throughput of the whole web server because all the
traffic has to pass through the dispatcher. Figure 1 and 2
show the logical flow of how a series of HTTP requests are

@ TCP connection endpoint

|Q Clientl |0 Clientl |, Clientl

|? Clientl |0 Clientl |, Clientl
I (|

@ TCP connection endpoint

HTTP

re\SanSe
|’ Clientl |;> Clleml |t Cllentl
7

|Q Clientl |<> Clientl |9 cneml
5, © Iy
© 0] o 2 2 &
by = ~ S 2 5 [@ o
> > & 3 8 g LY R 5
4 &
R A \¢ > © HTTP
& E by response HTTR
I response
AV R \ /
\t X \, \ ./ \
2 Dispatcher 4 Dispatcher \x X)
* Dispatcher Dispatcher
4
f) § R
¢ %) g /8§ %
& Q. g /3 pd
N 3 O\ 5 3
S 2\ & s 2
%) & ® 3
[g o\ 0 H a S
S 2\ o
/\ [0}
©
| Server | Server | Server |‘ ‘Server Server ‘ Server Server Server Server ‘ server || server Server
] A

A. Clients set up connection with the

B. After parsing a request, the dispatcher

dispatcher and send HTTP request sends it to the chosen web server node.
toit. Response from the web server is
forwarded to the client by the dispatcher.

Figure 1. TCP Splicing

processed in a cluster-based web server with TCP splicing
and TCP handoff respectively.

Since the handoff or splicing module has to parse every
request in order to make the distribution decision, every re-
quest is actually parsed twice: once in the module and once
in the web server. Establishing a TCP connection with each
client and parsing the HTTP request introduce much over-
head, and the dispatcher can become a performance bottle-
neck much more easily than the layer-4 approach. Although
a solution has been proposed in LARD [7] to share the dis-
patcher’s load among the web server nodes, this in turn im-
poses more work in each of them. The overall performance
is thus limited.

Supporting persistent HTTP is another challenge in TCP
handoff. The main issue is to prevent the TCP stream from
draining during the process of handoff. This problem is
mentioned in [6] but there is no solution given. The lack
of such mechanism limits TCP handoff’s advantage over
layer-4 dispatching in persistent HTTP connections because
only the first request in a connection can be dispatched ac-
cording to its content. Subsequent requests in the same con-
nection are still bound to the same server node, as in layer-
4 dispatching. Layer-7 approaches are also inefficient for
small-size replies where the dispatching overhead can be
much larger than the actual transfer time of the replies.

In addition to the dispatcher-based approach, the idea
of cooperative caching [17] has also been relied upon for
achieving high performance [1, 12, 16, 31]. Each web
server node maintains a cache pool for web documents.
When a node does not have the web document requested
by the client in its cache, it will first try to fetch the object
in another node’s memory cache instead of reading it from
local disk. A mechanism called cache forwarding (CF) is

A. Clients set up connection with the B. After parsing a request, the dispatcher
dispatcher and send HTTP request handoffs the connection to the chosen
toit. web server node. Response is sent

directly to the client by the web server.

Figure 2. TCP Handoff

thus needed to transfer cached objects between the nodes.
This cache transfer between peer servers is the major cost
in cooperative caching and works best only with small-size
transfers. For larger ones, reading from the local hard disk
is probably more efficient as the disk usually has a higher
transfer rate.

Most of the commercial products for cluster-based web
servers follow the dispatcher approach [14, 18, 19, 24]. A
web switch or a load balancer sits in front of the cluster and
distributes the requests to the web server nodes by layer-4
or layer-7 policies. Mechanisms similar to TCP splicing are
usually adopted in these switches to achieve layer-7 load
balancing. We are only aware of an exception from Res-
onate, Inc. [26], which offers a mechanism that is similar to
TCP handoff. All these commercial products share the same
advantages and drawbacks of dispatcher-based approaches,
however.

In this paper, we propose a new network support mech-
anism for cluster-based web servers, called Socket Cloning
(SC), which aims at resolving the aforementioned problems
and providing a general solution for cluster-based service to
achieve high performance. Our approach allows web server
software to move opened sockets efficiently between clus-
ter nodes. A request can therefore be processed in the web
server node with the document in its cache to achieve load
balancing and high performance without the need to trans-
fer the cached copy.

The organization of this paper is as follows. In Section
2, we present the architecture of Socket Cloning. The de-
sign of a cluster-based web server with Socket Cloning is
discussed in Section 3. Performance tests and evaluations
of Socket Cloning and different cluster-based web servers
are presented in Section 4. We conclude in Section 5.

2. Socket Cloning

In this section, we describe in detail the architecture and
protocol of Socket Cloning.

2.1. System Architecture

Our proposed architecture of Socket Cloning aims at pro-
viding an efficient and transparent network support system
for cluster-based web servers with the discussed problems
resolved. For the simplicity of the discussion, it is as-
sumed that a layer-4/2 dispatcher is used to distribute re-
quests to the web server nodes in the cluster. Indeed, any
other lightweight dispatching mechanism can also be used.
To avoid the dispatcher becoming the single point of fail-
ure, techniques like Distributed Packet Rewriting [8, 9] can
be used as well. There are three components in Socket
Cloning: SC Client, SC Server, and Packet Router. The ar-
chitecture is shown in Figure 3.

Web Server Web Server
SC Client g SC Client g
BSD Socket @ BSD Socket [
2 2
TCP/IP |8 | <] sCMessages |—>| TcP/IP |®
Packet Router Packet Router
Device Driver Device Driver

Figure 3. System Architecture of SC

In this system architecture, SC Client provides a system
call interface to the web server in the node. When a web
server decides to make another node to handle the request,
it issues the system call provided by SC Client to clone the
socket. SC Client then packs all the relevant information of
the opened socket and sends it out to the SC Server in the
remote node through a persistent connection. The whole
message is called SC Message. When the cloning system
call returns, the web server treats the request as served and
processes the next request.

When SC Server receives an SC Message, it will create a
socket called clone. The states of the clone and the protocol
stack are then reconstructed according to the information in
the SC Message. After that, the clone is native to this node
and subsequent packets will go through its normal network
protocol stack. There is no extra overhead in processing
the packets of a clone. Outgoing packets of the clone are
sent directly to the client. Upon successful cloning, the SC
Server will send an acknowledgement back to the SC Client.
It will then inform the Packet Router to route subsequent
packets for that socket to the clone’s node. During the ex-
ecution, packets from the client will first reach the original
node and be routed to the clone’s node while packets to the

client are sent directly from the clone’s node. A triangular
routing path is established. Furthermore, packets that con-
tain non-zero TCP payload are passed to the network stack
of the original node as well as routed to the clone.

After cloning, the original socket remains in its node. It
will not be destroyed until the connection is closed. In per-
sistent HTTP, the original socket will handle further mes-
sages received in the connection after cloning. The clone
will be closed after serving a request. Figure 4 shows how
a series of HTTP requests are handled in the system.

@ TCP connection endpoint rHeEEEnse

\
|g cneml |1> cneml |kCIient|
1

|Q Clientl |<> Clientl |’ Clieml

Y 139

HTTP
response

|) < Dispatcher

/ \
‘ Server © server ‘ Server q ‘ Server 0 Server {SEWET
!

™
N s

J—

Socket Cloning

Q,
& ©
> &

|) < Dispatcher

HTTP
response

A. Clients set up connections with the
web server nodes directly and send
out HTTP requests.

B. Server handles the request itself, if it
has the cache of the document.
Otherwise, it clones the socket to the
node that has a cache copy.

Figure 4. SC in Cluster-Based Web Server

2.2. Mechanism

When a web server in a cluster node decides not to han-
dle a request, it clones the socket of this request to another
node by calling the SC Client to send out an SC Message,
which has four fields. The first field defines the total length
of the message. The second field contains the states of the
socket and protocol stack such as windows sizes. The length
of this field is fixed. The third field is the socket seed, which
contains the IP and TCP headers that the server receives
from the client at the time of cloning. It represents the ba-
sic information of the IP and TCP stack. The last field is
the Application State Field (ASF). It represents the request
processing state and is generated by the cloning web server
when the system call is invoked. For example, the ASF
can be the client’s request with the RANGE header added
to specify how many bytes have been successfully trans-
ferred. The second field and the ASF essentially form an IP
packet containing HTTP request. The first three fields are
composed by the SC Client and the ASF is supplied by the
calling web server.

After an SC Message is received, the SC Server will cre-
ate a socket, i.e. the clone, using the socket seed. Since the
socket seed is essentially an IP packet, basic information of

the original socket’s IP and TCP stack can be reconstructed
by treating the socket seed as a TCP SYN packet to set up
the clone. To do this, the sequence number is reduced by
one and the SYN bit is turned on in the socket seed. After
that, a fake three-way handshaking is done by the SC Server
to setup the clone using the modified socket seed. As the se-
quence number is increased by one after the handshaking,
the sequence number becomes the same as before. The se-
quence number of the clone itself is also set up to match
the one in the socket seed. Other states of the socket such
as windows sizes, maximum segment size, and timestamp
values are reconstructed using the second field of the SC
Message. The ASF will be put in the clone’s receive buffer,
which becomes the client’s request to the web server. The
clone is now set up and is treated as an ordinary socket in
this node.

2.3. Triangular Implicit State Synchronization

The clone and the original socket have the same state
right after cloning. However, the states of the clone and
the original socket can become different when the clone has
sent out some packets. As the original node will process
further requests from the client, the states of the original and
cloned socket have to be synchronized. Packets sent from
an unsynchronized socket will appear erratic to the client
and packet from the client will be treated as an abnormal
one in such socket. The states of the sockets thus have to be
consistent before the original socket can take over control
of the connection again to serve subsequent requests in a
connection.

Because of triangular routing, the original socket does
not know what the clone has sent. As a result, some mech-
anism is needed to update the states of the original socket
to keep the states consistent. This usually involves inter-
node communications and may adversely affect scalabil-
ity of the whole system. In our system, explicit synchro-
nization is not required. The Packet Router takes full ad-
vantage of the acknowledgement received from the client
to manipulate the state of the original socket so that the
states become synchronized after the acknowledgment s re-
ceived at the clone’s node. Such implicit synchronization
removes all the inter-node communication for state infor-
mation exchange. It allows an efficient and scalable design
for multiple-cloning without the need for explicit control,
as we shall see in Section 3.

Figure 5 shows an example on how the synchronization
is carried out. At the beginning (0), the original and the
cloned socket have the same state (seq = nxt = 100). The
state of the clone changes (1) when it sends out a message
to the client (2). After the message is received by the client
(3), it will send out an acknowledgement (4). The Packet
Router, knowing the socket has been cloned, will look into

Client

®

message
received,
sends ack

seq: sequence number
@ of the packet

nxt: expected sequence
number of the next packet

@ seq: 200 @ seq: 100
nxt: 200 ack: 200 nxt: 200
seq: 100 seq: 200

@nxt: 100 @nxt: 200

Original Clone

Figure 5. Triangular Implicit State Synchro-
nization

the contents of the packet and update the socket’s state ac-
cordingly (5). This step is done right above the device driver
level and does not involve the operation of the normal net-
work protocol stack. The acknowledgement is routed to the
clone’s node (6) by the Packet Router. This packet traverses
the normal network stack in the clone’s node and the states
are updated (7). In this way, the states of the original and
cloned socket are synchronized without explicit communi-
cations between the two cluster nodes. This reduces the
overhead and improves the scalability of the system.

The TCP state transition and packet flow of a clos-
ing connection depends on which endpoint sends the FIN
packet first. Since the original node cannot see the outgoing
packets of the clone, it cannot differentiate whether it is the
clone or the client that does the active close. The Packet
Router thus does not know how many packets it should ex-
pect to route for the connection when a FIN packet is re-
ceived. This problem is solved by setting a timer when such
packet is seen. The Packet Router stops to route packets of
the connection when its timer expires. This again eliminates
the need for explicit synchronization.

3. Cluster-Based Web Server with SC

This section describes how the web server interacts with
the Socket Cloning system. We also introduce our prototype
implementation.

3.1. SC in Cluster-Based Web Server

The whole operation of a cluster-based web server using
Socket Cloning is as follows. The web server software in
a cluster node first establishes connection with clients di-
rectly and parses the request. A mapping function is then

client dispatcher server A server B server C

TCP SYN

distribution decision. All
subsequent packets of this
connection will be routed to

Dispatcher makes the {

the same node (server A)

s
e
W

%\6

TCP 3-way
Handshaking

Socket created

Web server A parses the
request, decides to let B

handle it

HTTP Request 1

Socket Cloning

Web server B sends out
HTTP response via the
clone
directly tp the client)
bty

HTTP Response (sent

TCP ACK
HTTP Request 2

Original socket
synchronizes with the
/ clone using TCP ack

D

Web server B

finishes sending
Web server A parses T the response,
the next request and

clone destroyed
decides to handle it
itself

w
———HTTP Requests |

oo b b

Web server A parses
the request, decides to
let C handle it Socket Cloning >

Web server C sends
out HTTP response
via the clone

HTTP Response gsem directly tp the client)

Time (not in scale)

Figure 6. Workflow of a Cluster-Based Web
Server with SC

applied to the request to decide which node should process
the request. Various mapping functions using load-based,
location-based, cache-based, or other algorithms could be
adopted. The web server will handle the request directly if
it is the one that the function maps to. Otherwise, it will
clone the socket to the chosen node and let it serve the re-
quest.

For persistent HT TP, we provide an efficient and scalable
mechanism for cloning the socket multiple times so that ev-
ery request is served by the most appropriate node. The
requests in a persistent HTTP connection are processed one
after another. If it is a clone that handles the request, the
web server in the clone’s node will ignore the subsequent
requests in the connection and close the clone after sending
out the response. The web server in the original node then
handles the next request. It can either clone the socket again
to let another node to handle the next request, or it can han-
dle the request itself. This process continues until all the re-

quests within a connection have been handled. In this way,
multiple-cloning is supported without the need to synchro-
nize the web server nodes or to prevent the TCP stream from
draining during cloning. Figure 6 summarizes the workflow
of a cluster-based web server with Socket Cloning for a non-
pipelined persistent HTTP connection.

Some modern web browsers support pipelining of re-
quests [23] in which a browser can send out requests before
receiving a complete response is also supported. SC is also
designed to handle this service. The length of the requested
file is noted by the original node when it clones the socket.
The Packet Router compares the acknowledged sequence
number from the client and the pre-computed message size.
When the whole response has been acknowledged by the
client, the web server in the original node is informed by
the Packet Router to process the next request. As the states
of the clone and original sockets are synchronized automat-
ically, the original node can take over control of the con-
nection right after the clone’s node has finished serving the
request. This ensures all the requests within a connection
are served properly and efficiently without explicit control
of the nodes.

There are several advantages of Socket Cloning in
cluster-based web servers: 1.) The cloned socket sends
packets directly to the client and does not need to be for-
warded to the original socket first as in the TCP splicing
and some layer-4 approaches. 2.) With SC, the process-
ing of HTTP requests can be migrated to the node that has
a cached copy of the requested document, thus bypassing
any cache transfer between cluster nodes. 3.) Once cloned,
the socket becomes native to the node and no extra network
processing layer or wrapper is needed. 4.) Multiple-cloning
of the same socket is also allowed in SC, which makes it
possible to achieve fine-grained load balancing in persis-
tent HTTP. 5.) SC also has much lower overheads and thus
higher scalability than the other approaches, as we shall see
in the next section.

3.2. Prototype Implementation

We have implemented a prototype of Socket Cloning in
Linux, kernel version 2.4.2. The network stack has been
modified so that a clone can be set up without a real con-
nection. Normal network operations are not affected by the
change. The SC Server, SC Client, and the Packet Router
are all implemented as kernel modules. These modules have
to be loaded in all the cluster nodes before any web server
can clone a socket. When the system starts, SC Client con-
nects to the SC Servers in the other nodes of the cluster. All
the SC Messages are sent through these connections with-
out the need to start a new one for each message. We have
also modified KHTTPd [22], a kernel-based web server, to
make use of the SC facilities.

4. Benchmarks Results

We have carried out two sets of benchmarks. In
micro-benchmark, we compare the performance of different
content-aware mechanisms. Throughputs of cluster-based
web servers employing different techniques are evaluated
in trace-driven benchmark.

4.1. Micro-Benchmark

To evaluate the performance of Socket Cloning, we have
carried out tests with three mechanisms that are content-
aware: SC, cooperative caching, and LARD [25]. The co-
operative caching scheme is implemented in kernel space in
Linux for comparison because both LARD and SC run in
kernel space. The LARD source code is obtained from the
project’s homepage and runs in FreeBSD 2.2.6. Tests were
carried out in two clusters: an Intel Pentium Il 300MHz
cluster and an Intel Pentium 111 733MHz cluster. All the
nodes are connected via a Fast Ethernet switch.

In these tests we used ApacheBench [3], a simple bench-
mark from Apache HTTP Server’s source that retrieves a
single document repeatedly. The tested mechanism was ap-
plied to every request. For example, in the test with cooper-
ative caching, cache forwarding (CF) is always performed.
Figure 7 illustrates how these tests were carried out.

request, response reques!
response

Front-end \TCP handoff, cacherﬂ
or ————> [\eb Server Web Server < Web Server
Socket Cloning
\Web Server cache reply

Tests with LARD and SC Test with Cooperative Caching

Figure 7. Micro-Benchmark Test

We found that Socket Cloning has the least relative
startup cost. The total latency in sending the SC Message
and setting up the clone is measured to be 134 us in a Pen-
tium 11 300 node and 46 us in a Pentium Il 733 node,
whereas it is 194 us for Pentium I1 300 machines in LARD.
One may argue that these numbers depend on the operating
system and do not represent the true cost. To minimize the
effects of the different underlying environments and com-
pare the relative overhead of the three mechanisms, a metric
called normalized efficiency is used. To compute the nor-
malized efficiency, throughput of the tested mechanism is
first obtained. It is then divided by the throughput of a sin-
gle web server running in the same environment. Figure 8
shows the result.

When the requested file is small, the startup cost of a
mechanism is the main contributor of the decreased ef-
ficiency. The smaller normalized efficiency achieved in
LARD shows that it have larger setup cost than the other
two mechanisms.

In cooperative caching, the major cost is in cache for-
warding. There are two messages involved in each CF: one
is the request for a cache copy and the other is the cache re-
ply. The normalized efficiency stays about the same for files
of less than one kilobyte. It gradually drops to about 50%
when larger files are transferred because the time to forward
the cache becomes more significant. This shows the draw-
back of cache forwarding. The requested file is actually sent
twice, once in cache forwarding and once in the reply. The
crossover point of CF and LARD is about 3 kilobyte, which
is similar to the result in [6].

In both of LARD and SC, there is a triangular routing
path between the client and the request-handling web server
node. Client packets have to be routed by an intermediate
forwarding node in the cluster to reach the web server node
while response packets are sent directly to the client. The
overhead in forwarding client acknowledgements thus be-
comes more significant in large response. In LARD, the
IP address and TCP port number in the client packets have
to be modified in both of the front-end and the handed off
node. This adds extra delays in every client packet. As a
result, it can only achieve less than 80% normalized effi-
ciency. In SC, the Packet Router acts as a layer-4 dispatcher
and the clone’s node does not have to modify the received
packets. This scheme has lower overhead and SC is able to
achieve nearly 100% normalized efficiency for large files.

Note that in real systems, SC or CF does not have to be
carried out in all requests. If the node that the web client
connects to has a cached copy of the document, then SC
or CF is not necessary. Such situation can be increased if
there are replications of cache copies in the cluster. On the
other hand, the cost of TCP handoff has to apply to every
connection in LARD because all the clients must establish
connection with the front-end.

4.2. Trace-Driven Benchmark

We have carried out trace-driven benchmark tests with
cooperative caching (CF) and SC by replaying a log file.
LVS [29] with round-robin request distribution using direct
routing is also tested for comparison. It is also used to dis-
tribute requests to the web server nodes in CF and SC. Two
cache replacement policies, LRU and LFU, are used in co-
operative caching. The mapping function used in SC is a
hash function of the HTTP request. In all the tests, kKHTTPd
[22] is run in each of the server nodes.

The log file we used is collected by the Computer Sci-
ence Division, EECS Department, of UC Berkeley [30]. It

100

©
=]
‘l

40

Normalized Efficiency (%)
A

N
o
T

SC 733Mhz —+—]

SC 300Mhz ----3¢---

CF 733Mhz -
LARD 300Mhz ~E3

1 10 100 1000 10000 100000 1e+06
File Size (bytes)

Figure 8. Normalized Efficiency

recorded all the web accesses of the Division’s website in
January 2001. The extracted log file has 3940707 requests.
87425 unique files are referenced and they span a total size
of about 6.6 GB. The average size of the requested docu-
ment is 40KB.

Our testing environment consists of 1 to 12 web servers
and 19 clients. All the machines are connected to a sin-
gle Fast-Ethernet switch. All the web server nodes have a
733MHz Intel Pentium 111 CPU and 384MB of main mem-
ory. Each client node runs http_load [20] with 2 concurrent
connections. Http_load is modified to replay the log in or-
der. All the files are stored in a 6-way SMP server connected
in the same LAN and all the web servers mount the web
documents by NFS. Figure 9 shows the requests throughput
of the tests.

In these tests, the total size of the documents is much
larger than the sum of the memories in all the cluster nodes.
The performance of a web server thus depends on how ef-
ficient the memories of the nodes are used to avoid disk
access. The throughput of RR stops to increase when more
than eight server nodes are used. This is because layer-4 dis-
patching cannot distribute requests to the web server nodes
according to its content. The cache in each of the server
nodes thus is responsible to host the whole set of web doc-
ument. This inefficient use of the memory in the cluster
limits its scalability.

We found cooperative caching with an LFU cache re-
placement policy has better performance than the one that
uses LRU, which is typical for web access patterns [12].
This is related to the very low temporal locality of the access
pattern in the common characteristics of web server work-
load [4, 5]. However, cooperative caching does not have
higher throughput than RR until more than eight web server
nodes are used. This is mainly due to the overhead involved
in large cache transfers. Since all the nodes have only one
network interface, a node cannot forward a cache and send

800

700

600 |

500 |

400 |

Requests/s

300 |

200 |

1 2 3 4 5 6 7 8 9 100 11 12
Number of Cluster Nodes

Figure 9. Trace-Driven Benchmark

reply to the test client at the same time. The network re-
source is shared by cache transfers and HTTP responses.
This limits the performance of the whole web server.
Although SC uses file system cache, which employs
LRU replacement policy, it still outperforms cooperative
caching with LFU and the other tested mechanisms. This is
because of the lower overhead in SC. This result is encour-
aging and higher performance is expected to be achieved
if other cache replacement policy such as LFU that suits
the request pattern is used in SC. SC also has nearly twice
the throughput of cooperative caching with LRU in most
cases. This confirms our result in the micro-benchmark.
With twelve web server nodes, SC outperforms CF-LFU,
CF-LRU and RR by 30%, 64%, and 96% respectively.

5. Conclusions

In this paper, we have proposed a novel network support
mechanism for cluster-based web servers, called Socket
Cloning. Socket Cloning allows an opened socket to be
moved efficiently between cluster nodes. It incurs less over-
head than existing content-aware approaches, such as TCP
handoff and caching forwarding. This enhances the per-
formance of cluster-based web servers. Triangular implicit
state synchronization is used in Socket Cloning so that un-
necessary inter-node communications are not required. This
results in a more scalable system. Multiple-cloning is also
supported to provide fine-grained load balancing in persis-
tent HTTP connections without synchronization and TCP
stream drainage problems. We have also evaluated the per-
formance of a cluster-based web server with Socket Cloning
and compared it with the cooperative caching approach
using different cache replacement policies by trace-driven
benchmarks. Performance results indicate that our approach
can outperform other mechanisms.

Although a cluster-based web server with Socket
Cloning can outperform other similar systems, there are still
some other optimizations left to be explored. For example,
in persistent HTTP, the clone’s web server can also parses
the next request instead of closing the clone after serving
a request. As a result, socket does not have to be cloned
again if the next request is then determined to be handled
by the clone’s node. In addition, sockets can be pre-cloned
in several nodes for processing the different requests within
a pipelined persistent HTTP connection. Requests handling
can thus be overlapped. When a web server has finished
sending out the response, it can inform the clone in an-
other node to serve the next request. The next response
can thus be sent out immediately by that node without the
latency in cloning the socket. While this can improve the
performance, this will require more sophisticated protocols
among the components in the Socket Cloning architecture.

References

[1] W. H. Ahn, S. H. Park, and D. Park. Efficient cooperative
caching for file systems in cluster-based web servers. Inter-
national Conference on Cluster Computing, Nov. 2000.

[2] E. Anderson, D. Patterson, and E. Brewer. The Magicrouter:
An appilcation of fast packet interposing. Second Sym+
posium on Operating Systems Design and Implementation,
May 1996.

[3] Apachebench,
HTTPD/.

[4] M. F. Arlitt and T. Jin. A workload characterization of
the 1998 world cup web site. IEEE Network, 14(3):30-37,
May/June 2000.

[5] M. F. Arlitt and C. L. Williamson. Internet web servers:
Workload characterization and performance implications.
IEEE/ACM Transactions on Networking, 5(5):631-645,
Oct. 1997.

[6] M. Aron, P. Druschel, and W. Zwaenepoel. Efficient support
for p-http in cluster-based web servers. In Proceedings of
the USENIX 1999 Annual Technical Conference, jun 1999.

[7] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-
able content-aware request distribution in cluster-based net-
work servers. In Proceedings of the USENIX 2000 Annual
Technical Conference, June 2000.

[8] L. Aversaand A. Bestavros. Load balancing a cluster of web
servers using distributed packet rewriting. Technical Report
1999-001, CS Department, Boston University, Jan. 6 1999.
Thu, 13 Jun 2002 17:36:00 GMT.

[9] A.Bestavros, M. Crovella, J. Liu, and D. Martin. Distributed
packet rewriting and its application to scalable server ar-
chitectures. Technical Report 1998-003, CS Department,
Boston University, Feb. 1 1998.

[10] H. Bryhni, E. Klovning, and O. Kure. A comparison of load
balancing techniques for scalable web servers. |EEE Net-
work, 14(4):58-64, July/Aug. 2000.

[11] V. Cardellini, M. Colajanni, and P. S. Yu. Dynamic load bal-
ancing on Web-server systems. |EEE Internet Computing,
3(3):28-39, May/June 1999.

http://www.cpan.org/modules/by-module/

[12] G.Chen, C.L.Wang, and F. C. Lau. Building a scalable web
server with global object space support on heterogeneous
clusters. International Conference on Cluster Computing,
Oct. 2001.

[13] L. Cherkasova and M. Karlsson. Web server cluster de-
sign with workload-aware request distribution strategy with
ward. In Proceedings of the 3rd International Workshop on
Advanced Issues of E-Commerce and Web-Based Informa-
tion Systems, pages 212-221, June 2001.

[14] Cisco Systens, Inc. Css 11100 content services switch,
http://www.cisco.com/.

[15] A. Cohen, S. Rangarajan, and H. Slye. On the performance
of TCP splicing for URL-aware redirection. In Proceed-
ings of the 2nd USENIX Symposium on Internet Technolo-
giesand Systems (US TS-99), pages 117-126, Berkeley, CA,
Oct. 11-14 1999.

[16] F. M. Cuenca-Acuna and T. D. Nguyen. Cooperative
caching middleware for cluster-based servers. In 10th |IEEE
International Symposium on High Performance Distributed
Computing, Aug. 2001.

[17] M. D. Dahlin, R.Y. Wang, T. E. Anderson, and D. A. Patter-
son. Cooperative caching: Using remote client memory to
improve file system performance. In Proceedings of the First
Symposium on Operating Systems Design and Implementa-
tion, pages 267-280, Monterey, California, Nov. 1994.

[18] F5 Networks, Inc. Big-IP Controller, http://www.f5.com/.

[19] Foundry Networks, Inc. Serverlron,
http://www.foundrynetworks.com/.

[20] http_load. http://www.acme.com/software/http_load/.

[21] G.D.H.Hunt, G.S. Goldszmidt, R. P. King, and R. Mukher-
jee. Network Dispatcher: A connection router for scalable
Internet services. In Proceedings of the 7th International
World Wide Web Conference, Apr. 1998.

[22] KHTTPd - Linux HTTP
http://www.fenrus.demon.nl/.

[23] J. C. Mogul. The case for persistent-connection HTTP. In
Proceedings of the SGCOMM’ 95 conference, Cambridge,
MA, Aug. 1995.

[24] Nortel Networks Ltd. Alteon
http://www.nortelnetworks.com/.

[25] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-aware request dis-
tribution in cluster-based network servers. ACM SGPLAN
Notices, 33(11):205-216, Nov. 1998.

[26] Resonate, Inc.
http://www.nortelnetworks.com/.

[27] W.Tang, L. Cherkasova, L. Russell, and M. W. Mutka. Mod-
ular TCP handoff design in STREAMS-based TCP/IP im-
plementation. In Proceedings fo the First International Con-
ference on Networking, pages 71-81, July 2001.

[28] TCP Splicing. http://www.linuxvirtualserver.org/software/
tepsp/index.html.

[29] The Linux Virtual Server
http://www.linuxvirtualserver.org/.

[30] University of California, Berkeley. CS Access Log Files,
http://www.cs.berkeley.edu/logs/.

[31] Whizz Technology Ltd. EC-Cache
http://www.whizztech.com/ec_cache.html.

accelerator.

ACEdirector,

Central Dispatch,

Project.

Engine,

