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Motivation
Why Java?

The dominant language for server-side 
programming
Platform independent
Built-in multithreading support at language level
High-performance with Just-in-Time compilation

Why cluster?
A cluster provides a scalable parallel hardware 
platform for high performance computing
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Parallel/Distributed 
Computing using Java
RMI, Cobra ?

Application level
Complex programming model
Can’t take advantage of Java’s multithreading features

Java Multithreading 
Running a multithreaded Java application on a cluster 
A Distributed Java Virtual Machine (DJVM) Approach
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Distributed Java Virtual 
Machine (DJVM)

Heap
Subsystem

Bytecode Execution Engine

Class
Subsystem

Thread
Subsystem

DJVM

Multithreaded 
Java program

Java thread

SSI

A distributed Java Virtual 
Machine (DJVM) spanning 
multiple cluster nodes can provide a 
true parallel execution environment 
for multithreaded Java applications 
with a Single System Image
illusion to Java threads.
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An abstract view of 
(Distributed) JVM

T

E M

TEM Model

T: Thread System
E: Execution Engine
M: Memory Space
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Design issues of DJVM

Extend TEM to distributed environment
T -> thread creation and migration 
mechanisms

E -> execution engine should be aware of 
the cluster environments

M -> provide a global object space in a 
distributed environment
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Problems in existing 
DJVM’s

Can’t preserve Java’s merits
Static compilation (Hyperion, Jackal)=> No dynamic class 
loading
Interpreters(cJVM,Java/DSM,JESSICA) => Can not support JIT 
compilation
Manual distribution (Java/DSM)=>Need to re-write programs

Layered design using DSM can’t  be tightly 
coupled with JVM

JVM runtime information can’t be channeled to DSM
False sharing problem if page-based DSM is employed
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Our strategies
Preemptive transparent Java thread migration 
in JIT mode

No source code modification or bytecode 
instrumenting
Runtime Capturing and Restoring of  thread 
execution context at bytecode boundary
Able to be executed in JIT compilation mode
Enable dynamic load balancing on clusters

Embedded Global Object Space layer 
Take advantage of JVM runtime supports to 
reduce object access overheads
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Transparent thread 
migration in JIT mode?

Simple for interpreters (e.g. JESSICA)
Interpreter sits in the bytecode decoding loop which can be 
stopped upon a migration flag checking
The full state of a thread is available in the data structure of
interpreter 
No register allocation

JIT mode execution makes things complex (JESSICA2)
No clear bytecode boundary
How to deal with machine registers?
How to organize the stack frames?
How to restore an execution of native codes?
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What are those 
functions?

Migration Points Selection
At the head of  loop basic block + method 

Register Context Handler
Nondestructive register spilling: spill dirty registers at 
migration point without invalidation so that native codes can 
continue the use of registers
Register rebuild: use register recovering stub at restoring 
phase

Variable Type Deducing
Spill type in stacks using compression

Java Frames Detection
Discover consecutive Java frames
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Details of Transparent Java thread 
migration inside JIT compiler

Bytecode verifier

Bytecode translation

migration point 
selectioncontrol flow 

graph
invoke

code generation

Native Code

Linking & 
Constant Resolution

Intermediate
Code

Java frame
C frame

Register rebuild

Register 
allocation

(Restore)

mov var1->reg1
mov var2->reg2
...

reg var

Variables

Java frame detection
thread stack

raw stack

Global Object Space

1. migration checking
2. Non-destructive register spilling
3. Object checking
4. Type spilling for variable type 

deducing
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Global Object Space (GOS)

Provide global heap abstraction for DJVM
Home-based object coherence protocol, 
compliant with JVM Memory Model

OO-based to reduce false sharing
Non-blocking communication

Use threaded I/O interface inside JVM for 
communication to hide the latency

Adaptive object home migration mechanism
Take advantage of JVM runtime information for 
optimization
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Overview of GOS
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Adaptive object home 
migration

Definition
“home” of an object = the JVM that holds the 
master copy of an object

Problems
cache objects need to be flushed and re-fetched 
from the home whenever synchronization happens

Adaptive object home migration
if # of accesses from a thread dominates the total 
# of accesses to an object, the object home will be 
migrated to the node where the thread is running
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Experimental Setting

Pentium II 540MHz, 
128MB
Linux 2.2.1 kernel
Connected by Fast 
Ethernet
Kaffe 1.0.6
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Microbenchmarks(I)
C P I b r e a k d o w n

Capture  time

Pasring time

resolution of methods

frame setup time
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Microbenchmark(II)
(Execution time in microseconds)

Java Granda benchmark result
(Single node)
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JESSICA2 vs JESSICA 
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CPI(50,000,000iterations)

0
50000

100000
150000
200000
250000

2 4 8

Number of nodes

Ti
m

e(
m

s) JESSICA

JESSICA2



Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

22

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Application benchmark
Speedup
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Parallel Ray Tracing on JESSICA2
(Running at 8-node P-III cluster)

Execution time : 900 
seconds (15 minutes)
Take more than 10 
hours to run on single 
node

800x600 image size, 
114 objects
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Effect of Adaptive 
object home migration 

(SOR)

0
10000
20000
30000
40000
50000
60000
70000
80000

2 4 8

node number

Ti
m

e 
(in

 m
s)

Disable adaptive
object home
migration
Enable adaptive
object home
migration



Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

25

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Conclusions

Transparent Java thread migration in 
JIT compiler enables the high-
performance execution of multithreaded 
Java application on clusters 
An embedded GOS layer can take 
advantage of the JVM runtime 
information to reduce communication 
overhead
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Works in Progress

Exploit new optimization techniques on 
GOS
Incremental Distributed GC
Add load balancing module
Enhanced Single I/O Space to benefit 
more real-life applications
Parallel I/O Support
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