
1

Efficient Global Object Space Support
for Distributed JVM on Cluster

Weijian Fang, Cho-Li Wang and Francis C. M. Lau
The Systems Research Group

Department of Computer Science and Information Systems
The University of Hong Kong

2

Outline
• Introduction

– Distributed Java Virtual Machine
– Global Object Space
– Related Works

• Our Approach
– Cache Coherence Protocol
– Distributed-Shared Object
– Optimizations

• Performance Evaluation

• Conclusion and Future Work

3

Motivation #1 : Java

• Built-in multi-threading
– A parallel programming language?

• High performance
– “Java has potential to be a better environment for

Grande application development than any previous
languages such as Fortran and C++. ”

– Java Grande Forum. http://www.javagrande.org/.

4

Motivation #2 : Cluster Computing

• Cost effective parallel computing
– Open source software
– Commodity hardware

• Until June 2002 (www.top500.org)
– 80 of top 500 supercomputers are clusters
– The 3rd powerful supercomputer in the world is a cluster

• 750 HP AlphaServer ES45 connected by Quadrics
interconnection network

5

Distributed JVM

• Comply with JVM Spec.
– Transparent execution of

multi-threaded Java
programs

• Present a Single System
Image of cluster to Java
programs
– Automatic distribution of

Java threads among
cluster nodes

SSI Global Object Space

Multi-threaded
Java program

Java thread

6

Global Object Space Support

Our goal is to
design and

implement an
efficient GOS for
distributed JVM.

• Transparency
– Transparent object access disregarding

thread/object’s physical location
• Virtualize a single object heap spanning

on the whole cluster
– A distributed shared memory service

• Consistency
– Comply with Java Memory Model to

handle the memory consistency issue

• Efficiency
– Reduce the network traffic incurred by

distributed computing of Java threads

7

Java Memory Model

• Define memory consistency semantics in multi-
threaded Java programs
– GOS must comply with JMM

• There is a lock associated with each object
– Protect critical sections
– Maintain memory consistency between threads

• JMM is similar to Home-based Lazy Release
Consistency

8

Java Memory Model (contd.)

Load variable from
main memory to
working memory
before use.

Variable is
modified in T1’s
working memory.

T1 T2

Before T1 performs
unlock, dirty variable
is written back to
main memory

Before T2 performs
lock, flush variable
in working memory

When T2 uses
variable, it will be
load from main
memory

Garbage
Bin

Thread working
memory

Main memory

Object

Variable

9

Related Works

• Method shipping
– Usually no replication
– Method invocation and object access will be

forwarded to the node where object resides
– E.g. cJVM

• Page shipping
– Leverage page-based DSM to build GOS at runtime
– E.g. JESSICA, Java/DSM

• Object shipping
– Leverage object-based DSM to build GOS at runtime
– E.g. Hyperion, Jackal

10

Method Shipping

• E.g. cJVM

• Master/proxy object model
– Method invocation and field access on proxy object should

be forwarded to master object.

• Usually forbid object replication to leave out
consistency problem

• More aggressive object caching is preferred

• Load distribution is determined by object distribution

11

Page Shipping

• E.g. JESSICA, Java/DSM

• Leverage some page-based Distributed Shared
Memory

• Sharing granularity gap between object-
oriented Java and page-based DSM
– False sharing problem

• Not easy to do further optimization

12

Object Shipping

• Leverage some object-based DSM at run time

• Examples:
– Hyperion: translate Java bytecode to C
– Jackal: compile Java source code directly to native

code

• No JVM involved in execution

13

Outline
• Introduction

– Distributed Java Virtual Machine
– Global Object Space
– Related Works

• Our Approach
– Cache Coherence Protocol
– Distributed-Shared Object
– Optimizations

• Performance Evaluation

• Conclusion and Future Work

14

A Straight-forward Object-based
Cache Coherence Protocol for JMM

• Home-based
– A home node is selected for each object
– Updates are propagated to the home on synchronizations
– Clean copies are derived from the home
– Home node acts as lock manager

• Twin and Diff
– Support concurrent multiple writer

15

Example

Up-to-date copy is
fetched from home
node upon access.

Diff is created
and sent back
to home node
on unlock.

Before lock, non-
home object is
invalidated.

Interconnection Network

Node 0 Node 2HOMENode 1

Twin is
created on the
first write.

16

DSO - Definition
• Object connectivity and thread reachability are

available at run time

• Consider reachability
– Thread-local object: reachable from only one thread
– Thread-escaping object: reachable from multiple

threads

• Further consider the physical locations of
thread and object in distributed JVM
– Node-local object (NLO): reachable from thread(s)

at the same node
– Distributed-shared object (DSO): reachable from at

least two threads located at different cluster nodes

17

DSO – Benefits from DSO detection

• Only synchronizations on DSOs should
trigger distributed consistency operation

• Only DSOs are involved in distributed
consistency operation

• NLOs can be safely collected by a local
garbage collector

18

DSO – A lightweight detection scheme

• Leverage Java’s runtime reachability information

• The detection is postponed upon
– The distribution of Java threads to other nodes
– Sending objects to a remote node

• Identify object references transmitted to other
nodes
– Must be DSOs

19

DSO – Detection (Ex.)

Java thread
stack frame T1

b

c d

a

e f g

c d

b

T2

g

dc

b

T2

g

d

Java object

Detected DSO

Invalid DSO

Connectivity
between objects

Object reference
in thread stack

Node 0 Node 1

Cluster network

20

Optimizations

• Object Home Migration

• Synchronized Method Migration

• Object Pushing

21

Object Home Migration

• Access asymmetry in home-based protocol
– Coherence of home copy is kept through update
– Coherence of non-home copy is kept through invalidate
– Home accesses are more lightweight than non-home

accesses

• Home migration
– Reselect the node where most accesses happen as the

home node for the object
– Adapt to object access behavior in applications
– Negative impact

• Migration notices

22

Object Home Migration (contd.)
• Optimize object exhibiting single writer access

pattern

• Record remote writes at home node
– Remote writes come as diff messages

• Count consecutive writes
– Issued by the same remote node
– Not interleaved by writes from other nodes

• Migrate home to the writing node
– When the number of consecutive writes exceeds a

predefined threshold

23

Synchronized Method Migration

1 class Counter {

2 private int i; // internal counter

3

4 public Counter() {

5 i = 0;

6 }

7

8 public synchronized void inc() {

9 i++;

10 }

11 }

lock request

lock reply

obj request

obj reply

unlock req

unlock rep

Home Node Executing Node

inc() is invoked on
a non-home node

Non-home execution of synchronized method
involves multiple message roundtrips

24

Synchronized Method Migration (contd.)

• Non-home execution of synchronized method is
usually inefficient in distributed JVM
– Involves multiple message roundtrips

• Migrate synchronized method of DSO to its
home node for execution
– Only one message roundtrip
– Aggregate synchronization and data requests

• Thanks to the detection of DSOs

25

Object Pushing
• Reference locality

– After an object is accessed, its reachable objects are
very likely to be accessed afterwards.

– Partially determined by reachability
– Prefetching

• Object pushing
– Push-based prefetching
– The home node pushes the objects reachable from the

requested DSO
– Reachability information at home node is always valid

• Guarantee the correctness of prefetching

• Optimal message length
– Represent preferred aggregation size of objects

26

Outline
• Introduction

– Distributed Java Virtual Machine
– Global Object Space
– Related Works

• Our Approach
– Cache Coherence Protocol
– Distributed-Shared Object
– Optimizations

• Performance Evaluation

• Conclusion and future work

27

Implementation

• Modify Kaffe 1.0.6

• On a cluster of 300MHz PII PCs, running
Linux 2.2, connected by Fast Ethernet

• Threads are automatically distributed
among cluster nodes

28

Benchmark Suite

• ASP (All-pair Shortest Path)

• SOR (red-black successive over-
relaxation)

• Nbody

• TSP

29

Efficiency

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8

Num be r of proce s s ors

E
ffi

ci
en

cy

ASP
SOR
Nbody
TSP

30

Effect of Optimizations –
Breakdown of execution time

0%

20%

40%

60%

80%

100%

120%

ASP SOR Nbo d y TSP

Co mp Syn Obj

31

Effect of Optimizations –
Message number

����������

����������

�����������

�����������

�����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������0%

20%

40%

60%

80%

100%

120%

AS P S OR Nbody TS P

M
es

sa
ge

 n
um

be
r

NO HM

�����

HM +S M M HM +S M M +P us h

32

Effect of Optimizations –
Communication data volume

����������

����������

����������

����������

����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

�����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������

����������0%

20%

40%

60%

80%

100%

120%

ASP SOR Nbody TSP

NO HM

����
���� HM +SM M HM +SM M +Pus h

33

Conclusion
• Global object space for distributed JVM

• Distributed-shared object
– More efficient cache coherence protocol and garbage

collection in distributed JVM
– Facilitate further optimizations in GOS

• Effective runtime optimizations in GOS
– Object home migration

• Single writer access pattern
– Synchronized method migration

• Non-home execution of synchronized method of DSOs
– Object pushing

• Small size object graph

34

Future work

• Incorporate DSO with distributed garbage
collection

• More adaptive cache coherence protocol
that automatically adjusts to various
object access patterns in GOS

35

Q & A

	Efficient Global Object Space Support for Distributed JVM on Cluster
	Outline
	Motivation #1 : Java
	Motivation #2 : Cluster Computing
	Distributed JVM
	Global Object Space Support
	Java Memory Model
	Java Memory Model (contd.)
	Related Works
	Method Shipping
	Page Shipping
	Object Shipping
	Outline
	A Straight-forward Object-based Cache Coherence Protocol for JMM
	Example
	DSO - Definition
	DSO – Benefits from DSO detection
	DSO – A lightweight detection scheme
	DSO – Detection (Ex.)
	Optimizations
	Object Home Migration
	Object Home Migration (contd.)
	Synchronized Method Migration
	Synchronized Method Migration (contd.)
	Object Pushing
	Outline
	Implementation
	Benchmark Suite
	Efficiency
	Effect of Optimizations – Breakdown of execution time
	Effect of Optimizations – Message number
	Effect of Optimizations – Communication data volume
	Conclusion
	Future work
	Q & A

