
JESSICA2:
A Distributed Java Virtual Machine

with Transparent Thread Migration Support

Wenzhang Zhu, Cho-Li Wang, and Francis C. M. Lau
Department of Computer Science and Information Systems

The University of Hong Kong
{wzzhu+clwang+fcmlau}@csis.hku.hk

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

2

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Outline

Motivations
Related works
JESSICA2 features
Experimental results
Conclusion & Future works

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

3

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Motivation
Why Java?

The dominant language for server-side
programming
Platform independent
Built-in multithreading support at language level
High-performance with Just-in-Time compilation

Why cluster?
A cluster provides a scalable parallel hardware
platform for high performance computing

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

4

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Parallel/Distributed
Computing using Java
RMI, Cobra ?

Application level
Complex programming model
Can’t take advantage of Java’s multithreading features

Java Multithreading
Running a multithreaded Java application on a cluster
A Distributed Java Virtual Machine (DJVM) Approach

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

5

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Distributed Java Virtual
Machine (DJVM)

Heap
Subsystem

Bytecode Execution Engine

Class
Subsystem

Thread
Subsystem

DJVM

Multithreaded
Java program

Java thread

SSI

A distributed Java Virtual
Machine (DJVM) spanning
multiple cluster nodes can provide a
true parallel execution environment
for multithreaded Java applications
with a Single System Image
illusion to Java threads.

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

6

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

An abstract view of
(Distributed) JVM

T

E M

TEM Model

T: Thread System
E: Execution Engine
M: Memory Space

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

7

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Design issues of DJVM

Extend TEM to distributed environment
T -> thread creation and migration
mechanisms

E -> execution engine should be aware of
the cluster environments

M -> provide a global object space in a
distributed environment

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

8

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Related works
cJVM

(IBM Hafia Research) JESSICA (HKU)

Remote
Creation

Intr
Embedded
OO-based

DSM (Proxy)

Java/DSM(Rice)

Manual
Distribution

Intr Page-based
DSM

Transparent
Migration

Intr Page-based
DSM

Intr=Interpreter

T E M

Hyperion(NHU),
Jackal(Vrije U)

Remote
Creation

Static
compilation

OO-based
DSM

Remote
Creation

Intr/JIT Page-based
DSM

Others

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

9

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Problems in existing
DJVM’s

Can’t preserve Java’s merits
Static compilation (Hyperion, Jackal)=> No dynamic class
loading
Interpreters(cJVM,Java/DSM,JESSICA) => Can not support JIT
compilation
Manual distribution (Java/DSM)=>Need to re-write programs

Layered design using DSM can’t be tightly
coupled with JVM

JVM runtime information can’t be channeled to DSM
False sharing problem if page-based DSM is employed

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

10

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Our strategies
Preemptive transparent Java thread migration
in JIT mode

No source code modification or bytecode
instrumenting
Runtime Capturing and Restoring of thread
execution context at bytecode boundary
Able to be executed in JIT compilation mode
Enable dynamic load balancing on clusters

Embedded Global Object Space layer
Take advantage of JVM runtime supports to
reduce object access overheads

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

11

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Portable Java
FramesMigration

Communication Network

OS
Hardware

OS
Hardware

...
Load monitor

OS
Hardware

Migratio
n order

Master JVM

OS
Hardware

Migration

JITEE
th

re
ad

s
JITEE

th
re

ad
s

Host
Manager

JITEE

th
re

ad
s

Migration

Host
Manager

Global Object Space
Host

Manager

worker
JVM

worker
JVM

JESSICA2 Architecture

Transparent
migration

JIT GOS

JESSICA2

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

12

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Transparent thread
migration in JIT mode?

Simple for interpreters (e.g. JESSICA)
Interpreter sits in the bytecode decoding loop which can be
stopped upon a migration flag checking
The full state of a thread is available in the data structure of
interpreter
No register allocation

JIT mode execution makes things complex (JESSICA2)
No clear bytecode boundary
How to deal with machine registers?
How to organize the stack frames?
How to restore an execution of native codes?

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

13

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

What are those
functions?

Migration Points Selection
At the head of loop basic block + method

Register Context Handler
Nondestructive register spilling: spill dirty registers at
migration point without invalidation so that native codes can
continue the use of registers
Register rebuild: use register recovering stub at restoring
phase

Variable Type Deducing
Spill type in stacks using compression

Java Frames Detection
Discover consecutive Java frames

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

14

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Details of Transparent Java thread
migration inside JIT compiler

Bytecode verifier

Bytecode translation

migration point
selectioncontrol flow

graph
invoke

code generation

Native Code

Linking &
Constant Resolution

Intermediate
Code

Java frame
C frame

Register rebuild

Register
allocation

(Restore)

mov var1->reg1
mov var2->reg2
...

reg var

Variables

Java frame detection
thread stack

raw stack

Global Object Space

1. migration checking
2. Non-destructive register spilling
3. Object checking
4. Type spilling for variable type

deducing

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

15

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Global Object Space (GOS)

Provide global heap abstraction for DJVM
Home-based object coherence protocol,
compliant with JVM Memory Model

OO-based to reduce false sharing
Non-blocking communication

Use threaded I/O interface inside JVM for
communication to hide the latency

Adaptive object home migration mechanism
Take advantage of JVM runtime information for
optimization

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

16

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Overview of GOS

Global Heap Abstraction

JVM

Master
Heap Area

Cache
Heap Area

Hash
table

Hash
table

JVM

Master
Heap Area

Cache
Heap Area

Hash
table

Hash
table

Java thread

Java thread

Java thread

Java thread

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

17

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Adaptive object home
migration

Definition
“home” of an object = the JVM that holds the
master copy of an object

Problems
cache objects need to be flushed and re-fetched
from the home whenever synchronization happens

Adaptive object home migration
if # of accesses from a thread dominates the total
of accesses to an object, the object home will be
migrated to the node where the thread is running

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

18

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Experimental Setting

Pentium II 540MHz,
128MB
Linux 2.2.1 kernel
Connected by Fast
Ethernet
Kaffe 1.0.6

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

19

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Microbenchmarks(I)
C P I b r e a k d o w n

Capture time

Pasring time

resolution of methods

frame setup time

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

20

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Microbenchmark(II)
(Execution time in microseconds)

Java Granda benchmark result
(Single node)

0
10
20
30
40
50
60
70
80

Barr
ier

Fork
Jo

in

Syn
c

Cryp
t

LU
Fac

t

SOR

Seri
es

Spa
rse

Matm
ult

Kaffe 1.0.6 JIT
JESSICA2

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

21

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

JESSICA2 vs JESSICA
(CPI)

CPI(50,000,000iterations)

0
50000

100000
150000
200000
250000

2 4 8

Number of nodes

Ti
m

e(
m

s) JESSICA

JESSICA2

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

22

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Application benchmark
Speedup

0

2

4

6

8

10

2 4 8

Node number

Sp
ee

du
p

Linear speedup
CPI
TSP
Raytracer
nBody

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

23

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Parallel Ray Tracing on JESSICA2
(Running at 8-node P-III cluster)

Execution time : 900
seconds (15 minutes)
Take more than 10
hours to run on single
node

800x600 image size,
114 objects

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

24

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Effect of Adaptive
object home migration

(SOR)

0
10000
20000
30000
40000
50000
60000
70000
80000

2 4 8

node number

Ti
m

e
(in

 m
s)

Disable adaptive
object home
migration
Enable adaptive
object home
migration

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

25

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Conclusions

Transparent Java thread migration in
JIT compiler enables the high-
performance execution of multithreaded
Java application on clusters
An embedded GOS layer can take
advantage of the JVM runtime
information to reduce communication
overhead

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

26

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Works in Progress

Exploit new optimization techniques on
GOS
Incremental Distributed GC
Add load balancing module
Enhanced Single I/O Space to benefit
more real-life applications
Parallel I/O Support

Wenzhang Zhu, Cho-Li Wang, Francis C.M. Lau
CSIS, HKU

27

Cluster 2002
Chicago, Illinois
Sept. 26, 2002

Thanks

Q & A

