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Era of PetaFlop Computing

Rank Site Computer/Year Vendor # of cores Linpack (Rmax) Rpeak  (Teraflops/s)

1 Oak Ridge National Laboratory (USA) Jaguar – Cray 2009 Cray Inc 224162 1759 00 2331 00

Top500 Supercomputer List (Nov/2009)

1 Oak Ridge National Laboratory (USA) Jaguar – Cray 2009, Cray Inc. 224162 1759.00 2331.00

2 DOE/NNSA/LANL, USA Roadrunner , 2009 IBM 122400 1042.00 1375.78

3 National Institute for Computational 
Sciences/USA Kraken XT5 2009, Cray Inc. 98928 831.70 1028.85

4 Forschungszentrum Juelich (FZJ)
Germany JUGENE - Blue Gene/P  2009 IBM 294912 825.50 1002.70Germany

5 National SuperComputer Center in 
Tianjin/NUDT China Tianhe-1 天河一号, 2009 NUDT 71680 563.10 1206.19

6 NASA/USA Pleiades - SGI Altix ICE 8200EX,2009 SGI 56320 544.30 673.26

7 DOE/NNSA/LLNL (USA) BlueGene/L/ 2007 IBM 212992 478.20 596.38
8 Argonne National Laboratory, USA Blue Gene/P Solution / 2007 IBM 163840 458.61 557.06

9 Texas Advanced Computing Center,USA Ranger - SunBlade x6420,2008, Sun 
Microsystems 62976 433.20 579.38

10 Sandia National Laboratories,USA Red Sky - Sun Blade x6275, 2009
Sun Microsystems 41616 423.90 487.74

11 DOE/NNSA/LLNL,USA Dawn - Blue Gene/P/ 2009 IBM 147456 415.70 501.35103 kilo    , 56 5 0 50 35

12 Moscow State University, Russia Lomonosov - T-Platforms T-Blade2, 2009 35360 350.10 414.42

13 Forschungszentrum Juelich, Germany JUROPA - Sun Constellation,2009 Bull SA 26304 274.80 308.28

14 KISTI Supercomputing Center South 
K

TachyonII - Sun Blade x6048, 2009, Sun 
Mi 26232 274.80 307.44

103 kilo    
106 mega    
109 giga
1012 tera
1015 peta14 Korea, Microsystems 26232 274.80 307.44
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Top 5 machines achieved PetaFlop computing power

1015 peta
1018 exa



China’s Tianhe-1 Petaflop Computers 
Hybrid structure: 6,144 Intel 
Xeon E5540 CPUs + 5,120 GPUs 
(ATI Radeon HD4870)

5th in TOP500
Peak performance: 1.2 PetaFLOPS
LINPACK score : 563.1 TeraFLOPS

#8 at Top500 Green List 

4
512 Operation Nodes In 20 cabinets512 Operation Nodes In 20 cabinets 2560  Compute  Nodes In 80 cabinets2560  Compute  Nodes In 80 cabinets

Source: Institute of Computer, NUDT

#8 at Top500 Green List 



Petaflop  Supercomputers with >1M cores
10 petaflops league: 

1E+121Eflop/s

10 petaflops league: 
Cray Cascade (2010), 
Fujitsu-RIKEN 
(2011), IBM Sequoia 
(2012), SGI Pleiades 

100 Petaflops system most likely in the 
year 2016

2010: Dawning6000
2011: IBM Blue Waters
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IBM Sequoia (20 petaflops)

A petascale Blue Gene/Q supercomputer : 1 6 million processor 

To be installed at Lawrence 
Livermore National Laboratory
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A petascale Blue Gene/Q supercomputer : 1.6 million processor 
cores divided into 98,304 nodes placed within 96 Racks, record 
the amount of memory installed, equivalent to 1.6 petabytes



Dawning 6000 Petaflop Computer 
Dawning 6000 consists 
of two parts, 

Dawning Nebulae (星云)
GPU l t  5000 bl d  GPU cluster: 5000 blades, 
each contains two six-core 
INTEL 6-core X5650 
2.66GHz processors and one 
NVIDIA C2050 Fermi GPU 

8-core 龙芯 3
NVIDIA C2050 Fermi GPU 
card. QDR Infiniband. Peak : 
3.5 Petaflops. Linpack 1.27 
Petaflops. (2nd in TOP500, 
May 30, 2010) 
Loongson (龙芯) cluster: 
about 5000 blades w/ 8000 
to 10,000 8-core Godson-3B 
processor (under 
development)development)

Located at National 
Supercomputing Shenzhen 
Center (国家超级计算深圳中心)
T t l i t t  800M RMB  台普 电脑 析 年的气象数Total investment: 800M RMB  
(8亿元)
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用一台普通电脑分析30年的气象数据需要
20多年，而使用这台千万亿次超级计算机
只需1小时



New Landscape of Parallel Computer Architecture
Multi-core Architectures

Conventional multicore approach (2, 4, 8 cores) -
manycore technology (hundreds or even thousands of 
cores)cores)
Employs simpler cores running at modestly lower clock 
frequencies

Hardware accelerators 
• FPGA (Cray XD1, SGI RASC), GPU (Tianhe-1, Dawning6000, 

TSUBAME), Cell, ClearSpeed (TSUBAME) and vector 
processors, LINPACK?

Networking:g
RDMA : A one-sided put/get message can be handled 
directly by a network interface with RDMA support
TCP Offload Engine (TOE)
Most systems use either a 4X 10 Gbit/s (SDR), 20 Most systems use either a 4X 10 Gbit/s (SDR), 20 
Gbit/s (DDR) or 40 Gbit/s (QDR) connection.  
End-to-end MPI latency : 1.07 microseconds
10 Gigabit Ethernet go mainstream (fallen to $500 per 
port)port)



From Multi-core to Manycore
Micro-

architecture
Clock Rate

(GHz) Cores Threads 
Per Core Caches

IBM 32KB+32KB Private L1IBM
Power 7 3.00 - 3.14 4-8 4 256KB Private L2

4MB Shared L3

Sun/Oracle
Niagara2 1.2-1.6 4-8 8 8KB+8KB Private L1

4MB Shared L2

Intel
Westmere 1.86 - 2.66 4-8 2

32KB+32KB Private L1
256KB Private L2

12-24 MB Shared L3

Intel
H t 2.00 - 3.40 4 2 32KB+32KB Private L1

2x6MB L2 CacheHarpertown 2.00 3.40 4 2 2x6MB L2 Cache

AMD
Magny-Cours 1.7 - 2.3 12 or 16 1

64KB+64KB Private L1
512KB Private L2
2x6 MB Shared L3

IntelIntel
Single-Chip

Cloud
1.0 48 1

16KB L1 Cache
256KB Private L2 Cache
16KB Msg Buffer per Tile

Intel
Terascale ~ 4 80 1 ? 3KB Instruction +

2KB Data on each Core
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Terascale 80 2KB Data on each Core

Tilera
Tile-GX 1.5 100 1 ? 

32KB+32KB Private L1
256KB L2 Private L2
26MB Distributed L3
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Predictions
Parallelism will explode

Number of cores will 
double every 12-24 
months

Do we put 
enough months

Petaflop (million 
processor) machines will 
be common in HPC by 
2015

enough 
emphasis on 
software?2015

Performance will become a 
software problem

Parallelism and locality are 

software?

Berkeley's Dr. Kathy Yelick 
(director of NERSC) : Parallelism and locality are 

key
Concurrency is the next 
major revolution in how 
we write software

( )

No. Unfortunately, the race 
for each major 
performance milestone  we write software

A new programming model 
will emerge for petaflop 
computing

performance milestone, 
has resulted in a de-
emphasis on software. 

p g

Source: The Software Challenges of 
Petascale Computing



Parallel Programming
Most parallel programs are written using:

Message passing
• Examples: CM5’s CMMD  PVM  IBM’s MPL  • Examples: CM5 s CMMD, PVM, IBM s MPL, 
• Current standard: MPI (MPICH-1, MPICH-2, 

LAM/MPI..
• Usually used for scientific applications with • Usually used for scientific applications with 

C++/Fortran, or Java (JavaMPI, G-JavaMPI)
• Scales easily: user controlled data layout
• Hard to use:  send/receive matching, message a d to use se d/ ece e atc g, essage

packing/unpacking
Shared memory

• Examples: OpenMP, pthreads, Javap p , p ,
• Usually for non-scientific applications
• Easier to program: direct reads and writes to 

shared data
• Hard to scale:  (mostly) limited to SMPs, no 

concept of locality



Optimizing is Hard ! 
Tianhe-1 Experience: Scaling LINPACK 
performance from 20% to 70% of each 
CPU GPU iCPU-GPU pair

Huge Human Effortg

13Source: Dr.  Chunyuan Zhang, Dr.  Chunyuan Zhang, National University of Defense TechnologyNational University of Defense Technology



Parallel Programming environments since the 90’s
Do you like to design another ONE ?
ABCPL
ACE 
ACT++ 
Active messages 
Adl
Adsmith
ADDAP

CORRELATE 
CPS 
CRL
CSP
Cthreads 
CUMULVS
DAGGER

GLU
GUARD
HAsL.
Haskell 
HPC++
JAVAR.
HORUS

Mentat
Legion
Meta Chaos 
Midway
Millipede
CparPar
Mirage

Parafrase2 
Paralation 
Parallel-C++ 
Parallaxis
ParC 
ParLib++
ParLin

pC++ 
SCHEDULE
SciTL 
POET 
SDDA.
SHMEM 
SIMPLEADDAP

AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba 
ARTS

DAGGER
DAPPLE 
Data Parallel C 
DC++ 
DCE++ 
DDD
DICE.
DIPC 

HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE 
Java RMI
javaPG

Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++

ParLin
Parmacs
Parti
pC
pC++
PCN
PCP: 
PH

SIMPLE
Sina 
SISAL.
distributed 
smalltalk 
SMI.
SONiC
Split-C.

Athapascan-0b
Aurora
Automap
bb_threads 
Blaze
BSP
BlockComm 

DOLIB
DOME 
DOSMOS.
DRL
DSM-Threads
Ease .
ECO

j
JavaSpace
JIDL
Joyce
Khoros
Karma 
KOAN/Fortran-S
LAM

Munin
Nano-Threads
NESL
NetClasses++ 
Nexus
Nimrod
NOW

PEACE
PCU
PET
PETSc
PENNY
Phosphorus 
POET.

p
SR
Sthreads 
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal Let me add C*. 

"C* in C 
C** 
CarlOS
Cashmere
C4
CC++ 

Eiffel 
Eilean 
Emerald 
EPL 
Excalibur
Express
Falcon

Lilac 
Linda
JADA 
WWWinda
ISETL-Linda 
ParLin 
Eilean 

Objective 
Linda
Occam
Omega
OpenMP
Orca
OOF90

Polaris 
POOMA
POOL-T
PRESTO
P-RIO 
Prospero
Proteus 

TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++ 
UNITY 
UC 

Let me add 
one more?

Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran 
C

Filaments
FM
FLASH
The FORCE 
Fork
Fortran-M
FX
GA 

P4-Linda
Glenda 
POSYBL
Objective-Linda
LiPS
Locust
Lparx
L id

P++
P3L
p4-Linda
Pablo
PADE
PADRE 
Panda 
P  

QPC++ 
PVM
PSI
PSDM
Quake
Quark
Quick Threads
S

V 
ViC* 
Visifold V-NUS 
VPE
Win32 threads 
WinPar 
WWWinda 
XENOOPS  Converse

Code
COOL

GA 
GAMMA 
Glenda

Lucid
Maisie 
Manifold

Papers 
AFAPI.
Para++
Paradigm

Sage++
SCANDAL
SAM

XENOOPS  
XPC
Zounds
ZPL

Source: John Urbanic, Pittsburgh Supercomputing Center



The Software challenges of  Petaflop computing

New algorithmic approaches to increase the levels of 
concurrency on the order of 108

Developing effective methodologies for assessing Developing effective methodologies for assessing 
and exploiting data locality (high cache hit rates) in 
the deep memory hierarchies
Hide latency by utilizing low-level parallelism (e.g., de a e cy y u g o e e pa a e s (e g ,
prefetch queues and multithreading)
Design algorithms and implementations that permit 
easy recovery from system failuresy y y
Performance monitoring facilities (accurate timers and 
operation counters, out-of-cache loads and stores) and 
dynamic load balancing
Accuracy and stability of numerical methods: formal 
methods to certify the correctness of petaflops algorithms 
and hardware logic designs
N  l  d t t  ( lt ti  t  HPF  New languages and constructs (alternatives to HPF, 
OpenMP, MPI,..) ??
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Programmability in HPC
R l t h  i  th  l t Relevant research area in the last years

Growing interest on easier programming

HPCS project (DARPA)HPCS project (DARPA)
High-performance High-Productivity Programming
New languages that focus on programmability (IBM 
X10, Cray CHAPEL, Sun Fortress)X10, Cray CHAPEL, Sun Fortress)

PGAS (Partitioned Global Address Space): 
Target global address space, multithreading platforms
Aim for high levels of scalabilityAim for high levels of scalability
Research languages : 

• Co-Array Fortran (CAF) 
Unified Pa allel C (UPC) • Unified Parallel C (UPC) 

• Titanium (Java)

16



Features of PGAS Languages 
Explicitly-parallel programming model with SPMD 
parallelism

Fixed at program start-up, typically 1 thread per 
processor

Global address space model of memory
Allows programmer to directly represent distributed 
d t  t tdata structures
Can access local and remote data with same 
mechanisms

Add ess space is logicall  pa titionedAddress space is logically partitioned
Local vs. remote memory (two-level hierarchy) –
handled by users

Programmer control over performance critical Programmer control over performance critical 
decisions (** burden to users **)

Data layout and communication 
Base languages differ: Co Array Fortran (CAF)

17

Base languages differ: Co-Array Fortran (CAF)
Unified Parallel C (UPC), Titanium (Java)

Source: Yelick’s (UCB) CS267 Lecture 



Global Address Space Eases Programming
Th d Th d Th d

Sharedal
 

es
s 

ce
X[0] X[1] X[P]

Thread0 Thread1 Threadn

Shared

G
lo

b
ad

dr
e

sp
ac

Private
ptr: ptr: ptr: 

The languages share the global address space abstraction
Shared memory is partitioned by processors
R t    t  t   t ti  Remote memory may stay remote: no automatic 
caching implied
One-sided communication through reads/writes of 
shared variables
Both individual and bulk memory copies 

Differ on details
Some models have a separate private memory area

18

Distributed array generality and how they are 
constructed

Source: Yelick’s (UCB) CS267 Lecture 



Programmer Productivity?
Languages (or language technologies) that solve 
real problems can succeed [Todd A. Proebsting, 
Microsoft Research, 2002]:

Even if slowEven if slow
Even with simple types
Even without academic significance (no papers?)
Even without rocket scienceEven without rocket science
If useful

Programmer Productivity: 
Write programs correctly (50% of crashes caused by Write programs correctly (50% of crashes caused by 
1% of bugs)
Write programs quickly
Write programs easilyp g y

Why?
Decreases support cost
Decreases development cost

19

Decreases time to market/solution
Increases satisfaction



But … .. “New Language Fear”
Long-Live Language Needed: 

Large-scale codes: portability is top 
priority. 
L l  d  lif ti   10 t  30 Large-scale codes lifetimes : 10 to 30 
years. 
High-performance computers : 3-5 years 
between generations .between generations .
They can't risk spending 5-10 years 
writing their code in a new language only 
to find that the new language didn't gain 
general acceptance and support  general acceptance and support. 

Fear of learning new language: 
Some people say that “if there's a lot of 
pain involved, they won't switch to a new p , y
programming language.” 

How can you motivate people to migrate 
to a more efficient new language? Or do g g
they have to ?



Why Java for HPC ?
Good programmability for 
potential HPC

Expressive grammar: simplified 
C++
Concurrent language: 
multithreading support at language 
level (Portable way of parallel 
programming)p g g)
Platform independence: bytecode 
(write once, run everywhere !)
Runtime: GC, safety checking, etc.
Libraries: a huge increasing list

“Java as the first language”
Libraries: a huge increasing list
Deliver 65%-90% of performance 
of the best Fortran programs; 
compete with C++: 
J b d t  l   X10 Java-based next-gen languages : X10 
(IBM), Titanium, Fortress (Sun)

Easy to learn.
Write Java programs quicklyp g q y
Write Java programs easily
Less bugs (?) 

21



Our Approach
Distributed Java 
Virtual Machine

Single system image (SSI) 
illusion to threads of a Java 

program

JVM JVM JVM

OS
H d

OS
H d

OS

22High-Speed Network

Hardware Hardware Hardware



Distributed Java Virtual Machine
class worker extends Thread {

private long n;
public worker(long N) { n = N; }
public void run() { long sum= 0;

Multithreaded Java application

DJVM hides the physical 
boundaries between machinespublic void run() { long sum= 0; 

for(long i = 0; i < n; i++) sum += i;
System.out.println(”Sum = “ + sum);}

}
public class test { static final int N=100;

boundaries between machines
Support thread migration

public static void main(String args[]) {
worker[] w= new worker[N];
Random r = new Random();

for (int i=0; i<N; i++)for (int i 0; i N; i ) 
w[i] = new worker(r.nextLong());

for (int i=0; i<N; i++)  w[i].start();
try{ for (int i=0; i<N; i++) w[i].join();}
catch (Exception e){}}
}

JVMJVMJVMJVM Distributed Java Virtual Machine
}

OS

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

Network

programmer
Java thread



History and Roadmap of JESSICA 
ProjectProjectJESSICA V1.0 (1996-1999)

Execution mode: Interpreter Mode
JVM kernel modification (Kaffe JVM)
Global Heap: built on top of TreadMarks
(Lazy Release Consistency + homeless)

JESSICA V2.0 (2000-2006)
Execution mode: JIT-Compiler Mode Past MembersExecution mode: JIT-Compiler Mode 
(full speed)
JVM kernel modification (Kaffe JVM)
Lazy Release Consistency + migrating-
home protocol

JESSICA V3.0 (2008~2010?)
Built above JVM (JVMTI)
Support Large Object Space 

King Tin LAM, Chenggang Zhang 

Support Large Object Space 
For any JVM. Run @ full speed of the 
underlying JVM.

JESSICA v.4 (2009~)( )
Software transactional memory model
Multicore/GPU cluster

24

Ricky MaKinson Chan 

Current Members



JESSICA Distributed Java VM Java

Enabled

Single

Portable Java Frames

A cluster-wide JVM with
Dynamic thread mobility in JIT mode
Global Object Space (GOS)

System

Image

Computing

A

Thread Thread Thread

Remote Class Loading

Thread MigrationSource
Code Compiler

Java
Compiler

Class
Files

Architecture

Thread 3

Java 
Method Area

Thread 2

Thread 1

Class
Loader

Thread 
Scheduler

Thread 3

Java 
Method Area

Thread 2

Thread 1

Class
Loader

Load 
Monitor
Daemon

Thread 
Scheduler

Thread 3

Java 
Method Area

Thread 2

Thread 1

Class
Loader

Load 
Monitor
Daemon

Thread 
Scheduler

Load 
Monitor
Daemon

Method AreaPC

Execution
Engine

Registers

Stack 
Frames

Method AreaPCRegisters Method AreaPC

Execution
Engine

Registers

Stack 
Frames

Execution
Engine

Stack 
Frames

Local HeapLocal HeapLocal Heap

Master JVM

Heap
(Global Object Space)

object
object

object
object

Host Manager Worker JVM Host Manager Worker JVM Host Manager
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OS
Hardware

OS
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Problem 1: Memory Consistency 
T2
Read a
a=a+2
Write a 
R d b

Read a
a=a+2
Write a
R d b

T5

Read b
b=b+2
Write b
R d 

T6

Read b
b=b+2
Write b
R d 

T4

JVM

Per-Thread working 
memory

Main memory

Object Variable

T2 T4 T6 T8T1 T3 T5 T7

Read b Read b Read aRead aJVM JVM
y

Heap Heap
a=1

b 1

a=1

b=1

b 1

HW
OS

HW
OS

HW
OS

HW
OS

Heap Heap b=1 b=1a=1

High Speed Network

HW HW HWHW
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When a write becomes visible to another thread ? How ? 



Solution: Global Object Space (GOS)

Per-object granularity, no false sharing
Home-based Lazy Release Consistency (HLRC)

Home-based variant of LRC: always fetch latest Home based variant of LRC: always fetch latest 
object/page from its home
No traffic if object unchanged
Object home migration: better localityj g y

Connectivity-based object prefetching: more 
accurate

Shared heap Shared heap

A

Shared heap

A

Shared heap

Thread A Thread B
A

Thread A Thread B
A

27
Source node Source node Source node



Problem 2: Thread migration under JITC Mode
j  Xjit javacjava -Xjit

JVM Viewx86 machine Programmer View

a*b

a/bJIT Compiler mode execution makes things complex
Native code has no clear bytecode boundary
How to deal with machine registers?g
How to organize the stack frames?
How to make extracted thread states 
recognizable by the remote JVM? 



Thread Migration in JIT Compiler Mode 

Thread
Frames

GOS
(local heap)

Frame parsing
Restore execution

Frames

(3)

Method Area

Migration 
Manager GOS

(local heap)

Frames
Frames (4a) Object Access

PC

Frame

F

Stack analysis
Stack capturing(2)

Thread Scheduler

(1) Alert

JVM Frame

Source node

Method Area

(4b) Load method  
from NFS

PC

Destination nodeLoad
Monitor 

On-stack scanning

Java frame

Native thread stack

C frame
Frame



Thread Migration in JIT Compiler Mode

Dynamic Native Code Instrumentation
Migration points selectiong p

• Delayed to the head of  loop basic block or method 

Register context handler
• Spill dirty registers at migration point without 

invalidation so that native codes can continue the use 
of registers

• Use register recovering stub at restoring phase

Variable type deduction
• Spill type in stacks using compression• Spill type in stacks using compression

Java frames linking
• Discover consecutive Java framesDiscover consecutive Java frames

30



Problem 3: Improve Locality
Remote memory access is the scalability killer!
Remote >> local latency (assume in 50-60ns)

Infiniband cluster (1-2μs): 20 x slower!Infiniband cluster (1 2μs): 20 x slower!
Ethernet cluster (100μs): 2,000 x slower!!
Grid/Internet (av. 500ms): 10,000,000 x slower!!!

"To speed up" ≈ "Reduce as much remote 
access as possible"
"To speed up" ≈ "Reduce as much remote 
access as possible"access as possible
The key is to improve locality
access as possible
The key is to improve locality

31



Solution: Profile-Guided PGAS (PG2AS)
Profile-Guided PGAS (PG2AS)

A built-in runtime profiler instead of humans for 
digging out the locality hints

Profile-guided adaptive locality 
management

Thread migrationg
Object home migration
Object prefetching

Challenges: Challenges: 
How does the runtime know which threads to migrate 
can make the most locality benefit?
Difficult to decide if no global inter-thread sharing Difficult to decide if no global inter-thread sharing 
information

Solution: Track sharing % threads
T1 accesses O1  O3  O5  

32

T1 accesses O1, O3, O5, …
T2 accesses O1, O2, O3, …
Sharing % T1 & T2: O1, O3 
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PG-JESSICA: Profile-Guided Version
Access profiler: track object access over heap to 
deduce inter-thread sharing -> thread-thread relation
Stack profiler: track the set of frequent objects 
accessed by each thread > thread migration cost

Portable Java Frames

accessed by each thread -> thread migration cost
Correlation analyzer: profile-guided decisions on 
dynamic thread migration -> global locality 
improvement

Thread 
Scheduler

Stack

Worker JVM 1

Thread 
Scheduler

Migration 
Engine

Stack

Worker JVM 2

Thread 
Scheduler

Migration 
Engine

Stack

Worker JVM 3

Global Load 
Balancer

(Simplified View)
Master JVM

mig in/out mig in/out mig in/out

Portable Java Frames

Migration 
Engine

Migration 
Requests

improvement

Thread Space

…

Stack 
Profiler

Access 

Stack

Thread Space

…

Stack 
Profiler

Access 

Stack

Thread Space

…

Stack 
Profiler

Access 

StackBalancer

Correlation 
Map

Correlation 
Analyzer

Host Manager

Local Heap

Correlation 
Collector

Profiler

Host Manager

Local Heap

Correlation 
Collector

Profiler

Host Manager

Local Heap

Correlation 
Collector

Profiler

Host Manager

y
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Thread Correlation Map (TCM)
Thitik l d K l h  D CVM (1999)Thitikamol and Keleher; D-CVM (1999)

Proposed “Active Correlation Tracking” (Page)
Thread Correlation Map (TCM): a 2D histogram of 
shared data volume between each pair of threadsshared data volume between each pair of threads.

• Grayscale(x,y) = sharing amount of thread x and y
• TCM(1,1) = TCM(2,2) = TCM(3,3) = … = 0

32
31
30 Challenge: Given M 

objects shared by N 
threads, TCM 
b ld k ( 2)

…

building take O(MN2)
time.  M can grow 
into a scalability 
bottleneck in the 

d 1
node 2
node 3

4
3

bottleneck in the 
system.
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Water-Spatial (32 threads placed on 8 nodes)



“Sticky Set”
Sticky Set (SS) : a 
subset of working set of 
a thread  includes only a thread, includes only 
those frequently used 
objects.j

“Sticky” : if the thread is 
migrated, objects in SS are 
more likely to be fetched more likely to be fetched 
again. 
SS should be detected and 
moved along with the moved along with the 
thread to save most object 
misses after migration.
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Summary of Our Solution
What we want to do:
1. Model thread sharing (inter-thread correlation)
2 Model indirect thread migration cost2. Model indirect thread migration cost

Profiling results:
1. Thread Correlation Map (TCM)
2. Per-thread Sticky Set (SS)

Use both to design new migration policy
Correlation dri en1. Correlation-driven

2. Cost-aware

How we profile them efficiently?p y
1. Adaptive object sampling TCM
2. Adaptive stack sampling SS
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Details : King Tin Lam, Yang Luo, Cho-Li Wang, "Adaptive Sampling-Based Profiling Techniques for Optimizing 
the Distributed  JVM Runtime," 24th IEEE International Parallel and Distributed Processing Symposium 
(IPDPS2010), April 19-23, ATLANTA, USA



Adaptive Object Sampling (AOS)
E h bj t h   "  b “  i  Each object has a "sequence number“, unique 
among objects within the same class.
Sample the object if sequence # is divisible by the 

t " li  “ ( l t d d h d t current "sampling gap“ (selected and changed at 
runtime to strike a balance of cost and accuracy)
Sampling rate:

1X = sample 1 object per page of heap
1024X means "full sampling“
For a class of size s, sampling at rate nX, sampling 
gap  S / (s n)  he e S is the page si e ( s all  gap = Sp / (s×n), where Sp is the page size (usually 
4KB).

38



Stack Invariants
JVM is a “stack machine”

Stack variables can be hint of constantly 
accessed objects
Stack invariants : Those references 
constantly stay in the stack across constantly stay in the stack across 
snapshots taken. Good hints of SS.
Usually stack invariants are the entry 
points of SS and important data 
structures like Hashmap, TreeMap, 
Linked ListLinked List
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Stack Invariants (Cont’)

Sticky setInvariant
references Size 

……estimated via 
object 

samplingsampling

Sampled objects

Key:

Stack

Objects referenced 
invariantly by stack

Unsampled objectsp j

Adaptive Stack Sampling: Adjustable timer controlling 
which period of time to do stack sampling. Stack frame 

40

which period of time to do stack sampling. Stack frame 
added with “visited” flag. If not touched across two sampling 
rounds, no need to sample it.



Outline

1 Era of Petaflop Computing1

2 PGAS Programing Language2

3

PGAS Programing Language

Distributed Java Virtual Machine

4 Profile-guided locality management

5 Performance Evaluation
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Testing Environment: HKU Gideon-II Cluster

240 SMP blade servers 
(19.43 TFlop/s)

Expected to grow to 25+ 
TFlop/s upon Phase 2’s SRG GbE l t SRG

Computer Science
(Systems Research Group)

op/s upo ase s
completion in late 2010.

Node configuration : 
Dell PowerEdge R610/M610

2 x Intel Nehalem-based 

SRG-GbE cluster
64 blades (32 GB 1066MHz DDR3 RAM)

SRG
Gate-keepers
(PowerEdge 
R610 x 4)

2 x Intel Nehalem based 
Quad-core Xeon 2.53GHz
32 GB 1066MHz DDR3 
RAM and SAS disks

Networking: Brocade FastIron

SRG NFS
server

Blade Network 
G8142

24-port 10GbE
Switch

Networking: 
4X DDR Infiniband  (20 
Gbit/s): 80 nodes (not 
used)
Gigabit Ethernet (1 

Brocade FastIron 
SuperX 108-port 
Gigabit Switch

SRG IB cluster

Backup
server

IB switch
Gigabit Ethernet (1 
Gbit/s): 160 nodes
OS: RedHat Enterprise 
Linux, Scientific Linux, 
Fedora Linux.

SRG IB cluster
(48 1U IB nodes + Qlogic Silverstorm 9040 48-port DDR 

switch)

Production run in 
September, 2009

A system-wide management sub-system



Speedup of JAVA applications on JESSICA2

15.51 

10.637 

11.92 

10.161 



Ray Tracing on JESSICA2 (64 PCs)

See Demo Video

64 nodes: 108 seconds

1 node: 4402 seconds ( 1 2 hour)1 node: 4402 seconds ( 1.2 hour)

Speedup = 40.75
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Dynamic Native Code Instrumentation

Benchmarks Time (seconds) Space(native code/bytecode)

Time and space Overhead Analysis
Benchmarks Time (seconds) Space(native code/bytecode)

No migration Migration No migration Migration
compress 11.31 11.39(+0.71%) 6.89 7.58(+10.01%)
jess 30.48 30.96(+1.57%) 6.82 8.34(+22.29%)
raytrace 24.47 24.68(+0.86%) 7.47 8.49(+13.65%)
db 35.49 36.69(+3.38%) 7.01 7.63(+8.84%)
javac 38.66 40.96(+5.95%) 6.74 8.72(+29.38%)
mpegaudio 28.07 29.28(+4.31%) 7.97 8.53(+7.03%)
mtrt 24 91 25 05(+0 56%) 7 47 8 49(+13 65%)mtrt 24.91 25.05(+0.56%) 7.47 8.49(+13.65%)
jack 37.78 37.90(+0.32%) 6.95 8.38(+20.58%)
Average (+2.21%) (+15.68%)
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Thread migration for irregular 
applications (1)  TSPapplications (1) : TSP

TSP execution tim e distribution TSP m achine execution tim e distribution(stdev:281,720)
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Initial placement

8 nodes  16 threads  TSP 13 cities  (object sharing: shortest path)

0

1 4 7 10 13 16

Thread
Workload Node

p

Thread migration

8 nodes, 16 threads, TSP 13 cities, (object sharing: shortest path)

Initial placement Thread migration (5 times)

Time (sec) 1203.10 793.317 (–33.6%)
Stdev 438,444.1 152,463.1

(Gideon-I)



Stack Profiling Overhead
Timer-based control of stack sampling 
phases saves over half of overheads
L  t ti    t  1/3 h dLazy extraction saves up to 1/3 overheads

+ Stack Sampling Overhead + Sticky-set Footprinting Overhead

Bench
mark

Data
Set
Size

Baseline
Exe

Time

+ Stack Sampling Overhead + Sticky set Footprinting Overhead
+ Sticky-

set
Resolution
Overhead

Immediate 
Extraction Lazy Extraction Nonstop Timer-based (100ms)

4ms 16ms 4ms 16ms 4X Full 4X Full

SOR 1K×1K 6201 6216
(0.24%)

6207
(0.10%)

6211
(0.17%)

6206
(0.08%)

6714
(8.28%)

6707
(8.17%)

6519
(5.13%)

6480
(4.50%)

6639
(1.85%)

Barnes
-Hut 4K 93857 94947

(1.16%)
94657

(0.85%)
94697

(0.89%)
95209

(1.44%)
98968

(5.45%)
102190
(8.88%)

93649
(-0.22%)

102334
(9.03%)

97585
(4.20%)

Water-
Spatial 512 59105 59232

(0.21%)
59161

(0.09%)
59209

(0.17%)
59124

(0.03%)
59834

(1.23%)
61985

(4.87%)
59501

(0.67%)
60313

(2.04%)
60002

(0.84%)
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Accuracy of AOS (Cont’)
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Profile-Guided Thread Migration
We assess this using a CRM application “Customer 
Analytics“ with dynamic change in sharing patterns.

T1 T4 T7

D t  D t  D t  

w w w
Epoch 1

Data 
segment 1

Data 
segment 2

Data 
segment 3 …

r r r r r r
T2 T3 T5 T6 T8 T9
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Effect of Profile-Guided Thread Migration
We assess this using a CRM application “Customer 
Analytics“ with dynamic change in sharing patterns.

T1 T4 T7

Data Data Data 

w w w
Epoch 2

Data 
segment 1

Data 
segment 2

Data 
segment 3 …

r
r r r r r

T2 T3 T5 T6 T8 T9
r r r r
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Effect of Profile-Guided Thread Migration
Without thread migration, locality is not preserved (out of 
red boxes denoting node boundaries) as time goes by.

h1 h2 h3 h4epoch1 epoch2 epoch3 epoch4
T2,T3

epoch5 epoch6 epoch7 epoch8
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Effect of Profile-Guided Thread Migration
With correlation-driven thread migration

epoch1 epoch2 epoch3 epoch4
T2,T3 migrated to node 2 T2,T3 migrated to node 3

epoch1 epoch2 epoch3 epoch4

epoch5 epoch6 epoch7 epoch8
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Performance Gain
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Conclusion
Distributed Java Virtual Machine can 
provide a high-performance platform for 
running multithreaded Java applications on running multithreaded Java applications on 
clusters
Java thread migration helps to improve the 
performance  flexibility  and scalability of performance, flexibility, and scalability of 
DJVM
A couple of advanced profiling strategies
for optimizing localityfor optimizing locality

Adaptive object sampling
Online stack sampling

Towards PGAS Parallel Programming Towards PGAS Parallel Programming –– why why 
not JESSICA  (“Easynot JESSICA  (“Easy--toto--use”) use”) 
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JESSICA Launched to CNGrid HKU Portal

China National Grid
香港大学网格节点香港大学网格节点
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Thanks!

For more information:

JESSICA2 Project
http://www.cs.hku.hk/~clwang/projects/JESSICA2.html

C.L. Wang’s webpage: 
http://www.cs.hku.hk/~clwang/
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