
1

HKU Sparkle Project

Dr. Cho-Li Wang

The University of Hong Kong

Aug. 4, 2006.



2

The Pervasive Expedition

Remote communication

Fault tolerance

High availability

Remote information access

Distributed security

Mobile networking

Mobile information access

Adaptive applications

Energy-aware systems

Location sensitivity

Distributed 
systems

Mobile 
computing

Pervasive 
computing Post PvC

Smart spaces

Invisibility

Localized scalability

Uneven conditioning

Deep Awareness
Semantic Coherence  
Cognitive Continuity
Sentient Software

"Pervasive Computing: Vision and Challenges"
M. Satyanarayanan [CMU, Aura Project, 2001]



3

1. Deep Awareness

The majority of context-
aware computing to date 
has been restricted to 
location-aware 
computing for mobile 
applications (location-
based services). 
Deep Awareness: 

Make full use of context 
information
Make use of “commodity 
sensors” (e.g., WebCam, 
RFID, Temp/Light,..)

Identity

Spatial 
information

Temporal 
information

Environmental 
information

Social 
situation

Computing 
Resources

Physiological 
measurements Schedules and 

agenda settings

Activity

Deep 
Awareness



4

2. Semantic Coherence

Contextual Level Interoperability
Substitutability : if a service could be substituted by 
another one

Mechanism : Runtime Ontology Mapping:
Normally each smart space has its own ontology or 
knowledge base
In an open environment (instead of a closed smart 
space), it is not practical to assume a unified 
ontology. 
A runtime ontology mapping mechanism is needed



5

Semantic Coherence

Our design goals:
Support lightweight ontology mapping for 
smart spaces interoperation with only 
partial information/knowledge
Flexible smart space infrastructure to 
accommodate all kinds of ontologies



6

3. Cognitive Continuity

High user mobility in Pervasive Computing 
Environment

Mobility may raise user distraction as 
he/she experiences new smart spaces

Our Proposal:
Proactive task state synthesizing 
Mapping and infusing between different 
plans.



7

4. Sentient Software

Sentient Software 
Context changes Run-time changes of software behavior.
Commodity AI: make the software look smart some of the 
time (implement some decent adaptive heuristics)

Current software systems:
never disagree with anything you say, and of course they 
never initiate anything. 

Some thoughts:
It is almost impossible to know what the user really wants.
Observed that most people live in routing life and most 
human tasks are predictable
So we just build software which conforms more closely to 
how they work.



8

4. Sentient Software

Focused Issue: 
Dynamic Configuration and Reconfiguration

To dynamically construct the IS according to user’s computational 
intention and  resource availability
The basic concept is based on dynamic composition techniques

Separation of concerns
Component-based
Computational Reflection

Requirements
User-centered Configuration

Configure in the user-preferred way
Activity Theory, Mental Model, Situation-based

Utility-based Reconfiguration
Change the resource availability, meanwhile guarantee the user’s 
satisfaction
Being able to adapt to the dynamics of the environment at the rate at 
which the dynamics, the changes, occurred.



9

Sparkle Legendary

Sparkle I – Functionality adaptation
Sparkle II – Semantic adaptation
Sparkle III – Deep awareness



10

Sparkle I – Functionality adaptation

Early Works of Sparkle.
A new component paradigm: Facet Model
Separation of code and data, preparing for

Migration: State is kept in container
Adaptation: code and data can be adapted 
individually

Functionality Adaptation
Components of the same functionality have varied 
granularity and/or feature



11

Sparkle I :

Application

Won’t Fit

Application
A

B

C

A

A
A

B

B
B

Applications distributed as 
monolithic blocks

Dynamic Software Architecture for Pervasive 
Computing – “Computing in Small”
Computing Anytime, Anywhere, at Any device,
and support Any Application.
Focus: Resource-awareness



12

Sparkle I – Overview

Client Device

Coming to a new smart space

Proxy

Execution 
Servers

Facet Servers

Proxy

Proxy

Peer to Peer 
Communication

Context 
Servers

Facet Request 
& Facet Return

Execution 
Delegation

Facet TransferProxy to Proxy 
Communication

Context retrieval & 
notification

http/XML



13

Facet Model

Functionality
single well-defined task in an application

E.g. blurring an image, matrix multiplication
Given a set of inputs, it determines what 
changes are made and the outputs attained
Contract which specifies

Set of input & output parameters
Description of what is carried out
Pre-conditions and Post-conditions
Side effects

Identified by a funcID



14

Facet Model

Facets
Pure functional units
Downloaded to client devices on demand
Can be cached in clients.
Implement single functionality 

single publicly callable method
Stateless

Makes it throwable & replaceable at run-time



15

Facets

Shadow: specifies properties of the facet
General info: facetID, vendor, version
Functionality info: funcID
Input and output specification, (data type/format…)
Resource requirements: memory, processing, 
bandwidth, etc
Dependencies: some other functionality it requires to 
finish its task etc. 
Represented in XML format. 

Code Segment
Executable code to achieve the functionality (written in Java)
Does not keep any permanent state

A JAR file to box them together

Facets – flat planes which make 
up a diamond



16

Facet Dependency Graph

Facet Dependency Graph
Facets may call upon other 
facets to achieve their 
functionality 
May have more than one facet 
fulfilling the functionality (e.g., 
i,j, k for A)
Dependency types:

“compulsory”
"optional" : "if-then-else“

p q ri j k i j k

s t

A B A

CCurrent 
execution

Active Facet 
- currently running

Inactive Facet
-already executed
completely

Facet which
Has not yet been
Brought in/loaded

During execution, facets which are 
no longer active can be thrown

i: quick sort; i: bubble sort; k: merge sort

x

i
j

k

FuncID = A 
(sorting)

p
q

r

FuncID = B
(FFT)



17

Shadow: Resource Requirement

Static resource requirements : 
do not change at runtime
E.g., static data, program code,..

Dynamic resource requirements 
may change depending on various run-time conditions, 
such as size of the inputs, algorithm etc. 
E.g., a blur facet depends on the size of the image

Specified by the facet programmer (development 
time)

a formula, e.g., 3n2+5m, or
a look-up table, interpolation if required
only about the current facet



18

Shadow: Resource Requirement

<memory>
<static>233</static> 
<dynamic>
<input_variables>

<parameter name="m"> 1 </parameter>
<parameter name="n"> 2 </parameter>

</input_variables>
<formula> 3n^2+5m </formula>

</dynamic>
</memory> 

<memory>
<static>233</static> 
<dynamic>

<input_variables>
<parameter name="m"> 1 </parameter>
<parameter name="n"> 2 </parameter>

</input_variables>
<table> <entry>

<input name="m“< 20 </input>
<input name="n“< 10 </input>
<value> 400 </value>

</entry> <entry>     
<input name="m“< 40 </input>
<input name="n“< 30 </input>
<value> 2900 </value>

</entry>
.
.

</table>
</dynamic>  </memory> 



19

Shadow: Example
<identifier>GB00056</identifier>
<name>IV.GaussianBlur</name>
<vendor>SRG SANG</vendor>
<version>
<major>1.0</major>
<minor>a</minor>

</version>
<functionality_id>200007</functionality_id>

Part 1: General Information 

<resource>
<memory>
<static>128</static> (in KB) 
<dynamic>

<input_variables>
<parameter name="m"> 1 </parameter>
<parameter name="n"> 2 </parameter>
</input_variables>
<formula> 3n^2+5m </formula>

</dynamic>
</memory>
<display>

<width>300</width> 
<height>400</height>

</display>
</resource>

Part 2: resource requirements

<dependencies>
<dependency order="1" type="optional" subtype="if-then-else">

<functionality_id>200016</functionality_id>
</dependency>
<dependency order="1" type="optional" subtype="if-then-else">

<functionality_id>200017</functionality_id>  
</dependency>
<dependency order="1" type="optional" subtype="if-then-else">

<functionality_id>200018</functionality_id>
</dependency>
<dependency order="2" type="compulsory">

<functionality_id>200030</functionality_id>
</dependency>

</dependencies>

Part 3: Dependencies



20

Facet Request

Facet specification is sent to a proxy
Functionality, funcID, vendor, version, 
Resource conditions (availability) in client

Memory, processing power, network conditions
The facet specification is changed into XML format and 
sent over SOAP. 

Proxy identifies a suitable facet (or several in a 
group) and sends it to the client

Match the criteria with the shadows of the facets available
Find a facet suitable to run under specified resource 
constraints
The proxy responds to the request by returning the 
matched facet(s) as a MIME attachment to a SOAP 
response.



21

Facet Request
<?xml version="1.0" encoding="UTF-8"?>
<SOAP-ENV:Envelope
xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
<SOAP-ENV:Body> <ns1:GetFacet xmlns:ns1="FacetProxy">

<facet>
<functionality_id>20003</functionality_id>
<vendor>SRG SANG</vendor>

</facet>
<rootfacet>no</rootfacet>
<context>
<user> <identifier>vjwmkwan</identifier></user>
<static_resource> ... </static_resource>
<runtime_resource>... </runtime_resource>

</context>
</ns1:GetFacet></SOAP-ENV:Body> 

</SOAP-ENV:Envelope> 



22

Dynamic Resource Requirement
The proxy compares the resource requirement of facets with the 
resource availability in the client.
Proxy will send a facet whose resource requirement + the 
resource requirements of all its dependencies together is less 
than the resource availability in client.
Consider the dependency types

….
<dynamic>

<input_variables>
<parameter name="m"> 1 </parameter>
<parameter name="n"> 2 </parameter>

</input_variables>
<formula> n^2+5m </formula>

</dynamic>

P Q R

Y
func_ID= Z

i j k s t

A C

m2+3n m+n2 n2+5m

P Q R



23

Discarding a Facet

Every facet is loaded in its own user class 
loaders
If there are no strong references to any of the 
classes loaded by the class loader, the class 
loader can be garbage collected.
If the class loader is collected, then all the 
classes that were loaded by the loader will be 
unloaded from the JVM.



24

Containers
Application-like abstraction

Interacts with the user through the UI
Provides a place to store run-time state
Provides Specifications of the root facets

Root facet specification : the functionalities this 
particular container can offer. 

Root Facet Spec. 1

Root Facet Spec. 2

Root Facet Spec. 3

Root Facet Spec. 4

Root Facet Spec. 5

Application 
Functionalities

Storage 
Area

Pluggable 
UI

Container



25

Container and its root facets

Example
Check Mail Send Message Print Message

Trash Message

Change Font



26

Object-oriented vs. Facet-Based

Centralized in containerDistributed among all 
instantiated objectsRun-time State

Functionality-centricData-centricDriving Principle

Does not store any state 
between 2 invocations.

No persistent state in facets.

Stores some form of state 
during its lifetime.

May contain some persistent 
state.

State and 
Persistence

Only has 1 publicly accessible 
method, which needs to 

follow a contract

Any number of interfaces, with 
any number of public 

methods
Interfaces

Can have more than 1 class1 classGranularity

FacetObjectUnit of 
programming

Facet-Based 
Programming

Object-Oriented 
Programming



27

Sparkle I: Image Viewer

(2) Pop-up Menu

(3) Image rendering

(4) Negative

Find 
Edges

Flip 
Horizontal

Flip 
Vertical

Gif 
Encoder

jpeg 
Encoder

Noise

Gaussian 
Blur

Sharpen Convolver 
3x3

Convolver

PPConvert
ToByte

PPConvert
ToFloat

PPConvert
ToShort

PPConvert
ToByte

PPConvert
ToFloat

PPConvert
ToShort

ShadowsOpen 
image

Convolver
3x3

(1) Image Viewer 

(5) Image Sizing

Developing a real-world application utilizing the facet model

Facet Dependency Graph of 
Image Viewer

root facets



28

Sparkle I: Strong Mobility Support

Core components:
Lightweight Mobile Code 
System (LMCS)
Lightweight Mobile 
Agents (LMA)
Container

Uses JavaGo for source 
code instrumentation 
and achieve 
strongmobility.  (No 
modification of JVM)

Incorporate Code-On-
Demand (COD) and 
State-on-Demand (SOD)

Startup routine & User 
Interface descriptions

Data states shared 
among facets

Execution states

Stack states
Thread states and thread 

managements

Root facets 
specifications

Container

Java Virtual Machine (JVM)

LMA

Plug-in facets 
specifications

Central ManagerLightweight Mobile Code System

Client SystemNetwork / Discovery module Facet Cache



29

State-On-Demand (SOD)
(Execution Adaptation)

Executing a Java program 
at Site A

Site B (Surrogate)

(JVM is a stack machine)
SS00

Java stack 
segmentation 
upon migration 
request

Executing in Java Stack Machine



30

SOD execution dynamics

Site A Site B (Surrogate)

SS00

The frames are chopped into three segments. 
The top segment S0 is first migrated to the 
destination site and executed.



31

SOD execution dynamics

Site A Site B (Surrogate)

SS00

ExecuteExecuteSS11

Method call

Download 
Facet

(Code On 
Demand)



32

SOD execution dynamics

Site ASite A Site BSite B

Return control to JVM at site A

S1 Execution completed !! Return 
control to Site A or Request 
another stack segment  (S1) from 
site A (State On Demand)



33

Sparkle I:
Execution Adaptation with SOD + COD

From proxy

From proxyFrom proxy

Site A

Site B

Site C

Site D

Delay code (Facets) binding after the stack frames migration

(1)

(3)

(2)(2).a

(2).b

(3).a

(3).b



34

SOD Experiment results: 
Bandwidth Saving

Fib and NQueen obtained relatively small bandwidth gain 
(3.64% and 4.22%)
Qsort and NQueen-opt got high bandwidth gain (66.5% and 
51.8%)

51.8%4.22%66.5%3.64%% saved

1636580132183569574655315197(with SOD)

33932825336004101715062327088(without SOD)

40401212# agent hops
NQueen-opt(10)NQueen(10)Qsort(5000)Fib(35)



35

Short Summary on Sparkle I

Main Requirement in Pervasive Computing:
Software must be able to adapt dynamically to 
change and variation

Functionality Adaptation
One of the most versatile adaptation techniques
Makes software very dynamic 

Facet Model & Sparkle System
Illustrates the feasibility of dynamic component 
composition in a  pervasive environment



36

Lessons Learned
VM Support

Some JVMs lack the required GC support for SPARKLE
Connection Speed

Network bandwidth is a problem. 
Need of a suitable data model

At present, assume it is located locally -> inadequate
Need a model defining the location and retrieval of data

New software scenario
Anyone can write facets, and people are free to download 
suitable facet components.
Increases competition between software companies and 
ordinary programmers

UI tightly coupled with hardware
Facet concept can be applied to make it flexible



37

Sparkle I: Theses

Nalini Belaramani (M.Phil, 2000-2002) 
Thesis: A component-based software system with functionality 
adaptation for mobile computing

Yuk Chow, (M.Phil, 2000-2002) 
Thesis: A Lightweight Mobile Code System for Pervasive Computing

Vivien Kwan  (M.Phil, 2000-2002)  
Thesis: An Intelligent Proxy Server System for Pervasive Computing



38

Sparkle II : Semantic Adaptation

Context-aware State Management
To migrate from one environment to another 
environment meeting the context changes 
flexibly and efficiently.
E.g., music playing move from office to 
meeting room

Ontology-based Knowledge Mapping
for basic context awareness



39

Sparkle II : 
Context-aware State Management

F1

F2

F3

State Migration 
(without code)

state state

State Adaptation:
State is transformed!

Facet is downloaded and executed 
when needed

Functionality 
Adaptation: F2 is 
resumed with a different 
facet

Space 1: Outdoors
Space 2: Home

F1

F1

F2

F2F2

F3

F3

F5

F1
x

F1

F2 F2

F1 F1

F2

x
F1

F2 F2

F1 F1

F2



40

Ontology Mapping
Domain ontology

Smart space context, 
resources, activities 
done.
One in each smart 
space

Application ontology
Device configuration, 
application parameters, 
service descriptions

User ontology
User identify, social 
status, user 
preferences

Application
Server A

Application
Server D

Application
Server C

Application
Server B

Smart Space Monitor

Ontology
Mapper

Context
Collector

Device
Coordinator

Database



41

Immigration Office Servers

Smart Space Monitor

new comer

new comer

OK

Ontology 
Mapping

Ontology Mapping
Scenario 1 (Airport Custom)



42

Ontology Mapping
Scenario 2 (Hotel Check-in)

Smart Space Monitor

new comer

Alice’s information

Room details

Ontology
Mapping



43

Ontology Mapping : Evaluation
Average 82.5% accuracy
Accuracy

Twice more than source-based
4% more than instance-based

Efficiency
Much slower than source-based
50% faster than instance-based

Space
Runtime memory usage depends on the size of source 
ontologies and JVM setting
The maximum memory usage in our experiments is 300M bytes

Limitation
Ontology parsing is time-consuming and huge memory 
consumption
Only Jena parser supports most features proposed by OWL



44

Sparkle II : Universal Browser (UB)

The UB targets “browsing whatever you want”. The 
special graphical user interface allows users to 
dynamically retrieve the functionalities they want, such 
as playing games, editing photos etc. 



45

Evaluation
Comparison of latency and data transferred

3933 ms

4038 ms

3837 ms

Migration Latency

Bomberman

Universal Browser

Blackjack

Applications

Findings: The amount of data transferred is 
reduced although the result is not so significant. 
Migration time is acceptable in a WLAN.



46

Evaluation (cont'd)
Time Spent for each migration stage

Findings: 
The bottleneck is at State Acquisition. This is mainly 
due to the heavy I/O.
State Manipulation does not consume so much time 
comparing to other stages



47

Evaluation (cont'd)
Time Spent against No. of Context Rules

Findings:
The time spent becomes steady from 500 rules to 800 
rules.
The time spent increases slowly as the number of 
context rules increases in a large amount.



48

Sparkle II: Contributors

Siu Po Lam (M.Phil, 2002-2004) : 
Thesis: Context-aware State Management for 
Pervasive Computing 

Kong Choi Yu (M.Phil, 2002-2004) : 
Thesis: Effective Partial Ontology Mapping in a 
Pervasive Computing Environment



49

Sparkle III : Smart Instant 
Messenger



50

Pervasive Communication
Anytime, anywhere
“Anything”
In a buddy-like way

Appropriate
Knowing when, where, how

Familiar 
“gd nite & cu tmr”
Use your own dialect

This project looks at the 
potential usage of IM on 
mobile devices in future 
pervasive environments.

Sparkle III:
Smart Instant Messenger

S

S

O

D

P

ODP

P – Person 

D – Device

S – Software 

O – Other entities



51

Pushing IM into PCE
Everything as your buddy and can be communicated using real-
time message exchange
Three main features

Context-aware presence management
Context as presence 
Different buddies see different status

Resource buddy services
extend the concept of “buddies” to all software and 
hardware components in your working space 
IM as the unified communication interface
Buddy understands your dialect

Dynamic grouping
Location-based Grouping (“buddy discovery”)
Activity-based Grouping (“task centric”)



52

Context Modeling: Activity Theory

Subjects—
individual(s) 
in activity

Object/ive—the “problem space,” or the 
“what” in what it is the subjects are 
producing or acting upon through their 
activity.

Instruments (Tools)—cultural 
artifacts (material, symbolic) that 
provide the “means” for 
conducting activity.

Rules—principles, 
expectations, norms, and 

conventions that constrain or 
regulate how an activity is 

carried out

Community—people 
who share the same 
object/ive

Division of labor—
allocation of tasks and 
responsibilities



53

Mobility Support in Sparkle

Java Media Framework
Java package to 
implement media player

Reflection-based state 
capture and restore 
mechanism
Context-aware state 
adaptation

Brevis Migration Manager



54

Brevis Migration Manager

State adaptation
Change the states 
captured before restore

Volume of music playing 
based on activity

Data adaptation
Change the data used by 
application

Data format, size and 
resolution, data 
availability

Cross machine and 
platform adaptation

Migration can across 
different devices

PC to PDA, PDA to PC



55

States capture and restore in Brevis

By Java Reflection technology
Reflect states in dynamically loaded class

Retrieve the state information by reflecting IM
Save and transmit the states

States could be stored in fields
Receive the states and injected into the running 
IM program

States captured and restore
User account information
Chatting information



56

Deployment of SIM

Extend the IM framework and implant context-aware behaviors
Separate context provision from context consumption
Everything’s behind an SIM client
Distributed Servers Architecture

`

Distributed
SIM Server

SIM Server

Smart
Spaces

SIM Client

SIM Client

SIM Client

SIM Client

`

Distributed
SIM Server

SIM Server

Smart
Spaces

SIM Client

SIM Client

SIM Client

SIM Client

(work space 2)(work space 1)



57

Internal Design of SIM

Context-and-computing Services 
Infrastructure Server (CSIS)

Context-Aware Supporting 
Middleware (CASM)

Instant Messenger Interface (Client)

Intelligent 
Resources 

Configuration

Proactive 
notification 

service

Application 
Mobility 

Supporting

Low-level Context data

High level context information

Application layer
(Presence, 
Grouping, 
Resource Buddy)

Middle layer (Context 
modeling, reasoning,  event 
notification decision…)

Sensor and Communication  layer
(Gather context data from various 
sources and provide them in 
various formats…)Sensor Sensor Sensor



58

Hardware of SIM

Location Tracker
RFID Tag and Reader

temperature logger 

Bluetooh
Speaker as Noise 

Detector

WebCAM as Motion/Light 
Detector

GSM/GPRS Modem



59

Performance & Screenshots



60

Main Panel 3. Sound

1.  Reminder

4. Show 
Offline     
buddies

Resource 
buddy2. Unread system

message

Location

Presence



61

IM Feature - Reminder

Criteria:
Time
Location of target 
buddy

Forms of message:
Text Form
Voice Form

rely on Text To 
Speech Technique



62

Dynamic Grouping

Activity-based grouping
Location-based grouping



63

Adaptive display
Same person at different locations 

(Room HW217 HW512)
Resources List 

Changed



64

Adaptive display
Same location with different persons

Show Different 
Resources 
Buddy List 

(Screen display when Jacky and Oneal enter Room CYC407)



65

Performance Evaluation

Memory Usage and Response Time  of the Framew ork
vs

No. of instance

0

5

10

15

20

25

0 300 700 1000 1800
no. of instance

M
em

or
y 

us
ag

e 
(M

B)

3
3.1
3.2
3.3
3.4
3.5
3.6
3.7

R
ep

on
se

 T
im

e 
(s

ec
)

Memory Usage
(MB)

Reponse Time
(sec)



66

Sparkle III: The SIM Team

Research Students
Ms. Xiaolei Zhang (Ph.D)   
Mr. Hauyu Huo (Ph.D) 

2004-2005 FYP students
Law Chun Fai (Terry)
Chan Sung Ming 
Fung Wen Yee, Joanna

2005-2006 FYP students
Wong Wai Yin (O'neal)
Ho Chiu Pun (Peter) 
Mo Kim Tao (Laurance)
Wu Wan Fung (Raymond)
Hor Kar Chu (Laurence)
Ng Kwok Yuen (Jackey) Terry Law (Left) Nadia Zhang

Best Paper Award in GPC2006



67

Short Summary on Sparkle III

Extrapolate IM usage for Pervasive 
Communication

Buddy-like interaction & awareness
Introduce context-aware behaviors into daily 
application
Separate context provision from context 
consumption
Design for extensibility
Prototype for real life usage



68

Conclusion

“Technology that disappears” is hard to 
achieve, but 

A short step could make a great impact

Sentient software is hard to develop, but 
techniques are all there: 

Aspect-oriented programming (AOP), reflection, runtime 
weaving,  and various other adaptation techniques
Context Models : Call for a dynamic approach to context 
modeling: activity theory, situation theory, mental 
models could be useful
How to fit them in ?



69

Sparkle references
C.L. Wang , X.L. Zhang, N. Belaramani, P.L. Siu, Y. Chow, and F.C.M. Lau, Software 
Infrastructure for Context-aware Mobile Computing, to appear in Enabling 
Technologies for Wireless e-Business Applications, Springer.
Francis C.M. Lau , Nalini Belaramani, Vivien W.M. Kwan, Pauline P.L. Siu, W.K. Wing, 
and C.L. Wang, ``Code-on-demand and code adaptation for mobile computing,'' to 
appear in Mobile Middleware, CRC Press, 2005. 
Nalini Moti Belaramani, Yuk Chow, Vivien Wai-Man Kwan, Cho-Li Wang, and Francis 
C.M. Lau, ``A Component-based Software Architecture for Pervasive Computing,'' 
Intelligent Virtual World: Technologies and Applications in Distributed Virtual 
Environments, chapter 10, pp. 191-212, World Scientific Publishing Co., Release: 
07/31/2004.
Wai-Kwong Wing, Francis Chi-Moon Lau, and Cho-Li Wang, "Smart Retrieval and 
Sharing of Information Resources based on Contexts of User-Information 
Relationships", The First International Workshop on Ubiquitous Smart Worlds, 2005
Pauline P. L. Siu, C. L. Wang, and F. C. M. Lau, ``Context-aware State Management 
for Ubiquitous Applications,'' EUC2004. 
Laurel C. Y. Kong, C. L. Wang, and F. C. M. Lau, ``Ontology Mapping in Pervasive 
Computing Environment,'' EUC 2004. 
Yuk Chow, Wenzhang Zhu, Cho-Li Wang, Francis Chi-Moon Lau, ``The State-On-
Demand Execution for Adaptive Component-based Mobile Agent Systems,'' 
ICPADS 2004. 
Vivien Wai-Man Kwan, Francis C.M. Lau, and Cho-Li Wang, "Functionality 
Adaptation: A Context-Aware Service Code Adaptation for Pervasive Computing 
Environments", Web Intelligence 2003.

Project URL: http://www.cs.hku.hk/~clwang/projects/sparkle.html



70

Thanks !!

Acknowledge efforts from 
the Systems Research 
Group


