
JESSICA: Java-Enabled Single-System-Image Computing

Architecture�

Matchy J. M. Ma Cho-Li Wang Francis C. M. Lau

Department of Computer Science and Information Systems

The University of Hong Kong

Pokfulam, Hong Kong

Email: fjmma, clwang, fcmlaug@csis.hku.hk

March 5, 2000

Abstract

JESSICA stands for \Java-Enabled Single-System-Image Computing Architecture", a mid-

dleware that runs on top of the standard UNIX operating system to support parallel exe-

cution of multi-threaded Java applications in a cluster of computers. JESSICA hides the

physical boundaries between machines and makes the cluster appear as a single computer

to applications|a single-system-image. JESSICA supports preemptive thread migration

which allows a thread to freely move between machines during its execution, and global

object sharing through the help of a distributed shared-memory subsystem. JESSICA im-

plements location-transparency through a message-redirection mechanism. The result is a

parallel execution environment where threads are automatically redistributed across the clus-

ter for achieving the maximal possible parallelism. A JESSICA prototype that runs on a

Linux cluster has been implemented and considerable speedups have been obtained for all

the experimental applications tested.

Keywords: cluster computing, single-system-image, dynamic load balancing, thread migra-

tion, Java Virtual Machine, JESSICA

1 Introduction

Cluster computing has been a subject for active research in recent years. A cluster of computers

is a federation of computers linked by an interconnection network where the computers run

integration software to support collaborative computations. Many positive results on using

clusters of computers for load sharing and parallel computing have been reported [10, 13, 2].

�A preliminary version of this paper appears in Proc. of 1999 International Conference on Parallel and Dis-

tributed Processing Techniques and Applications (PDPTA), June 1999. Correspondences should be sent to M.J.M.
Ma, Department of Computer Science and Information Systems, The University of Hong Kong, Pokfulam, Hong
Kong / Email: jmma@csis.hku.hk / Fax: (+852) 2559 8447.

1

With the advent of high-speed networking and microprocessor technologies, cluster computing

has emerged as a favorable alternative to massively parallel machines for high-performance

computing.

The Java programming language [5] has received unprecedented acceptance for a program-

ming language since its introduction in late 1994. Java provides a multi-threaded model for

concurrent programming as a built-in feature, which translates into great potentials for parallel

processing. However, in the absence of specialized software at a lower level to support paral-

lel processing, the programmer has to tackle the coordination between processing nodes at the

application level using some interprocess communication mechanism such as sockets. Since the

introduction of JDK version 1.1, the burden on the programmer is alleviated by the provision

of Object Serialization [7], Remote Method Invocation (RMI) [8] and Common Object Request

Broker Architecture (CORBA) support [6]. They allow process coordination and cooperation

at the method-call level, using some remote procedure call mechanism as illustrated in Fig. 1a.

The programmer, however, still has to worry about the availability and operation status of

the processing nodes involved. Parallel programming based on these supports remains to be a

nontrivial task.

We propose establishing a single-system-image (SSI) illusion over a cluster as a means to

bridge cluster computing and Java's multi-threaded programming model. The idea behind SSI is

to encapsulate system resources distributed across the cluster in a layer of abstraction, such that

components above the layer will see the encapsulated resources as a single, uni�ed entity. Our

approach is to establish an SSI illusion at the middleware level in the form of a distributed Java

Virtual Machine (JVM). We favor this approach because it does not require any modi�cation to

the operating system or to the Java applications running on top. It guarantees portability over

various popular operating systems and compatibility with existing Java applications.

JESSICA is our solution for supporting parallel application development in Java in a clus-

ter using the multi-threaded model. JESSICA stands for \Java-Enabled Single-System-Image

Computing Architecture". It is a middleware that hides the distributed nature of a cluster and

provides multi-threaded Java applications with the illusion of a single multi-processor computer.

The SSI illusion is realized through the provision of a global thread space. When an application

is instantiated, the JESSICA system creates a logical thread space that spans the whole cluster

for the execution of the application's threads, as shown in Fig. 1b. The global thread space

2

Application's Object Space�
Physical Memory

Processor
Thread-to-Processor

Mapping

Application-to-System
Memory Mapping

Remote-Procedure-Call,
such as RMI/CORBA

KEYS:

��H/W �H/W �H/W

INTERCONNECTION NETWORK

Global Thread Space
Global Object SpaceApplication's

Threads

Fig. 1b) The JESSICA approach is to create a Global Thread Space .

JESSICA
middleware

�
�H/W

�
�H/W

�
�H/W

INTERCONNECTION NETWORK

JVMJVM JVM

Application's Thread
Space Application's Object

Space
Application's Thread

Fig. 1a) A distributed Java Application running on a federation of
JVMs. Participating processes communicate with each other through

RMI/CORBA.

Figure 1: JESSICA encapsulates a cluster of computers into a single multi-processor machine

3

hides the physical boundaries between machines and allows Java threads to freely move from

one machine to another. The movement is supported by a preemptive thread migration mecha-

nism called delta execution. Java objects are globally accessible within the global object space, a

subspace of the global thread space created through the support of a distributed shared-memory

subsystem at a lower level. Migrated threads can continue to communicate with one another and

location-dependent resources can still be accessed transparently with the help of a redirection

mechanism.

With the SSI illusion in place, application programmers no longer need to be bothered by the

physical topology of the underlying cluster, such as the number of processors available. They will

create as many threads as needed as in a single execution enviornment, and rely on JESSICA to

automatically redistribute them across the cluster to exploit the maximal parallelism obtainable

from the cluster and to optimize the overall resource utilization.

The main characteristics of JESSICA include:

� Single-system encapsulation|The whole cluster is encapsulated into a single computing

system. All Java threads created in a user program can be executed at any node in the

cluster and the threads need not be aware of their physical location.

� Dynamic load balancing|Parallel execution of an application can be achieved by simply

creating as many threads as needed. Threads are automatically redistributed across the

cluster to exploit real parallelism.

� Preemptive migration of Java threads|A Java thread can be preempted and migrated to

another node at any time during its execution in order to achieve dynamic load balancing.

� Migration and location transparency|Any location-dependent resources are transparently

accessible by a migrated thread. The fact that the thread has migrated is not known to

the thread itself and other objects in the system.

� Compatibility|The implementation of JESSICA is at the middleware level and is com-

patible with the standard JVM [11]. Existing applications therefore are readily runnable

on this system without any modi�cation.

� Portability|The JESSICA middleware, being a distributed version of the JVM, runs on

top of the standard UNIX operating system as a distributed application. The implemen-

4

Console Worker WorkerWorker

INTERCONNECTION NETWORK

Global Thread SpaceGlobal Thread Space

Master-Slave
Message Redirection

Subsystem

Distributed-Shared
Memory (DSM)

Subsystem

Delta Execution
Thread Migration

Subsystem

JESSICA
Daemon

Hardware

UNIX

JESSICA
Daemon

Hardware

UNIX

JESSICA
Daemon

Hardware

UNIX

JESSICA
Daemon

Hardware

UNIX

 Location-Transparent
Operations

Global Object-Sharing
Multiple CPUs

Figure 2: Global thread space creates an SSI illusion over a cluster of computers

tation does not need any low-level or platform-speci�c supports. Thus it is portable across

di�erent hardware platforms.

The rest of the paper is organized as follows. In Section 2, we present the system architecture

of JESSICA. Section 3 discusses our solutions to achieve the SSI illusion through the global

thread space. Section 4 evaluates the performance of our JESSICA prototype. Section 5 surveys

other works that are related to JESSICA. We conclude by summarizing our experiences.

2 System Architecture

Fig. 2 shows an overview of the JESSICA system architecture. At the top is the programming

and execution environment as seen by the application programmer|a single global thread space

powered by multiple CPUs. This \illusion" layer is realized through the services of three impor-

tant subsystems which handle redirection of system requests, sharing of distributed memory, and

thread migration respectively. The actual implementation of these subsystems is by means of

daemon processes running in the di�erent nodes of the cluster. These daemon processes execute

as user-level processes on top of the UNIX operating system.

In JESSICA, we classify a cluster node as either a console or a worker node, as follows.

� Console node|Java applications can be started in any node in the JESSICA cluster. The

5

console node of an application is the node in which the application is �rst instantiated|

i.e., the application's home.

� Worker node|Worker nodes are the other nodes that have one or more migrated threads

of the application. These nodes play a subordinate role to the console node by serving

requests directed from the console.

The console node is responsible for handling system service requests from a migrated thread

that are location-dependent. An example of a location-dependent request is to get the cur-

rent time maintained by the node. A request to read from a byte stream would be location-

independent because the bu�er holding the bytes is in the global object space. During execution,

system service requests made by a migrated thread will be attended to by the concerned worker

node. The worker node will determine whether a request is location-independent or not. If

the request is location-independent, it is served locally; otherwise the request is forwarded to

the console. The console, after receiving the request, will perform the necessary operations and

return the result back to the migrated thread. The whole redirection process is carried out

transparently.

2.1 JESSICA Daemon

A JESSICA daemon is composed of the following four components which provide bytecode

execution, memory management, thread creation, and scheduling and synchronization to Java

applications the same way as a standard Java Virtual Machine (JVM).

� Bytecode Execution Engine (BEE)|It is responsible for binding an active thread and ex-

ecuting its method code. Parallel execution of a multi-threaded application is realized by

having multiple BEEs running on multiple machines to execute multiple threads simulta-

neously.

� Distributed Object Manager (DOM)|It is responsible for managing the memory resources

in its local node and to cooperate with other DOMs on the other nodes to create a global

object space. The physical locations of objects are transparent to the threads within the

global object space.

� Thread Manager (TM)|It is responsible for thread creation, scheduling, and termina-

6

semaphore acquire/release
operations

new object allocation
operations

BEE

TM DOM

MM

thread wait/notify
operations

thread activation request

java.lang.Thread.start()
invocation request

DSM mutex lock/unlock
operations

request for thread's method
stack data for performing

garbage collection

thread migration request

Figure 3: Interactions between system components in JESSICA

tion in the local node. During the course of migration, it coordinates with TMs on the

other nodes to marshal, ship, and demarshal the execution contexts of migrating threads.

TMs support distributed synchronization of migrated threads by forwarding semaphore

operations back to the console TM.

� Migration Manager (MM)|It is responsible for collecting load information of the local

node and exchanging those information with MMs running in other nodes in order to

implement a migration policy.

The current JESSICA prototype employs a simple migration policy: MMs running in the

worker nodes periodically submit their system loads to the console MM; the console MM will

initiate a migration if the load imbalance between itself and one of the worker nodes exceeds a

prede�ned threshold; the console MM will instruct the TM as to which thread to migrate and

where to migrate the thread to.

Fig. 3 illustrates the interactions between the four system components of a JESSICA daemon.

When the code BEE is executing needs to create a new active thread t, BEE requests DOM

7

to allocate a new thread object from the global object space, after which BEE will execute the

constructor code to instantiate the new object. Next, BEE sends a request to TM to activate t.

TM will bind t to a new execution context and insert t into the thread scheduling subsystem.

Later on when t is scheduled to run, TM binds t to BEE for executing the thread's start()

method. During t's execution, BEE can create new objects and will make sure that objects are

updated consistently in the global object space through the new() and DSM lock()/unlock()

primitives provided by DOM. It can also let t communicate or synchronize with other threads by

using the thread wait()/notify() and mutex lock()/unlock() primitives provided by TM.

Whenever necessary, DOM will perform garbage collection to reclaim unused objects. It asks

TM to provide the runtime stacks of all the active threads and starts tracing from these stacks

to locate any unreferenced objects. At anytime when the console MM detects suÆcient load

imbalance in the cluster and decides to migrate t to another node, it noti�es TM to preempt

the execution of t and migrates it to the selected node.

3 Global Thread Space

The global thread space is a global execution environment for running threads which extends

across the entire cluster. It is a key component in creating the desired SSI illusion. Threads

running within this space would see the underlying cluster as a single computing system with

multiple processors, a single memory space for object allocations, and location-transparent sys-

tem resources. The global thread space is implemented via three important subsystems or

mechanisms|the delta execution mechanism for supporting preemptive thread migration, the

master-slave message redirection subsystem for supporting location-transparent operations, and

a distributed shared-memory (DSM) subsystem that creates a global object space for supporting

distributed object access.

3.1 Delta Execution

Delta execution is a preemptive thread migration mechanism for supporting transparent thread-

to-processor mapping within the global thread space of JESSICA [9]. Migration granularity is

per-bytecode-instruction where a thread can be preempted and migrated once execution of the

current bytecode is completed. Parallel execution in JESSICA is realized by letting di�erent

8

D1M1

D0

M0

The first delta set

execution.

M1 D1

D0 is moved to the

M0

After the execution of

worker node for active execution has
now returned back to

D0 has finished,

M0 is being executed.

M1

D1

After the execution of
M0 has finished, the
next delta set D1 is
migrated to the
worker node and be
executed there.

M1

After the execution of
D1 has finished, the

console. When the
the console node and

the thread will have
completed its
execution also.

last set of machine-

execution is done,

is being executed at the

T0 T3 T4T2T1

Worker

Console M1 D1 M0 D0

the console is
represented as a
sequence of
delta sets D0, D1

M0, M1.

machine-dependent
sub-contexts

The execution context
of a migrated thread at

interleaved with sets of

Set that is under active execution
Execution Sub-Context
Set of Machine-DependentMi

dependent sub-context

Di Machine Independent
Delta Set

KEYS:

TIME

Figure 4: Delta execution in action

JESSICA daemons execute multiple threads of an application in di�erent nodes simultaneously.

Delta execution aims at providing a high-level and portable implementation for Java thread

migration that is free of any low-level or system-dependent issues. Because the whole mechanism

is implemented within the JESSICA middleware, migration is therefore transparent to Java

applications running on top of JESSICA and no migration-speci�c code needs to be added to

the applications.

The delta execution mechanism identi�es and separates the machine-dependent sub-contexts

from the machine-independent sub-contexts in the execution context of a migrating thread.

Machine-independent sub-context refers to state information that can be expressed in terms of

the execution state of the distributed virtual machine in JESSICA, such as data stored in the

virtual machine's registers. Machine-dependent sub-context is state information that is part of

the internal state of the JESSICA daemons, such as the hardware program counter which points

to the current machine instruction when a daemon is executing a native method. As illustrated

in Fig. 4, a thread's execution context consists of sets of machine-independent sub-contexts, also

known as delta sets, which interleave with the sets of machine-dependent sub-contexts.

A Master-Slave Model for Thread Migration

When a thread running in the console node migrates, it does not pack up its entire execution

context in order to move to the destination worker node, which is the case in traditional process

migration systems such as Sprite [4]. Instead, it is split into two cooperating entities, one running

9

in the console node, called the master, and the other running in the worker node, called the

slave. The slave thread is created anew at the worker node which will continue the execution

at the point where the original thread stopped. The execution context is divided into machine-

dependent sub-contexts and machine-independent delta sets as identi�ed by the delta execution

mechanism. All the machine-dependent sub-contexts are processed locally by the master thread

while the machine-independent delta sets are transferred to the slave thread one by one for

execution, as shown in Fig. 4.

Active execution of the migrated thread is seen as a sequence of executions, using the

machine-dependent and the machine-independent sub-contexts, that switch back and forth be-

tween the console and the worker node. Since the migrated thread only incrementally advances

its execution by a delta amount every time when control is switched to it, we therefore call

this mechanism delta execution. Because of the master-slave design, the mechanism provides

an opportunity for the implementation to isolate machine-dependent contexts from machine-

independent contexts and process them in a manageable way.

Dynamic Load Balancing

JESSICA supports dynamic relocation of threads in order to achieve dynamic load balancing.

After migrating a thread from the console node to a worker node, it is possible for the migrated

thread to move to yet another worker node or to retreat back to the console node. When a

migrated thread running in a worker node is required to further migrate, it will �rst retreat

back to the console, after which the Migration Manager will select another worker node to

migrate the thread to. The reason for this approach, as opposed to one that migrates the thread

to the new worker node directly, is because if a migrated thread is allowed to directly migrate to

another worker node without �rst retreating back to the console, residue dependency required for

maintaining migration transparency will be left there with the �rst worker. Messages forwarded

from the console will have to go through this �rst worker node before they can reach the new

home of the migrated thread. This would result in one more level of redirection. If further

migrations are made, there will be more levels of redirection through residue dependencies left

behind in many worker nodes the thread has ever visited. Such a chain of residue dependencies

would be diÆcult to manage. We therefore opted for the simple approach of �rst migrating the

thread back to the console before performing another migration, and because of that, residue

10

dependency in the �rst worker node will be removed together with the leaving thread.

The current implementation relies on Migration Managers running in all the worker nodes

to provide load information across the cluster for making migration decisions. Such information

is obtained from the process �le system </proc> of each node. The Migration Manager at the

console node queries its counterparts running in each worker node for load information every

second. The percentage of time that a node spends in user mode between successive queries is

the primary kind of load information used in migration decisions. If the Migration Manager at

the console discovers that the percentage of time that a node is spending in user mode between

successive queries is one-�fth or less of that of the console, it will go through the list of actively

running threads to select a non-daemon thread to migrate to this underloaded node. Priority

will be given to a running thread whose execution state does not contain any machine-dependent

information. The Migration Manager may also trigger a redistribution of migrated threads if

it comes across a worker node that is heavily loaded. A worker node is considered heavily

loaded if the percentage of its user-mode time is more than double that of the console. When

this happens, the Migration Manager will send a message to the identi�ed worker node which

will then select one of its actively running slave threads to retreat back to the console. If an

underloaded node is found later on, the retreated thread could be migrated again.

3.2 Location-Transparency Support by Redirection

After a thread has been migrated, the master thread remaining at the console represents the

original thread and is responsible for performing any location-dependent operations, such as

I/O, for the slave. All the thread-level interactions, such as wait()/notify() and mutex-

lock()/unlock() between the slave and other threads will go through the master. Redirections

of service requests and responses make the master appear to other threads as the only thread

they are interacting with. On the slave side, all the location-dependent operations are redi-

rected transparently back to the console, while the remaining location-independent operations

are carried out locally. With this design we are able to create a global thread space that has

the same semantics and maintains the same relationships between objects in the execution en-

vironment as the case with no migration, as depicted in Fig. 5. We are also able to implement

location-transparent services such as network and �le I/O operations, and distributed thread

sychronization. Consequently, the JESSICA execution environment as observed by a running

11

location
dependent
operations

Master-1

location
dependent
operations

Master-4Slave-1

location
independent
operations

redirected messages
such as:

asynchronous signals,
I/O and other location
dependent operations.

semaphore operations, (no migration)
Thread-2

(no migration)
Thread-3

the master/slave pair
and other threads
in the Global Thread
Space

Interactions between

Slave-4

location
independent
operations

CONSOLEWORKER WORKER

INTERCONNECTION NETWORK

Figure 5: Interactions between the master and the slave threads that hide migration from the

rest of the system

thread is the same as that of a standard Java Virtual Machine (JVM). Multi-threaded applica-

tions runnable on a standard JVM will also execute correctly on JESSICA.

I/O Redirection

JESSICA ensures that all opened �les and network communication channels following a mi-

gration will remain functional as they have been before the migration. Traditional process

migration systems that follow the kernel-level approach store control information relating to

opened �les and network channel end-points inside the kernel space. Thus, migrating these

resources transparently with the process execution context is diÆcult. In contrast, JESSICA

adopts a middleware-level approach which makes it possible to support location-transparent I/O

by extending the I/O subsystem implementation alone.

In JESSICA, location-transparent I/O support is achieved by redirecting I/O operations

back to the console node and letting the master there to perform the operations on behalf of the

slave. The redirection code is implemented within the java.io and the java.net class libraries

for �le and socket I/O redirection respectively. Their interface de�nitions are kept unchanged so

that other classes relying on them do not need to be modi�ed. To improve performance, a bu�er

cache allocated from the DSM is used to bu�er I/O data for each opened �le or socket. When

a slave thread performs a read() operation on an opened �le, for example, it checks whether

12

the requested data has been loaded into the shared bu�er already. If so, the data is retrieved

from the bu�er directly. Otherwise, the slave thread redirects the operation back to the console.

The master thread will issue a read() operation to the underlying operating system to �ll up

the bu�er. Eventually, the slave thread is noti�ed and the requested data can then be obtained

from the shared bu�er.

The object-oriented nature of JESSICA has helped simplify the implementation of I/O redi-

rection, since class hierarchies of both the java.io and the java.net libraries are suÆciently

well organized. There are base classes located towards the top of the hierarchies that are re-

sponsible for performing the raw I/O operations through the underlying operating system. All

of their child classes that specialize in I/O operations for speci�c data types inherit the func-

tionality directly from the base classes. These specialized classes therefore can simply invoke

the inherited methods to access the raw I/O channels. As a result, when the base classes in the

hierarchies are extended to support the required I/O redirection, the rest of the child classes

can inherit the feature immediately without any further modi�cation.

Cooperative Semaphore

The distinctive feature of multi-threaded computing is that threads can share resources and

execute concurrently in order to multiplex computations, or even communications. In such a

multi-threaded runtime environment, a mechanism for providing mutual exclusion is necessary

for ensuring coordinated access to shared resources so that data integrity is maintained. The

Java programming language uses semaphores at the virtual machine level to implement mutual

exclusion control. A semaphore is associated with every shared object so that application pro-

grams can avoid any race condition by waiting on the associated semaphore before updating a

shared object. Thread synchronization is a direct consequence of using semaphores.

JESSICA takes a decentralized approach to implementing distributed semaphore. A Thread

Manager need not be aware of the existence of other Thread Managers; each of them can perform

their own local thread scheduling without a�ecting the others. In addition, all the semaphore

operations are performed in the console node by the master thread, and so the same semaphore

semantics is enforced as if there is no migration. The implementation of distributed semaphore

in JESSICA is called cooperative semaphore.

The implementation of cooperative semaphore ties closely to the Thread Manager for han-

13

dling blocking and resuming of active threads. A cooperative semaphore is created the �rst

time a mutex-lock is applied to the object. If the lock operation is initiated by a slave thread,

the corresponding cooperative semaphore will be created by its master thread at the console.

Cooperative semaphores are part of the internal control structure of JESSICA and do not live

in the DSM. A cooperative semaphore maintains a count and a queue of blocking threads that

try to perform a mutex-lock on the corresponding Java object. If the count is zero, a thread can

immediately lock the object and increment the count; otherwise the thread is scheduled out by

the Thread Manager and appended to the queue. A thread unlocking the object decrements the

count. When the count reaches zero, the �rst blocked thread from the queue will be scheduled to

run by the Thread Manager. Note that the mechanism just described applies to master threads

as well as normal threads that have not been migrated; for a migrated slave threads, the lock

and unlock operations are redirected back to the console as described below.

Observe that a running thread will be blocked and forced to leave the ready queue if

� it tries to lock a semaphore which is currently held by another thread,

� it tries to perform an I/O operation in blocking mode and the I/O channel is not ready,

or

� it explicitly performs a wait operation on a given object O.

A blocked thread T will be rescheduled back to the ready queue when

� the semaphore that T has previously requested is unlocked by another thread and it is

now T 's turn to lock the semaphore,

� the I/O channel that T previously tried to operate on is now ready, or

� another thread has issued a notify operation on an object which T has previously waited

upon.

We take advantage of the property that a thread will block when trying to read from an

I/O channel where data have not yet arrived. When a slave thread tries to lock a semaphore S,

instead of directly operating on S, it sends a message to its master, asking the master to lock S

on its behalf. After that the slave thread will be blocked waiting for the master's reply. At the

console node, when the master thread receives the semaphore lock request for S from its slave,

14

it will try to lock the semaphore S. When eventually the master has successfully locked the

semaphore S, it will then send a success message back to its slave so that the slave can continue

its execution, as if the slave has successfully locked the semaphore itself. Similarly, when the

slave thread later tries to unlock S, it again sends a message to the master asking it to unlock

S on its behalf. After the master has received the message and unlocked the semaphore, the

local thread manager at the console can then reschedule some other thread that has previously

issued a lock request for the semaphore.

With the above design the observed e�ect for the slave thread is that a semaphore lock

operation will block until the semaphore is unlocked, and a semaphore unlock operation will

cause other threads that are also trying to lock the semaphore to be rescheduled. The e�ect is

the same as if the semaphore operations are performed locally. At the same time, for the other

threads that are running in the console node, what they observe is that it is the master thread

that performs all the semaphore lock and unlock operations. Hence, cooperative semaphore can

transparently hide the fact of migration from the rest of the system.

Distributed Thread Synchronization

Java threads rely on simple wait-notify signals for inter-thread communications. By a design

similar to that for cooperative semaphores, we have implemented a remote thread signaling

mechanism where the master is responsible for transparently forwarding any wait and notify

signals between its slave and the other threads running in the console node. With the cooper-

ative semaphore and the remote signaling mechanisms installed, we are able to implement the

distributed thread synchronization mechanism in a decentralized manner.

3.3 Global Object Space

The global object space is the part of the global thread space which provides location-independent

object access. In each node of the cluster there is a distributed object manager (DOM) respon-

sible for managing the local memory resources as well as cooperating with DOMs running on

other nodes to create a globally accessible object space. This is achieved by implementing the

DOMs on top of a distributed shared-memory (DSM) subsystem. With the help of the DSM

subsystem, discrete memory regions belonging to various cluster nodes are uni�ed to form a

single and contiguous memory space for global object sharing. As a result, objects remain to be

15

accessible by a thread even after the thread has migrated to another node in the cluster. The

location where an object resides is transparent to a thread.

The global object space is for the containment of all Java objects. It constitutes a portion

of the entire address space at the virtual machine level, where the stack and the local heap of

each JESSICA daemon process are used to store other internal state of the runtime system.

Contents of objects that are located in a remote node are cached by the DSM subsystem, and

JESSICA relies on the cache coherent protocol provided by the DSM subsystem to maintain

the consistency of the cached data. The global object space is established by allocating a large

chunk of shared memory from the DSM. JESSICA employs a decentralized approach for memory

management, where the DOM running on each node is responsible for managing its own share of

the global shared memory. Object allocation requests made by the threads in a node are always

satis�ed locally|the DOM will allocate the required space from its share instead of forwarding

the request back to console. This is justi�ed by the principle of locality suggesting that the

migrated thread is likely to access the newly created objects for a repeated number of times in

the near future. Because it is possible to have two or more nodes updating the same object at

the same time, the lock() and unlock() primitives provided by the DSM subsystem are used

to ensure consistency.

Distributed Garbage Collection

Garbage collection is the activity to locate all the unused objects and to reclaim their space.

As the Java Virtual Machine relies on garbage collection to reclaim unused memory objects, a

distributed mark-and-sweep garbage collection mechanism is installed in the global object space

of JESSICA. Distributed garbage collection is a nontrivial problem still under active research [3];

our approach is to adopt a simple solution for the JESSICA prototype. Since DOM handles

local object allocation requests by allocating requested memory from its own subspace, it is not

diÆcult to deduce which DOM is the owner of any given object by looking at the object's address.

During the marking phase of garbage collection, each DOM will form lists of all traceable objects

that belong to other DOMs. The lists of objects are forwarded to their respective owners at

the end of the marking phase. Consequently, a DOM will be able to sweep and reclaim only

unreferenced objects as any object that is referenced remotely can be identi�ed from lists coming

from the other nodes.

16

Interacting with the DSM Subsystem

The following example, in which a synchronzied method is invoked to update a �eld of a shared

object, illustrates how the implementation interacts with the DSM subsystem, whose implemen-

tation relies on the lazy release consistency model.

When a worker thread invokes a synchronized method to update some �eld of an object, the

thread will �rst try to mutex-lock the object using the corresponding cooperative semaphore

associated with the object. The worker thread may be required to block if the object is being

locked by another thread. Once the cooperative semaphore has been successfully locked, the

system will perform a DSM-lock on the shared memory page that contains the object. To do

this, the system sends a message to the DSM lock manager requesting the lock; the lock manager

will reply with a successful message later on, and information about which DSM pages need to

be invalidated will be attached to the reply message. The worker thread will then try to access

the object, resulting in a page fault being generated. The DSM subsystem will update the

content of the page by applying \page di�s" received from other nodes, if there are any. After

the update the worker will then be allowed to perform a write on the object's �eld. The DSM

subsystem will create a twin of the page being modi�ed before the write is performed on the

original copy. The twin is required to produce a di� to describe the changes made to the page

later when another node performs a DSM-lock on the page. When the worker thread �nishes

updating the object and exits the synchronized method, the system will perform a DSM-unlock

on the shared page. An unlock message and the IDs of shared pages that have been modi�ed

will be sent to the lock manager as a result. Finally, a mutex-unlock will be applied to the

object, completing the process.

4 Performance Evaluation

The �rst JESSICA prototype ran on the Solaris platform [9]. We have since ported it to the Linux

platform. Our Linux cluster consists of 8 Linux PCs connected to a 100Mbps Fast Ethernet

switch. Each PC is equipped with a 300MHz Intel Celeron processor and 128MB main memory,

and is running Linux Kernel 2.2.1. The JESSICA implementation is based on version 0.9.1 of

the Ka�e virtual machine [12] and uses version 1.0.3.2 of the Treadmarks DSM package [1].

We had to make some major modi�cations to the Ka�e implementation in order to sup-

17

port the SSI-enabling features. For example, in order to facilitate the extraction of a thread's

execution context, the method invocation mechanism in Ka�e's bytecode execution engine was

changed so that it would allocate the method stack from the local heap instead of from the

process runtime stack. The set of bytecode instructions that are responsible for method invo-

cation were also adjusted in order to support the delta execution mechanism. In addition, the

Distributed Object Manager has been incorporated into the memory management subsystem for

creating the global object space. All the bytecode instructions that access the global object space

have been augmented to use the lock()/unlock() primitives provided by the DSM whenever

necessary. Moreover, the thread subsystem has been extended to become the Thread Manager

for supporting thread migration, cooperative semaphore, and the remote signaling mechanism.

Finally, the Migration Manager responsible for enforcing a load balancing policy has also been

incorporated into the system.

All communications between the JESSICA daemons are conducted through the BSD sockets

interface provided by the Linux operating system.

4.1 Applications Performance

We have implemented the following three multi-threaded Java applications in order to measure

the performance of our JESSICA prototype. The prototype was set to utilize the maximal par-

allelism obtainable from the cluster|newly created worker threads are automatically migrated

to worker nodes by our load-balancing mechanism until there is a worker thread running in each

worker node. Since the applications are designed to create the same number of worker threads

as the number of processors available, we are able to study the e�ect on the execution time when

all the threads are running in parallel.

� � Calculation|This application approximates � by evaluating an integral. The area under

the corresponding graph is divided into multiple regions and multiple threads are deployed

to �nd the sub-areas. The value � is obtained by summing up all the sub-areas once

all the threads have �nished. This application shows the raw parallel performance of

delta execution since there is no interaction between the worker threads until all the

computations are completed. The extra overhead due to migration is minimal.

� Recursive Ray-Tracing|In this recursive ray-tracer written in Java, worker threads render

18

No of Processors SpeedUp
1 1
2 2.00
4 4.00
8 7.99

Approximation of PI by Integration with 100M
Intervals

100.00 99.97 98.80 98.88

0%

20%

40%

60%

80%

100%

1 2 4 8

Processors

E
xe

c
T

im
e

B
re

ak
d

o
w

n

DSM Cooperative Semaphore Program Execution

Figure 6: Performance results of the approximation of the value � with 100M intervals

the pixels of a projected 2D image by shooting rays into a given 3D scene. The threads

obtain the next line of pixels to compute from a globally shared job queue, leading to a

load-balancing e�ect at the application level. All worker threads are tightly synchronized

among themselves when they access the job queue in order to maintain consistency. This

application demonstrates how distributed thread synchronization a�ects the performance

of the worker threads that are distributed across the cluster.

� Red-Black Successive Over-Relaxation (R/B-SOR) on a Grid|This program creates mul-

tiple threads to compute matrix elements in parallel. A large 512� 512 matrix is divided

into two sub-matrices, the Red and the Black matrix, which in turn are divided into roughly

equal-size bands of rows, with each band being assigned to a di�erent thread. The threads

repeatedly retrieve values from one matrix, compute the average, and write the result to

the other matrix. Since the input matrix is allocated from the globally shared DSM space,

the execution imposes a signi�cant amount of loading on the DSM subsystem. Hence, this

is a good candidate for studying how the DSM overhead due to migration contributes to

the overall execution time.

The results are presented in Fig. 6, Fig. 7, and Fig. 8. The execution times presented do not

include the sequential initialization time, such as the time taken for initializing elements of a ma-

trix or that for loading data from a �le. The timer was started after the sequential initialization

phase so as to arrive at a more accurate estimation on the performance improvement.

19

No of Processors SpeedUp
1 1
2 1.66
4 3.13
8 5.44

Recurrsive Ray-Tracing on SNOWMAN1.DAT
(640x480)

0.000.00
19.12 22.74 26.01

100.00
73.89 70.12 64.36

6.98 7.14 9.620%

20%

40%

60%

80%

100%

1 2 4 8

Processors

E
xe

c
T

im
e

B
re

ak
d

o
w

n

DSM Cooperative Semaphore Program Execution

Figure 7: Performance results of the recursive ray-tracer to produce a 480x640 image

No of Processors SpeedUp
1 1
2 1.50
4 2.51
8 3.36

Red/Black Successive-Over Relaxation on a

512x512 Matrix in 32 Interations

0.00
40.68 34.91 26.630.00

4.00
4.56

5.17
100.00

55.32 60.53 68.20

0%

20%

40%

60%

80%

100%

1 2 4 8

Processors

E
xe

c
T

im
e

B
re

ak
d

o
w

n

DSM Cooperative Semaphore Program Execution

Figure 8: Performance results of the red/black successive-over-relaxation application on a

512x512 matrix

20

Execution Time in Second for One-Processor � Approximation Ray-tracing R/B-SOR Matrix
Iteration

JESSICA 400 385 247

Ka�e 385 264 107

Percentage Slowdown 4% 46% 131%

Table 1: Comparison of One-processor Application Performances

According to Fig. 6, it can be seen that almost ideal speedup and eÆciency are achieved in the

� approximation application, due to the fact that there is no communication or coordination

between worker threads until all the computations are completed. The recursive ray-tracing

experiment shows that the eÆciency is less than optimal and drops slightly as more processors

are used. The eÆciency decreases from 83% when using two processors to 68% when using eight

processors. This is because, as indicated in Fig. 7, the distributed synchronization overhead

contributes a larger amount to the total execution time as more nodes are used. As shown in

Fig. 8, the R/B-SOR application can achieve moderate speedups as more processors are used.

The eÆciency drops from 75% when running with two processors to 42% when running with

eight processors. The result shows that DSM overheads contribute a signi�cant portion to the

execution time and make the application less scalable.

4.2 JESSICA versus Unmodi�ed Ka�e

In this section, we compare the application performance of JESSICA using one worker thread

with the performance of the original, unmodi�ed Ka�e. Table 1 shows the results.

Both JESSICA and Ka�e exhibit almost identical performance for the � Approximation

application because the application only relies on the stack to store intermediate results, rather

than using Java objects, and hence there is virtually no extra overhead generated by the DSM.

This shows that the BEE implementation in JESSICA is as eÆcient as that of Ka�e. The

moderate slowdown shown in the ray-tracing application for JESSICA is due mainly to the DSM

overheads when reading the 3D scene objects which are Java objects stored in the DSM. Similar

to the � Approximation application, because most of the intermediate results are stored in the

method stack, the application does not generate an excessive amount of DSM overhead from

data updates. Finally, the R/B-SOR application shows the slowest performance for JESSICA

21

when compared to Ka�e. This is because the application had a large number interactions with

the DSM as it needed to update the R/B Matrix, which contains 0.25 million elements stored

in the DSM, repeatedly many times.

From the results we can see the current JESSICA implementation performs the worst for

applications that require a huge amount of data updates to be performed through the DSM.

The major overhead comes from the Treadmarks DSM because of its lazy release consistency,

where every object access would require invoking a pair of DSM-lock and unlock operations for

the sake of data consistency. Future versions of JESSICA will look for better substitute for the

current DSM subsystem. An ideal DSM should provide an access semantics that is identical to

ordinary memory, which can free the system from having to perform any DSM-lock and unlock

operations in order to obtain the up-to-date contents of an object.

4.3 Dynamic Load Balancing

This section studies the e�ect of our simple migration policy and the dynamic load balancing

capability of JESSICA. We used our � approximation program which computes the value of �

by integration. In the experiments, the program would create two worker threads with each

thread evaluating an assigned area under a graph concurrently.

In the simplest case where no arti�cial load was introduced into the system, thread migration

occurred at the beginning of the program execution as the Migration Manager detected load

imbalance between the console and the rest of the worker nodes. Each of the worker threads

was assigned to a di�erent node of the cluster, and the two threads executed in real parallelism.

This was in e�ect a static assignment. The execution time in this case was 193 seconds.

In the next experiment, the same program was run. This time, however, the retreat feature

of the thread migration mechanism was left disabled so that a migrated thread would continue

to execute on a worker node regardless of any change in CPU loading. Some arti�cial load was

then inserted (one second after the threads began to execute) into the system to overload the

worker nodes on which the threads were running. The extra load slowed down the execution of

the migrated threads and the execution time increased to 328 seconds.

In the �nal experiment, the same arti�cial load was used, but the retreat feature of thread

migration was enabled this time. As shown in Fig. 9, after the program began its execution,

the Migration Manager migrated the threads to two separate worker nodes. At t0, the degree

22

Time

Degree of
Parallelism

program
initialization

t0 t1 t2 t3 t4 t5
1

2

3

Figure 9: Change in Degree of Parallelism Against Time in the Dynamic Load Balancing Ex-

periment

of parallelism reached three as there was a Migration Manager running at the console and two

migrated threads were running at two worker nodes. After the arti�cial load was introduced

one second later at t1, the Migration Manager detected a sharp increase in system load on the

worker nodes, causing the Migration Manager to trigger a retreat operation at each worker node,

and the migrated threads were then sent back to the console at time t2 and t3 respectively. The

degree of parallelism was reduced to one at this time. Soon after when the Migration Manager

discovered there were in fact �ve other worker nodes sitting idle, it triggered another migration

and caused the two worker threads to migrate to two other worker nodes at t4. Eventually, the

degree of parallelism returned to three again at t5. The execution time was 207 seconds.

From the experiment results we can see the arti�cial load caused the execution time to

increase by 70% if the retreat feature is disabled. With the retreat feature enabled the increase

in execution time dropped to a mere 7%. Since during the period between t2 and t5, the program

could not execute in full parallelism, which also contributed to the 7% slowdown, we conclude

that the the migration and the retreat operations are reasonably eÆcient.

4.4 Primitive Operations Overheads

This section studies the overheads that are incurred as a result of allowing threads to be dis-

tributed across the cluster for parallel execution. The overheads are mainly due to remote object

accesses and distributed thread synchronization.

23

Remote Object Access Overhead

Because it is possible to have two or more threads to update the same object at the same time,

the DSM's lock and unlock primitives are used for data consistency control. According to our

observation, the overhead introduced by these primitives can be substantial if object updates

are frequent. Besides, when a thread accesses an object that is in a dirty memory page, or if

the object is not already cached, the DSM subsystem will have to fetch the page from a remote

node, introducing access delay.

In general, there are three types of memory access in JESSICA:

� Local stack data access|The variable involved is local to a method or a block of code.

It is allocated from the Java method stack rather than from the DSM. For example, the

iload 0 instruction, which loads an integer onto the top of the method stack, is an access

to the local stack data.

� Local object data access|The variable involved is a �eld of a local object. The �eld

variable is allocated from the DSM and the data concerned resides in the same machine as

the thread that is making the access. The bytecode execution engine uses the GETFIELD

and the PUTFIELD instructions to access the object �eld. This kind of access is indirect as

the memory location of the data �eld has to be computed �rst by the bytecode execution

engine. This is done by adding the object address to the o�set at which the �eld variable

is stored.

� Remote object data access|This is similar to local object data access except the thread

that is making the access is located in a node di�erent from where the object data is

stored.

To study the performance di�erences of various types of memory access, we have performed

a series of experiments to measure the time required to update some selected elements of a very

large array that spans 4096 shared memory pages. The elements are selected in such a way

that in the DSM they are 4K bytes apart pairwise, i.e., the size of a shared page. As a result,

every remote update to each of the elements will need to fetch a new shared page containing the

element from the remote node. The sample code of the program is shown in Fig. 10.

The ratio of access overhead is found to be:

24

Class Foo {
native void startTimer(); // a timer with microsecond resolution
native void endTimer();

int a[];
public void run() {

startTimer();
a[0] = 1;
a[1024] = 1;
a[2048] = 1;
a[3072] = 1;
a[4096] = 1;
a[5120] = 1;
a[6144] = 1;

...

endTimer();
 }

Foo() {
a = new int [1024*4096];

 }
....

Figure 10: Sample Code of Class Foo for Measuring Object Access Overhead

remote object data local object data local stack data
access time : access time : access time = 2322 : 23 : 1

In other words, the overhead of remote object access is about 100 times that of local access.

The di�erence is due to the transmission of DSM pages from remote nodes through the network.

Note that this is a worst-case result as the update will cause the whole page of data to be received

as a DSM di�. In general, the size of di� varies and not all updates will trigger the transmission

of di�s. It is possible that the current thread is the only one to make the update between

successive invocations of DSM-unlock so that no di� will be generated by other nodes. The 23

times di�erence between the access time for local object access and that for local method stack

access is because of the overhead produced by the DSM-lock and unlock operations as performed

by the iastore instruction, although no di�s will be received in this local case.

Cooperative Semaphore Overhead

We compare the time for a migrated thread to perform cooperative semaphore operations with

one without migration. Consider when a slave thread tries to acquire a cooperative semaphore,

as shown in Fig. 11. It sends a semaphore acquire message to its master (T0). The message

will trigger a SIGIO signal when it arrives at the console. With the help of a SIGIO handler,

JESSICA will then notify the TM that some data is ready for the master thread to read. As a

25

SIGIO handler detects the arrival of a
message for the blocked slave thread,
so it reschedule slave thread back to the

for its turn to be executed.
ready queue; the slave thread waits

message size = 40bytes

the ’semaphore acquire’ request is
successfully completed by its master, and

Slave thread resumes and discovers that

hence it continues its execution.

SIGIO handler detects the
arrival of message and
schedule master thread back
to the ready queue; master wait
for its turn to be executed

message size = 40bytes

for requests
Master thread block waiting

Remote Node Network

T0

T1

T2

T3

T4

Slave thread sends a ’semaphore acquire’
message request back to its master and
block waiting for result.

acquire’ operation on its slave
behalf

Master thread resumes execution.
It perfroms the ’semaphore

Master thread successfully

sends a successful message
acquired the semaphore, it then

back to the slave.

Console Node

Figure 11: Cooperative semaphore in action: a migrated thread performs an acquire operation

26

result, the master thread is rescheduled back to the ready queue. Notice that the master thread

may not be able to resume execution immediately because there may be other threads currently

waiting in the ready queue in front of it. Assume that after a while (T1) it is the master's turn

to execute, and the master acquires the semaphore (T2). After the semaphore is acquired, the

master sends a success message to the slave, prompting the slave thread to resume (T3 + T4)

its execution. From Fig. 11, it can be seen that the total time for a slave thread to acquire a

cooperative semaphore is equal to T0+T1+T2+T3+T4, while that for a local thread to acquire

a semaphore is simply T2. In other words, the extra overhead in this case is T0+T1+T3+T4.

We have conducted a series of experiments to measure the time taken for a migrated thread

to acquire a free cooperative semaphore remotely and the time taken for a local thread to acquire

a free semaphore locally. A free semaphore is a semaphore that is not currently held by anyone

and so a thread can acquire it immediately. In this case, the value for T2 will be the smallest.

By our design, both the master and the slave thread are the only active threads running in their

respective nodes; therefore the time to wait before resuming execution, i.e., T1 and T4, would

be zero. It is found that the time it took to acquire a remote cooperative semaphore for a slave

thread this way is about 261 microseconds. For the case of a local, non-migrated thread, the

time is approximately 7:78 microseconds. Hence, the ratio of the time required to acquire a

free semaphore remotely to that for the local case is about 34 : 1. By similar arrangement, we

were able to determine the time for releasing a semaphore both remotely and locally. The result

shows the corresponding times are about the same: it took about 258 microseconds to remotely

release a cooperative semaphore and 7:81 microseconds to release a local one.

It can be seen that a major portion of the cooperative semaphore overhead comes from the

need to send control messages between nodes and from the operating system invoking the SIGIO

handler. A point to note is that the overheads measured here are minimum values. In general,

it will take some time for a thread to resume execution after it is rescheduled since there could

be other threads, with either the same or higher scheduling priorities, already running in the

same node. Moreover, a semaphore may not always be available immediately when a thread

tries to acquire it. Hence, T1 and T2 could be larger. For example, in our recursive ray-

tracing application, where threads are tightly synchronized, it is found that the time to acquire

a cooperative semaphore increases from 5:49 to 10:29 milliseconds when more worker threads

27

D3 D2

D1

D1

NetworkConsole Node Worker Node

D3 D2 D1

thread to act as the slave thread
for the migration, the migrating

Worker receives a migration request,
it creates and initializes a new

thread is cloned using the
java.lang.Object.clone() method.

The slave thread creates a comm.
endpt for establishing a dedicated

thread at the console. The

the console and the slave is then
connection info is sent back to

blocked waiting for the master

channel to be linked to the master

to connect to the new channel.

the first delta set is
ready signal from slave.

marshalled and
sent to the slave.

master thread received

for reply
master blocked waiting

slave received the delta set and
resumes the execution here

The migrating thread is turned into the
master. After receiving the connection
info about the new dedicated channel,
it sends a connection request to the
slave.

the dedicated channel is
established and it sends the master
a ready signal that it is ready to
receive delta set for execution.

slave receives a connection request,

states of the migrating thread is frozen
here.

Console sends a thread migration request
to the target remote node. The Execution

T0

T1

machine independent delta sets

machine dependent execution states

Figure 12: Interactions between the console and the worker during migration

are migrated.

4.5 Analysis of Migration Latency

Fig. 12 shows in detail the interactions between the console and the worker node when a thread

is migrated from the former to the latter. The migration latency is the time between the moment

the migrating thread is frozen by the console and the moment it is restarted later as a slave

thread at the worker node. Let T0 be the time taken to notify the destination node and to have

the destination node prepare itself for the migration. The value of T0 is relatively constant. Let

T1 be the time taken to marshal a delta set at the console node, to send the marshaled data

across the network, and eventually to de-marshal the received data at the destination node. The

value of T1 is therefore proportional to the size of the transferring delta set. The migration

latencies, i.e., T0 + T1, for di�erent sizes of the delta sets are measured.

According to the data collected, when the size of the delta set is zero, the migration latency is

about 27:91 milliseconds. T0 includes the time taken to execute the java.lang.Object.clone()

method in the worker node as well as the time for sending the four handshake messages between

28

the console and the worker node, as shown in Fig. 12.

The purpose of the clone() method is to create an image of the migrating thread at the

destination node, which will then become the slave thread. Notice that in general, a thread is not

allowed to invoke its clone() method unless the thread implements the java.lang.Cloneable

interface. However, since the clone() method is invoked directly within the virtual machine,

JESSICA would bypass the checking of whether a thread implements the Cloneable interface

or not. As a result the invocation will always be successful and the SSI illusion will not be

compromised. If a thread does in fact implement the Cloneable interface, then it will be

duplicated in a way according to its clone() method; otherwise, the default implementation

of the clone() method in JESSICA is to perform a memcpy() to duplicate the thread object

byte-by-byte.

A further breakdown of this T0 value reveals that the time required to invoke the clone()

method is about 6:76 milliseconds. The time required to set up a TCP connection between the

master and the migrated slave thread and that for sending the four handshake messages make

up the remaining time. Now consider the case when a thread is migrated just before it starts

executing the �rst instruction; the size of the smallest possible delta set, which contains no local

variable or stack data, is 208 bytes. Consequently, the minimum migration latency of the delta

execution mechanism is measured to be about 29:79 milliseconds.

Cost of Delta Execution

We have devised a test program based on the DeltaE class as shown in Fig. 13 and Fig. 14 to

study the e�ect of machine-dependent code on thread migration and the cost of delta execution.

There are two methods f() and g() de�ned in class DeltaE, which recursively call each other

until the counter i reaches zero. In addition, the native method f() would print the level of

recursion to stdout before returning. The function autoMigrate() is a special native function

de�ned in JESSICA which will cause the Migration Manager to migrate the current thread to a

worker node.

When an instance of DeltaE is instantiated, the thread will recursively invoke method g()

and method f() until i reaches zero. autoMigrate() will then cause the DetalE thread to be

29

class DeltaE extends Thread {
 int i;
 DeltaE() { i = 100; }

 public void run() {
 g();
 }

 void g() {
 i--;
 if (i > 0) f(i);
 else autoMigrate(); // trigger a migration here ...
 }
 native void f(int i); // a native function that invoke g()
 native void autoMigrate(); // a native function that tells

 // Migration Manager to migate
 // the currentThread to a worker

 // node
}

Figure 13: Implementation of Class DeltaE in Java

void DeltaE_f(struct HDeltaE* this, int i) {
 do_execute_java_method(0, (Hjava_lang_Object*) this, "g",

 "()V", 0, 0); // invoke g again

 fprintf(stdout, "hello: %d\n", i); // print the current
 // level of recursion

}

Figure 14: Implementation of native method DeltaE.f() in C

30

....

��
��C frameg()

B frame
f()

�Machine Dependent State

Machine Independent Delta Set�
� B frame

g()
B frame
f()

C frame
run()

Figure 15: Execution Context of an instance of DeltaE Thread

migrated to a worker node. At this point the execution context of the thread should contain

a chain of delta sets interleaved by sets of machine-dependent state, as shown in Fig. 15. By

the time the migrated thread resumes its execution at the worker node, it will continue from

the point of return of autoMigrate(), which is also the point of return of method g(). From

this point onwards, the e�ect of delta execution will cause the execution control to bounce back

and forth between the console and the worker node. At the console node the current level of

recursion will be printed to stdout as a set of machine-dependent states is executed, while at

the worker node the control will complete the execution of method g() as the next delta set is

shipped there.

In our experiment the number of recursion was set to 100 and it took 2037 milliseconds to

execute the test program. The time spent was mainly on the shipping of delta sets as well as

the bouncing of execution control between the console and the worker node for a 100 times. In

the case where migration was disabled, the time spent to execute the test program was found

to be 18 milliseconds. Hence, the round-trip overhead for each bouncing of control between the

console and the worker node due to delta execution is about 20.19 milliseconds.

5 Related Work

5.1 Solaris MC

Solaris MC [16] is a prototype distributed operating system for running on a cluster of computers.

It extends the existing Solaris operating system to provide a single-system view. Thus, a cluster

appears to users and applications as a single computer running the Solaris operating system.

Modi�cations to the Solaris kernel are kept to a minimum. Most of the extended components

31

appear as loadable kernel modules to the Solaris kernel. The implementation and extension to

the Solaris kernel are done using the high-level C++ programming language and the CORBA

object model. Since object-code compatibility and the kernel API are maintained, existing

applications and device drivers are runnable and require no modi�cations.

The SSI boundary created by Solaris MC can be considered a global process space that spans

the entire cluster. Processes living within this global process space can be uniquely identi�ed

and have their physical locations hidden. The global process space supports remote creation

of processes and operating-system-related messages are transparently redirected to the node

where the processes reside. This global process space is analogous to the global thread space

of JESSICA that hides the physical boundaries between machines. The global thread space

of JESSICA supports remote creation of threads, and system services are also transparently

redirected to the appropriate location. However, threads living in the global thread space can

freely migrate node to node within the cluster while processes in the global process space of

Solaris MC cannot.

Solaris MC leaves a shadow virtual process behind when a process migrates. It is similar

to JESSICA which leaves a master thread behind in the console node. They both provide mi-

gration transparency by redirecting location-dependent operations and messages. Other Solaris

MC ideas can provide good input to future versions of JESSICA; for example, the idea of a

global network subsystem and the use of a packet �lter for network data redirection could be

incorporated into the java.net class library.

5.2 cJVM

cJVM [15] is a cluster-aware Java Virtual Machine implementation which provides a single-

system-image illusion over a cluster of computers. The cJVM approach focuses on Java semantic

information obtainable from the virtual machine level, which is used as a basis for exploiting

possible optimization strategies in the implementation. Instead of using a cluster-enabled in-

frastructure, such as a distributed shared-memory (DSM), cJVM maintains a distributed heap

by using the master-proxy model for object creation and the method shipping technique for

transparent remote object access. cJVM has its own particular distributed thread model for

32

parallel execution of threads across the cluster. For a Java object which is passed as reference

to a remote node, a proxy of that object will be created at the target node. When the remote

node accesses the proxy later, the proxy will be responsible for forwarding the execution ow

back to the original node in which the master object resides, where operations on the object can

then be performed. Load balancing over the cluster is conducted by means of remote thread

creation. The master-proxy object model o�ers an opportunity for providing smart proxy on a

per-object-instance basis. By employing code analysis, an object proxy can decide how to handle

a remote object access request in the most eÆcient manner, such as forwarding the execution

ow back to the node where the master object resides or caching the data so that the request is

handled locally, depending on the nature of the access.

The JESSICA approach is di�erent from that of cJVM in that it employs a DSM subsystem

to establish a global object space for object sharing across the cluster. Object consistency is

transparently handled by the cache coherent protocol as implemented in the DSM subsystem.

However, the possibility of false sharing and the extra overhead of synchronization primitives

can have a considerable impact on the performance of the JESSICA prototype, as has been

demonstrated in the matrix iteration example. On the other hand, although the master-proxy

object model used in cJVM saves the use of explicit synchronization primitives when access-

ing objects, the cJVM implementation is still required to send remote access requests when a

bytecode instruction tries to access heap data that is located in a remote node. The remote

access and data caching granularity in the cJVM case is an object while that for JESSICA is a

page. Hence, the e�ectiveness of the two approaches will depend on the pattern and frequency

of remote object accesses for cJVM, and the cache coherent protocol for JESSICA.

Because the method shipping technique of cJVM forwards execution ow of an active thread

to the node where the target master object is located, load distribution across the cluster is

therefore largely dependent on the placement of distributed objects across the cluster. Conse-

quently, load distribution across the cluster can uctuate as the execution ow moves from one

node to another. Thus, an e�ective load balancing strategy is necessary for cJVM to decide on

which node a newly created thread should be placed in order to maintain an evenly distributed

load across the cluster. Whereas in the case of JESSICA, the thread migration capability pro-

vides a more exible means for performing load balancing. For example, when the migration

33

manager detects heavy DSM traÆc, it is possible to improve locality by migrating threads to-

wards their target objects to which accesses are frequent, after taking other system load factors

into account.

5.3 Java/DSM

Java/DSM [14] is a distributed Java Virtual Machine that runs on a cluster of heterogeneous

computers. It provides an illusion to Java applications as if they are running on a single JVM

with multiple processors attached. Parallel execution of a multi-threaded application is possible

by having multiple threads running on multiple nodes in the cluster. With the help of the strong-

typing characteristic of Java, Java/DSM is able to make use of a translation mechanism so that

when data of the same type are retrieved from computers of di�erent hardware platforms, they

will be converted to a common format before interpretation.

Both Java/DSM and JESSICA follow a similar approach by implementing a distributed

virtual machine at the middleware level. They utilize DSM systems to simplify their implemen-

tations. However, in Java/DSM, load distribution is achieved by remote invocations of Java

threads alone, while JESSICA supports also transparent thread migration. Besides, the current

Java/DSM prototype focuses mainly on supporting DSM in a heterogeneous environment; other

issues such as location transparency are not addressed.

Table 2 provides a comparison between JESSICA and the related systems discussed in this

section.

6 Conclusion

The JESSICA prototype provided a parallel execution platform with respectable speedup for all

the experimental applications tried. It is able to support dynamic thread migration, to achieve

SSI, and has been shown to be a parallel execution environment with good eÆciency. EÆciency

we measured ranges from 41.95% to 100.00% when using two to eight nodes in a Linux cluster.

JESSICA takes a novel approach in dealing with thread migration when compared to other

systems. Instead of moving the whole execution context to the destination all at the same time,

34

Level of

Approach

Method of
Load

Distribution

Implementation

Techniques
Characteristics

Support

Migration/SSI
Transparency

JESSICA Middleware
Thread
migration

delta execution +
DSM + Message
redirection by

helper threads

Global thread
space o�ers a
compatible and

parallel execution
environment
where

applications can
run without
modi�cation and

gain speedup

Yes

Solaris MC
Monolithic
kernel

Remote

execution of
process

Message
redirection by
vproc + CORBA

+ packet �ltering

Commercial OS

with
contemporary
software

technique

Yes

cJVM Middleware

Remote

execution of
thread

Master-proxy

object model +
method shipping

Use Java
semantic
available from the

virtual machine
to exploit optimal
implementation
strategy

Yes

Java/DSM Middleware

Remote
execution of

thread

DSM + data

translation

A distributed

Java Virtual
Machine runs on
a heterogeneous

cluster

No

Table 2: Comparison of characteristics between JESSICA and the related work discussed

35

the execution context is separated into machine-dependent and machine-independent parts, and

only the machine-independent parts are migrated in a regulated manner. This design imposes

no limitation on the type of thread that can migrate, and whether they own location-dependent

resources or not.

Although it is true that the master-slave design for supporting migration transparency can

make the console node a potential bottleneck, the centralized design allows control state to be

maintained at a single location which reduces implementation complexity. On the contrary,

a decentralized approach would require the control state to be distributed across the cluster,

requiring a much more complicated implementation. The complexity stems from the need to

coordinate all the nodes to support distributed thread scheduling, migration of communication

endpoints, forwarding of inter-thread signals, etc., which all translate into signi�cant amounts

of messages to be sent across the cluster in order to maintain the consistency of the distributed

control state.

Our experiments have shown that the major overheads had come from remote object accesses

made by the migrated threads as well as distributed thread synchronization. This is because

the DSM subsystem we used in our current implementation follows the lazy release consistency

model, which would require a pair of DSM lock() and DSM unlock() operations to be per-

formed for every object access. At the BEE level, the lack of knowledge about the application

has made it diÆcult for the execution engine to intelligently organize object accesses so that the

number of lock()/unlock() operations may be reduced. Using a DSM that follows the lazy

release consistency model is clearly not the best choice for providing location-transparent object

access to threads in JESSICA. Work is underway to replace the current DSM by a more eÆcient

object-based DSM.

Our experiences with the JESSICA prototype have led us to conclude that establishing an

SSI illusion using the middleware approach to support parallel execution of multi-threaded Java

programs in a cluster environment is feasible and bene�cial. The design of the Java programming

language has not included any restriction that would hinder the use of the middleware approach.

On the contrary, it is the characteristics of the language, such as bytecode execution, threads

as �rst-class citizens, and the simple model of inter-thread signaling and synchronization that

36

have simpli�ed the implementation of JESSICA. Consequently, the JESSICA implementation

has not added any new features to the Java programming language. Moreover, the design of

delta execution opens up a substantial ground for further development of thread migration in

a heterogeneous environment as all the states migrated using delta execution are platform-

independent. Overall, the JESSICA approach has proved to be a simple, exibile, and portable

solution for realizing the goal of single-system-image.

Acknowledgement

This research was supported in part by the Hong Kong RGC Grant HKU 7032/98E and the

HKU Equipment Grant 10003.01991001.00000.14200.100.01. The authors are grateful to the

anonymous referees for the very useful comments they made.

References

[1] C. Amza, A.L. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Rajamony, W. Yu and W.

Zwaenepoel, \TreadMarks: Shared Memory Computing on Networks of Workstations",

IEEE Computer, Vol. 29, No. 2, pp. 18-28, Feb 1996.

[2] R. Buyya (ed.), High Performance Cluster Computing: Programming and Applications, Vol.

2, Prentice-Hall, 1999.

[3] D. Plainfosse and M. Shapiro, \A Survey of Distributed Garbage Collection Techniques",

Proc. of 1995 International Workshop on Memory Management, Sep 1995.

[4] F. Douglis and J. Ousterhout, \Transparent Process Migration: Design Alternatives and

the Sprite Implementation", Software Practice and Experience, Vol. 21(8), Aug 1991.

[5] K. Arnold and J. Gosling, \The Java Programming Language", Addison Wesley, 1996.

[6] Javasoft, \Java Interface De�nition Language", http://java.sun.com/products/jdk/1.2/

docs/guide/idl/index.html.

[7] Javasoft, \Java Object Serialization", http://java.sun.com/products/jdk/1.1/docs/

guide/serialization/index.html.

[8] Javasoft, \Java Remote Method Invocation - Distributed Computing for Java, a White

Paper", http://java.sun.com/marketing/collateral/javarmi.html.

[9] M.J.M. Ma, C.L. Wang, and F.C.M. Lau, \Delta Execution: A Preemptive Java Thread

Migration Mechanism", Cluster Computing Journal, Special Issue on Load Balancing and

Load Sharing, to appear.

[10] R. Fatoohi and S. Weeratunga, \Performance Evaluation of Three Distributed Computing

Environments for Scienti�c Applications", Supercomputing '94, pp. 400-408.

37

[11] T. Lindholm and F. Yellin, \The Java Virtual Machine Speci�cation", Addison Wesley,

1996.

[12] Transvirtual Technologies Inc., Ka�e Open VM, http://www.transvirtual.com.

[13] W.T.C. Kramer et al., \Clustered Workstations and Their Potential Role as High Speed

Compute Processors", RNS-94-003, NASA Ames Research Center, 1994.

[14] W. Yu and A.L. Cox, \Java/DSM: A Platform for Heterogeneous Computing", Proc. of

ACM 1997 Workshop on Java for Science and Engineering Computation, Jun 1997.

[15] Y. Aridor, M. Factor, and A. Teperman, \cJVM: a Single System Image of a JVM on a

Cluster", Proc. of 1999 International Conference on Parallel Processing, Sep 1999.

[16] Y.A. Khalidi, J.M. Bernadbeu, V. Matena, K. Shirrif, M. Thadani, \Solaris MC: A Multi-

Computer OS", Proc. of 1996 USENIX Annual Technical Conference, pp. 191-294.

38

