
Towards EasyTowards Easy--toto--use PGAS use PGAS
Parallel Programming Parallel Programming Parallel Programming Parallel Programming ––

The Distributed JVM ApproachThe Distributed JVM Approach

Cho‐Li Wang (王卓立)
香港大學

1

The University of Hong Kong (香港大學)

CSO’10, Huangsan, China

Outline

1 Era of Petaflop Computing1

2 PGAS Programing Language2

3

PGAS Programing Language

Distributed Java Virtual Machine

4 Profile-guided locality management

5 Performance Evaluation

2 2

Era of PetaFlop Computing

Rank Site Computer/Year Vendor # of cores Linpack (Rmax) Rpeak (Teraflops/s)

1 Oak Ridge National Laboratory (USA) Jaguar – Cray 2009 Cray Inc 224162 1759 00 2331 00

Top500 Supercomputer List (Nov/2009)

1 Oak Ridge National Laboratory (USA) Jaguar – Cray 2009, Cray Inc. 224162 1759.00 2331.00

2 DOE/NNSA/LANL, USA Roadrunner , 2009 IBM 122400 1042.00 1375.78

3 National Institute for Computational
Sciences/USA Kraken XT5 2009, Cray Inc. 98928 831.70 1028.85

4 Forschungszentrum Juelich (FZJ)
Germany JUGENE - Blue Gene/P 2009 IBM 294912 825.50 1002.70Germany

5 National SuperComputer Center in
Tianjin/NUDT China Tianhe-1 天河一号, 2009 NUDT 71680 563.10 1206.19

6 NASA/USA Pleiades - SGI Altix ICE 8200EX,2009 SGI 56320 544.30 673.26

7 DOE/NNSA/LLNL (USA) BlueGene/L/ 2007 IBM 212992 478.20 596.38
8 Argonne National Laboratory, USA Blue Gene/P Solution / 2007 IBM 163840 458.61 557.06

9 Texas Advanced Computing Center,USA Ranger - SunBlade x6420,2008, Sun
Microsystems 62976 433.20 579.38

10 Sandia National Laboratories,USA Red Sky - Sun Blade x6275, 2009
Sun Microsystems 41616 423.90 487.74

11 DOE/NNSA/LLNL,USA Dawn - Blue Gene/P/ 2009 IBM 147456 415.70 501.35103 kilo , 56 5 0 50 35

12 Moscow State University, Russia Lomonosov - T-Platforms T-Blade2, 2009 35360 350.10 414.42

13 Forschungszentrum Juelich, Germany JUROPA - Sun Constellation,2009 Bull SA 26304 274.80 308.28

14 KISTI Supercomputing Center South
K

TachyonII - Sun Blade x6048, 2009, Sun
Mi 26232 274.80 307.44

103 kilo
106 mega
109 giga
1012 tera
1015 peta14 Korea, Microsystems 26232 274.80 307.44

3
Top 5 machines achieved PetaFlop computing power

1015 peta
1018 exa

China’s Tianhe-1 Petaflop Computers
Hybrid structure: 6,144 Intel
Xeon E5540 CPUs + 5,120 GPUs
(ATI Radeon HD4870)

5th in TOP500
Peak performance: 1.2 PetaFLOPS
LINPACK score : 563.1 TeraFLOPS

#8 at Top500 Green List

4
512 Operation Nodes In 20 cabinets512 Operation Nodes In 20 cabinets 2560 Compute Nodes In 80 cabinets2560 Compute Nodes In 80 cabinets

Source: Institute of Computer, NUDT

#8 at Top500 Green List

Petaflop Supercomputers with >1M cores
10 petaflops league:

1E+121Eflop/s

10 petaflops league:
Cray Cascade (2010),
Fujitsu-RIKEN
(2011), IBM Sequoia
(2012), SGI Pleiades

100 Petaflops system most likely in the
year 2016

2010: Dawning6000
2011: IBM Blue Waters

1E+10

1E+11

p/

100 Pflop/s

10 Pflop/s 06/2008 :

(2012)
2009: Jaguar (Cray), Kraken

XT5, JUGENE, Tianhe-1

2011: IBM Blue Waters

1E+08

1E+09

SUM

1 Pflop/s

100 Tflop/s

Roadrunner break the
petaflop barrier

(1.026 petaflop/s)

1E+06

1E+07
SUM
#1
#500

10 Tflops/s

1 Tflop/s

100 Gflop/s
6-8 years

1000

10000

100000100 Gflop/s

10 Gflop/s

1 Gflop/s

from top500.org

100

1993 1996 1999 2002 2005 2008 2011 2014

1 Gflop/s

10 MFlop/s

IBM Sequoia (20 petaflops)

A petascale Blue Gene/Q supercomputer : 1 6 million processor

To be installed at Lawrence
Livermore National Laboratory

6

A petascale Blue Gene/Q supercomputer : 1.6 million processor
cores divided into 98,304 nodes placed within 96 Racks, record
the amount of memory installed, equivalent to 1.6 petabytes

Dawning 6000 Petaflop Computer
Dawning 6000 consists
of two parts,

Dawning Nebulae (星云)
GPU l t 5000 bl d GPU cluster: 5000 blades,
each contains two six-core
INTEL 6-core X5650
2.66GHz processors and one
NVIDIA C2050 Fermi GPU

8-core 龙芯 3
NVIDIA C2050 Fermi GPU
card. QDR Infiniband. Peak :
3.5 Petaflops. Linpack 1.27
Petaflops. (2nd in TOP500,
May 30, 2010)
Loongson (龙芯) cluster:
about 5000 blades w/ 8000
to 10,000 8-core Godson-3B
processor (under
development)development)

Located at National
Supercomputing Shenzhen
Center (国家超级计算深圳中心)
T t l i t t 800M RMB 台普 电脑 析 年的气象数Total investment: 800M RMB
(8亿元)

7

用一台普通电脑分析30年的气象数据需要
20多年，而使用这台千万亿次超级计算机
只需1小时

New Landscape of Parallel Computer Architecture
Multi-core Architectures

Conventional multicore approach (2, 4, 8 cores) -
manycore technology (hundreds or even thousands of
cores)cores)
Employs simpler cores running at modestly lower clock
frequencies

Hardware accelerators
• FPGA (Cray XD1, SGI RASC), GPU (Tianhe-1, Dawning6000,

TSUBAME), Cell, ClearSpeed (TSUBAME) and vector
processors, LINPACK?

Networking:g
RDMA : A one-sided put/get message can be handled
directly by a network interface with RDMA support
TCP Offload Engine (TOE)
Most systems use either a 4X 10 Gbit/s (SDR), 20 Most systems use either a 4X 10 Gbit/s (SDR), 20
Gbit/s (DDR) or 40 Gbit/s (QDR) connection.
End-to-end MPI latency : 1.07 microseconds
10 Gigabit Ethernet go mainstream (fallen to $500 per
port)port)

From Multi-core to Manycore
Micro-

architecture
Clock Rate

(GHz) Cores Threads
Per Core Caches

IBM 32KB+32KB Private L1IBM
Power 7 3.00 - 3.14 4-8 4 256KB Private L2

4MB Shared L3

Sun/Oracle
Niagara2 1.2-1.6 4-8 8 8KB+8KB Private L1

4MB Shared L2

Intel
Westmere 1.86 - 2.66 4-8 2

32KB+32KB Private L1
256KB Private L2

12-24 MB Shared L3

Intel
H t 2.00 - 3.40 4 2 32KB+32KB Private L1

2x6MB L2 CacheHarpertown 2.00 3.40 4 2 2x6MB L2 Cache

AMD
Magny-Cours 1.7 - 2.3 12 or 16 1

64KB+64KB Private L1
512KB Private L2
2x6 MB Shared L3

IntelIntel
Single-Chip

Cloud
1.0 48 1

16KB L1 Cache
256KB Private L2 Cache
16KB Msg Buffer per Tile

Intel
Terascale ~ 4 80 1 ? 3KB Instruction +

2KB Data on each Core

9

Terascale 80 2KB Data on each Core

Tilera
Tile-GX 1.5 100 1 ?

32KB+32KB Private L1
256KB L2 Private L2
26MB Distributed L3

Outline

1 Era of Petaflop Computing1

2 PGAS Programing Language2

3

PGAS Programing Language

Distributed Java Virtual Machine

4 Profile-guided Locality Management

5 Performance Evaluation

10 10

Predictions
Parallelism will explode

Number of cores will
double every 12-24
months

Do we put
enough months

Petaflop (million
processor) machines will
be common in HPC by
2015

enough
emphasis on
software?2015

Performance will become a
software problem

Parallelism and locality are

software?

Berkeley's Dr. Kathy Yelick
(director of NERSC) : Parallelism and locality are

key
Concurrency is the next
major revolution in how
we write software

()

No. Unfortunately, the race
for each major
performance milestone we write software

A new programming model
will emerge for petaflop
computing

performance milestone,
has resulted in a de-
emphasis on software.

p g

Source: The Software Challenges of
Petascale Computing

Parallel Programming
Most parallel programs are written using:

Message passing
• Examples: CM5’s CMMD PVM IBM’s MPL • Examples: CM5 s CMMD, PVM, IBM s MPL,
• Current standard: MPI (MPICH-1, MPICH-2,

LAM/MPI..
• Usually used for scientific applications with • Usually used for scientific applications with

C++/Fortran, or Java (JavaMPI, G-JavaMPI)
• Scales easily: user controlled data layout
• Hard to use: send/receive matching, message a d to use se d/ ece e atc g, essage

packing/unpacking
Shared memory

• Examples: OpenMP, pthreads, Javap p , p ,
• Usually for non-scientific applications
• Easier to program: direct reads and writes to

shared data
• Hard to scale: (mostly) limited to SMPs, no

concept of locality

Optimizing is Hard !
Tianhe-1 Experience: Scaling LINPACK
performance from 20% to 70% of each
CPU GPU iCPU-GPU pair

Huge Human Effortg

13Source: Dr. Chunyuan Zhang, Dr. Chunyuan Zhang, National University of Defense TechnologyNational University of Defense Technology

Parallel Programming environments since the 90’s
Do you like to design another ONE ?
ABCPL
ACE
ACT++
Active messages
Adl
Adsmith
ADDAP

CORRELATE
CPS
CRL
CSP
Cthreads
CUMULVS
DAGGER

GLU
GUARD
HAsL.
Haskell
HPC++
JAVAR.
HORUS

Mentat
Legion
Meta Chaos
Midway
Millipede
CparPar
Mirage

Parafrase2
Paralation
Parallel-C++
Parallaxis
ParC
ParLib++
ParLin

pC++
SCHEDULE
SciTL
POET
SDDA.
SHMEM
SIMPLEADDAP

AFAPI
ALWAN
AM
AMDC
AppLeS
Amoeba
ARTS

DAGGER
DAPPLE
Data Parallel C
DC++
DCE++
DDD
DICE.
DIPC

HORUS
HPC
IMPACT
ISIS.
JAVAR
JADE
Java RMI
javaPG

Mirage
MpC
MOSIX
Modula-P
Modula-2*
Multipol
MPI
MPC++

ParLin
Parmacs
Parti
pC
pC++
PCN
PCP:
PH

SIMPLE
Sina
SISAL.
distributed
smalltalk
SMI.
SONiC
Split-C.

Athapascan-0b
Aurora
Automap
bb_threads
Blaze
BSP
BlockComm

DOLIB
DOME
DOSMOS.
DRL
DSM-Threads
Ease .
ECO

j
JavaSpace
JIDL
Joyce
Khoros
Karma
KOAN/Fortran-S
LAM

Munin
Nano-Threads
NESL
NetClasses++
Nexus
Nimrod
NOW

PEACE
PCU
PET
PETSc
PENNY
Phosphorus
POET.

p
SR
Sthreads
Strand.
SUIF.
Synergy
Telegrphos
SuperPascal Let me add C*.

"C* in C
C**
CarlOS
Cashmere
C4
CC++

Eiffel
Eilean
Emerald
EPL
Excalibur
Express
Falcon

Lilac
Linda
JADA
WWWinda
ISETL-Linda
ParLin
Eilean

Objective
Linda
Occam
Omega
OpenMP
Orca
OOF90

Polaris
POOMA
POOL-T
PRESTO
P-RIO
Prospero
Proteus

TCGMSG.
Threads.h++.
TreadMarks
TRAPPER
uC++
UNITY
UC

Let me add
one more?

Chu
Charlotte
Charm
Charm++
Cid
Cilk
CM-Fortran
C

Filaments
FM
FLASH
The FORCE
Fork
Fortran-M
FX
GA

P4-Linda
Glenda
POSYBL
Objective-Linda
LiPS
Locust
Lparx
L id

P++
P3L
p4-Linda
Pablo
PADE
PADRE
Panda
P

QPC++
PVM
PSI
PSDM
Quake
Quark
Quick Threads
S

V
ViC*
Visifold V-NUS
VPE
Win32 threads
WinPar
WWWinda
XENOOPS Converse

Code
COOL

GA
GAMMA
Glenda

Lucid
Maisie
Manifold

Papers
AFAPI.
Para++
Paradigm

Sage++
SCANDAL
SAM

XENOOPS
XPC
Zounds
ZPL

Source: John Urbanic, Pittsburgh Supercomputing Center

The Software challenges of Petaflop computing

New algorithmic approaches to increase the levels of
concurrency on the order of 108

Developing effective methodologies for assessing Developing effective methodologies for assessing
and exploiting data locality (high cache hit rates) in
the deep memory hierarchies
Hide latency by utilizing low-level parallelism (e.g., de a e cy y u g o e e pa a e s (e g ,
prefetch queues and multithreading)
Design algorithms and implementations that permit
easy recovery from system failuresy y y
Performance monitoring facilities (accurate timers and
operation counters, out-of-cache loads and stores) and
dynamic load balancing
Accuracy and stability of numerical methods: formal
methods to certify the correctness of petaflops algorithms
and hardware logic designs
N l d t t (lt ti t HPF New languages and constructs (alternatives to HPF,
OpenMP, MPI,..) ??

15

Programmability in HPC
R l t h i th l t Relevant research area in the last years

Growing interest on easier programming

HPCS project (DARPA)HPCS project (DARPA)
High-performance High-Productivity Programming
New languages that focus on programmability (IBM
X10, Cray CHAPEL, Sun Fortress)X10, Cray CHAPEL, Sun Fortress)

PGAS (Partitioned Global Address Space):
Target global address space, multithreading platforms
Aim for high levels of scalabilityAim for high levels of scalability
Research languages :

• Co-Array Fortran (CAF)
Unified Pa allel C (UPC) • Unified Parallel C (UPC)

• Titanium (Java)

16

Features of PGAS Languages
Explicitly-parallel programming model with SPMD
parallelism

Fixed at program start-up, typically 1 thread per
processor

Global address space model of memory
Allows programmer to directly represent distributed
d t t tdata structures
Can access local and remote data with same
mechanisms

Add ess space is logicall pa titionedAddress space is logically partitioned
Local vs. remote memory (two-level hierarchy) –
handled by users

Programmer control over performance critical Programmer control over performance critical
decisions (** burden to users **)

Data layout and communication
Base languages differ: Co Array Fortran (CAF)

17

Base languages differ: Co-Array Fortran (CAF)
Unified Parallel C (UPC), Titanium (Java)

Source: Yelick’s (UCB) CS267 Lecture

Global Address Space Eases Programming
Th d Th d Th d

Sharedal

es
s

ce
X[0] X[1] X[P]

Thread0 Thread1 Threadn

Shared

G
lo

b
ad

dr
e

sp
ac

Private
ptr: ptr: ptr:

The languages share the global address space abstraction
Shared memory is partitioned by processors
R t t t t ti Remote memory may stay remote: no automatic
caching implied
One-sided communication through reads/writes of
shared variables
Both individual and bulk memory copies

Differ on details
Some models have a separate private memory area

18

Distributed array generality and how they are
constructed

Source: Yelick’s (UCB) CS267 Lecture

Programmer Productivity?
Languages (or language technologies) that solve
real problems can succeed [Todd A. Proebsting,
Microsoft Research, 2002]:

Even if slowEven if slow
Even with simple types
Even without academic significance (no papers?)
Even without rocket scienceEven without rocket science
If useful

Programmer Productivity:
Write programs correctly (50% of crashes caused by Write programs correctly (50% of crashes caused by
1% of bugs)
Write programs quickly
Write programs easilyp g y

Why?
Decreases support cost
Decreases development cost

19

Decreases time to market/solution
Increases satisfaction

But … .. “New Language Fear”
Long-Live Language Needed:

Large-scale codes: portability is top
priority.
L l d lif ti 10 t 30 Large-scale codes lifetimes : 10 to 30
years.
High-performance computers : 3-5 years
between generations .between generations .
They can't risk spending 5-10 years
writing their code in a new language only
to find that the new language didn't gain
general acceptance and support general acceptance and support.

Fear of learning new language:
Some people say that “if there's a lot of
pain involved, they won't switch to a new p , y
programming language.”

How can you motivate people to migrate
to a more efficient new language? Or do g g
they have to ?

Why Java for HPC ?
Good programmability for
potential HPC

Expressive grammar: simplified
C++
Concurrent language:
multithreading support at language
level (Portable way of parallel
programming)p g g)
Platform independence: bytecode
(write once, run everywhere !)
Runtime: GC, safety checking, etc.
Libraries: a huge increasing list

“Java as the first language”
Libraries: a huge increasing list
Deliver 65%-90% of performance
of the best Fortran programs;
compete with C++:
J b d t l X10 Java-based next-gen languages : X10
(IBM), Titanium, Fortress (Sun)

Easy to learn.
Write Java programs quicklyp g q y
Write Java programs easily
Less bugs (?)

21

Our Approach
Distributed Java
Virtual Machine

Single system image (SSI)
illusion to threads of a Java

program

JVM JVM JVM

OS
H d

OS
H d

OS

22High-Speed Network

Hardware Hardware Hardware

Distributed Java Virtual Machine
class worker extends Thread {

private long n;
public worker(long N) { n = N; }
public void run() { long sum= 0;

Multithreaded Java application

DJVM hides the physical
boundaries between machinespublic void run() { long sum= 0;

for(long i = 0; i < n; i++) sum += i;
System.out.println(”Sum = “ + sum);}

}
public class test { static final int N=100;

boundaries between machines
Support thread migration

public static void main(String args[]) {
worker[] w= new worker[N];
Random r = new Random();

for (int i=0; i<N; i++)for (int i 0; i N; i)
w[i] = new worker(r.nextLong());

for (int i=0; i<N; i++) w[i].start();
try{ for (int i=0; i<N; i++) w[i].join();}
catch (Exception e){}}
}

JVMJVMJVMJVM Distributed Java Virtual Machine
}

OS

Hardware

OS

Hardware

OS

Hardware

OS

Hardware

Network

programmer
Java thread

History and Roadmap of JESSICA
ProjectProjectJESSICA V1.0 (1996-1999)

Execution mode: Interpreter Mode
JVM kernel modification (Kaffe JVM)
Global Heap: built on top of TreadMarks
(Lazy Release Consistency + homeless)

JESSICA V2.0 (2000-2006)
Execution mode: JIT-Compiler Mode Past MembersExecution mode: JIT-Compiler Mode
(full speed)
JVM kernel modification (Kaffe JVM)
Lazy Release Consistency + migrating-
home protocol

JESSICA V3.0 (2008~2010?)
Built above JVM (JVMTI)
Support Large Object Space

King Tin LAM, Chenggang Zhang

Support Large Object Space
For any JVM. Run @ full speed of the
underlying JVM.

JESSICA v.4 (2009~)()
Software transactional memory model
Multicore/GPU cluster

24

Ricky MaKinson Chan

Current Members

JESSICA Distributed Java VM Java

Enabled

Single

Portable Java Frames

A cluster-wide JVM with
Dynamic thread mobility in JIT mode
Global Object Space (GOS)

System

Image

Computing

A

Thread Thread Thread

Remote Class Loading

Thread MigrationSource
Code Compiler

Java
Compiler

Class
Files

Architecture

Thread 3

Java
Method Area

Thread 2

Thread 1

Class
Loader

Thread
Scheduler

Thread 3

Java
Method Area

Thread 2

Thread 1

Class
Loader

Load
Monitor
Daemon

Thread
Scheduler

Thread 3

Java
Method Area

Thread 2

Thread 1

Class
Loader

Load
Monitor
Daemon

Thread
Scheduler

Load
Monitor
Daemon

Method AreaPC

Execution
Engine

Registers

Stack
Frames

Method AreaPCRegisters Method AreaPC

Execution
Engine

Registers

Stack
Frames

Execution
Engine

Stack
Frames

Local HeapLocal HeapLocal Heap

Master JVM

Heap
(Global Object Space)

object
object

object
object

Host Manager Worker JVM Host Manager Worker JVM Host Manager

25

OS
Hardware

OS
Hardware

OS
Hardware

Communication Network

Problem 1: Memory Consistency
T2
Read a
a=a+2
Write a
R d b

Read a
a=a+2
Write a
R d b

T5

Read b
b=b+2
Write b
R d

T6

Read b
b=b+2
Write b
R d

T4

JVM

Per-Thread working
memory

Main memory

Object Variable

T2 T4 T6 T8T1 T3 T5 T7

Read b Read b Read aRead aJVM JVM
y

Heap Heap
a=1

b 1

a=1

b=1

b 1

HW
OS

HW
OS

HW
OS

HW
OS

Heap Heap b=1 b=1a=1

High Speed Network

HW HW HWHW

26

When a write becomes visible to another thread ? How ?

Solution: Global Object Space (GOS)

Per-object granularity, no false sharing
Home-based Lazy Release Consistency (HLRC)

Home-based variant of LRC: always fetch latest Home based variant of LRC: always fetch latest
object/page from its home
No traffic if object unchanged
Object home migration: better localityj g y

Connectivity-based object prefetching: more
accurate

Shared heap Shared heap

A

Shared heap

A

Shared heap

Thread A Thread B
A

Thread A Thread B
A

27
Source node Source node Source node

Problem 2: Thread migration under JITC Mode
j Xjit javacjava -Xjit

JVM Viewx86 machine Programmer View

a*b

a/bJIT Compiler mode execution makes things complex
Native code has no clear bytecode boundary
How to deal with machine registers?g
How to organize the stack frames?
How to make extracted thread states
recognizable by the remote JVM?

Thread Migration in JIT Compiler Mode

Thread
Frames

GOS
(local heap)

Frame parsing
Restore execution

Frames

(3)

Method Area

Migration
Manager GOS

(local heap)

Frames
Frames (4a) Object Access

PC

Frame

F

Stack analysis
Stack capturing(2)

Thread Scheduler

(1) Alert

JVM Frame

Source node

Method Area

(4b) Load method
from NFS

PC

Destination nodeLoad
Monitor

On-stack scanning

Java frame

Native thread stack

C frame
Frame

Thread Migration in JIT Compiler Mode

Dynamic Native Code Instrumentation
Migration points selectiong p

• Delayed to the head of loop basic block or method

Register context handler
• Spill dirty registers at migration point without

invalidation so that native codes can continue the use
of registers

• Use register recovering stub at restoring phase

Variable type deduction
• Spill type in stacks using compression• Spill type in stacks using compression

Java frames linking
• Discover consecutive Java framesDiscover consecutive Java frames

30

Problem 3: Improve Locality
Remote memory access is the scalability killer!
Remote >> local latency (assume in 50-60ns)

Infiniband cluster (1-2μs): 20 x slower!Infiniband cluster (1 2μs): 20 x slower!
Ethernet cluster (100μs): 2,000 x slower!!
Grid/Internet (av. 500ms): 10,000,000 x slower!!!

"To speed up" ≈ "Reduce as much remote
access as possible"
"To speed up" ≈ "Reduce as much remote
access as possible"access as possible
The key is to improve locality
access as possible
The key is to improve locality

31

Solution: Profile-Guided PGAS (PG2AS)
Profile-Guided PGAS (PG2AS)

A built-in runtime profiler instead of humans for
digging out the locality hints

Profile-guided adaptive locality
management

Thread migrationg
Object home migration
Object prefetching

Challenges: Challenges:
How does the runtime know which threads to migrate
can make the most locality benefit?
Difficult to decide if no global inter-thread sharing Difficult to decide if no global inter-thread sharing
information

Solution: Track sharing % threads
T1 accesses O1 O3 O5

32

T1 accesses O1, O3, O5, …
T2 accesses O1, O2, O3, …
Sharing % T1 & T2: O1, O3

Outline

1 Era of Petaflop Computing1

2 PGAS Programing Language2

3

PGAS Programing Language

Distributed Java Virtual Machine

4 Profile-guided locality management

5 Performance Evaluation

33 33

PG-JESSICA: Profile-Guided Version
Access profiler: track object access over heap to
deduce inter-thread sharing -> thread-thread relation
Stack profiler: track the set of frequent objects
accessed by each thread > thread migration cost

Portable Java Frames

accessed by each thread -> thread migration cost
Correlation analyzer: profile-guided decisions on
dynamic thread migration -> global locality
improvement

Thread
Scheduler

Stack

Worker JVM 1

Thread
Scheduler

Migration
Engine

Stack

Worker JVM 2

Thread
Scheduler

Migration
Engine

Stack

Worker JVM 3

Global Load
Balancer

(Simplified View)
Master JVM

mig in/out mig in/out mig in/out

Portable Java Frames

Migration
Engine

Migration
Requests

improvement

Thread Space

…

Stack
Profiler

Access

Stack

Thread Space

…

Stack
Profiler

Access

Stack

Thread Space

…

Stack
Profiler

Access

StackBalancer

Correlation
Map

Correlation
Analyzer

Host Manager

Local Heap

Correlation
Collector

Profiler

Host Manager

Local Heap

Correlation
Collector

Profiler

Host Manager

Local Heap

Correlation
Collector

Profiler

Host Manager

y

34

OS
Hardware

OS
Hardware

OS
Hardware

Interconnection Network

OS
Hardware

Thread Correlation Map (TCM)
Thitik l d K l h D CVM (1999)Thitikamol and Keleher; D-CVM (1999)

Proposed “Active Correlation Tracking” (Page)
Thread Correlation Map (TCM): a 2D histogram of
shared data volume between each pair of threadsshared data volume between each pair of threads.

• Grayscale(x,y) = sharing amount of thread x and y
• TCM(1,1) = TCM(2,2) = TCM(3,3) = … = 0

32
31
30 Challenge: Given M

objects shared by N
threads, TCM
b ld k (2)

…

building take O(MN2)
time. M can grow
into a scalability
bottleneck in the

d 1
node 2
node 3

4
3

bottleneck in the
system.

35

node 1
1 2 3 4 …… .32 (threads)

3
2
1

Water-Spatial (32 threads placed on 8 nodes)

“Sticky Set”
Sticky Set (SS) : a
subset of working set of
a thread includes only a thread, includes only
those frequently used
objects.j

“Sticky” : if the thread is
migrated, objects in SS are
more likely to be fetched more likely to be fetched
again.
SS should be detected and
moved along with the moved along with the
thread to save most object
misses after migration.

36

Summary of Our Solution
What we want to do:
1. Model thread sharing (inter-thread correlation)
2 Model indirect thread migration cost2. Model indirect thread migration cost

Profiling results:
1. Thread Correlation Map (TCM)
2. Per-thread Sticky Set (SS)

Use both to design new migration policy
Correlation dri en1. Correlation-driven

2. Cost-aware

How we profile them efficiently?p y
1. Adaptive object sampling TCM
2. Adaptive stack sampling SS

37

Details : King Tin Lam, Yang Luo, Cho-Li Wang, "Adaptive Sampling-Based Profiling Techniques for Optimizing
the Distributed JVM Runtime," 24th IEEE International Parallel and Distributed Processing Symposium
(IPDPS2010), April 19-23, ATLANTA, USA

Adaptive Object Sampling (AOS)
E h bj t h " b “ i Each object has a "sequence number“, unique
among objects within the same class.
Sample the object if sequence # is divisible by the

t " li “ (l t d d h d t current "sampling gap“ (selected and changed at
runtime to strike a balance of cost and accuracy)
Sampling rate:

1X = sample 1 object per page of heap
1024X means "full sampling“
For a class of size s, sampling at rate nX, sampling
gap S / (s n) he e S is the page si e (s all gap = Sp / (s×n), where Sp is the page size (usually
4KB).

38

Stack Invariants
JVM is a “stack machine”

Stack variables can be hint of constantly
accessed objects
Stack invariants : Those references
constantly stay in the stack across constantly stay in the stack across
snapshots taken. Good hints of SS.
Usually stack invariants are the entry
points of SS and important data
structures like Hashmap, TreeMap,
Linked ListLinked List

39

Stack Invariants (Cont’)

Sticky setInvariant
references Size

……estimated via
object

samplingsampling

Sampled objects

Key:

Stack

Objects referenced
invariantly by stack

Unsampled objectsp j

Adaptive Stack Sampling: Adjustable timer controlling
which period of time to do stack sampling. Stack frame

40

which period of time to do stack sampling. Stack frame
added with “visited” flag. If not touched across two sampling
rounds, no need to sample it.

Outline

1 Era of Petaflop Computing1

2 PGAS Programing Language2

3

PGAS Programing Language

Distributed Java Virtual Machine

4 Profile-guided locality management

5 Performance Evaluation

41 41

Testing Environment: HKU Gideon-II Cluster

240 SMP blade servers
(19.43 TFlop/s)

Expected to grow to 25+
TFlop/s upon Phase 2’s SRG GbE l t SRG

Computer Science
(Systems Research Group)

op/s upo ase s
completion in late 2010.

Node configuration :
Dell PowerEdge R610/M610

2 x Intel Nehalem-based

SRG-GbE cluster
64 blades (32 GB 1066MHz DDR3 RAM)

SRG
Gate-keepers
(PowerEdge
R610 x 4)

2 x Intel Nehalem based
Quad-core Xeon 2.53GHz
32 GB 1066MHz DDR3
RAM and SAS disks

Networking: Brocade FastIron

SRG NFS
server

Blade Network
G8142

24-port 10GbE
Switch

Networking:
4X DDR Infiniband (20
Gbit/s): 80 nodes (not
used)
Gigabit Ethernet (1

Brocade FastIron
SuperX 108-port
Gigabit Switch

SRG IB cluster

Backup
server

IB switch
Gigabit Ethernet (1
Gbit/s): 160 nodes
OS: RedHat Enterprise
Linux, Scientific Linux,
Fedora Linux.

SRG IB cluster
(48 1U IB nodes + Qlogic Silverstorm 9040 48-port DDR

switch)

Production run in
September, 2009

A system-wide management sub-system

Speedup of JAVA applications on JESSICA2

15.51

10.637

11.92

10.161

Ray Tracing on JESSICA2 (64 PCs)

See Demo Video

64 nodes: 108 seconds

1 node: 4402 seconds (1 2 hour)1 node: 4402 seconds (1.2 hour)

Speedup = 40.75

44

Dynamic Native Code Instrumentation

Benchmarks Time (seconds) Space(native code/bytecode)

Time and space Overhead Analysis
Benchmarks Time (seconds) Space(native code/bytecode)

No migration Migration No migration Migration
compress 11.31 11.39(+0.71%) 6.89 7.58(+10.01%)
jess 30.48 30.96(+1.57%) 6.82 8.34(+22.29%)
raytrace 24.47 24.68(+0.86%) 7.47 8.49(+13.65%)
db 35.49 36.69(+3.38%) 7.01 7.63(+8.84%)
javac 38.66 40.96(+5.95%) 6.74 8.72(+29.38%)
mpegaudio 28.07 29.28(+4.31%) 7.97 8.53(+7.03%)
mtrt 24 91 25 05(+0 56%) 7 47 8 49(+13 65%)mtrt 24.91 25.05(+0.56%) 7.47 8.49(+13.65%)
jack 37.78 37.90(+0.32%) 6.95 8.38(+20.58%)
Average (+2.21%) (+15.68%)

45

(Gideon-I)

Thread migration for irregular
applications (1) TSPapplications (1) : TSP

TSP execution tim e distribution TSP m achine execution tim e distribution(stdev:281,720)

800

1000

an
ds

)

TSP m achine execution tim e distribution

1000
1500

nd
s

se
c)

0

200

400

600

Th
ou

sa

Ti
m

e(
se

c)

0
500

1 2 3 4 5 6 7 8Th
ou

sa
n

Ti
m

e(

Initial placement

8 nodes 16 threads TSP 13 cities (object sharing: shortest path)

0

1 4 7 10 13 16

Thread
Workload Node

p

Thread migration

8 nodes, 16 threads, TSP 13 cities, (object sharing: shortest path)

Initial placement Thread migration (5 times)

Time (sec) 1203.10 793.317 (–33.6%)
Stdev 438,444.1 152,463.1

(Gideon-I)

Stack Profiling Overhead
Timer-based control of stack sampling
phases saves over half of overheads
L t ti t 1/3 h dLazy extraction saves up to 1/3 overheads

+ Stack Sampling Overhead + Sticky-set Footprinting Overhead

Bench
mark

Data
Set
Size

Baseline
Exe

Time

+ Stack Sampling Overhead + Sticky set Footprinting Overhead
+ Sticky-

set
Resolution
Overhead

Immediate
Extraction Lazy Extraction Nonstop Timer-based (100ms)

4ms 16ms 4ms 16ms 4X Full 4X Full

SOR 1K×1K 6201 6216
(0.24%)

6207
(0.10%)

6211
(0.17%)

6206
(0.08%)

6714
(8.28%)

6707
(8.17%)

6519
(5.13%)

6480
(4.50%)

6639
(1.85%)

Barnes
-Hut 4K 93857 94947

(1.16%)
94657

(0.85%)
94697

(0.89%)
95209

(1.44%)
98968

(5.45%)
102190
(8.88%)

93649
(-0.22%)

102334
(9.03%)

97585
(4.20%)

Water-
Spatial 512 59105 59232

(0.21%)
59161

(0.09%)
59209

(0.17%)
59124

(0.03%)
59834

(1.23%)
61985

(4.87%)
59501

(0.67%)
60313

(2.04%)
60002

(0.84%)

47

p () () () () () () () () ()

Accuracy of AOS (Cont’)
90%

95%

100%

80%

85%

90%

95%

100%

70%

75%

80%

85%

Absolute/ABS

60%

65%

70%

75%

80%

Absolute/ABS

Relative/ABS

Absolute/EUC
50%

55%

60%

65%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Relative/ABS

Absolute/EUC

Relative/EUC

50%

55%

512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

Relative/EUC

95%

100%

(c) Water-Spatial

(a) SOR(E lid di t)

75%

80%

85%

90%

95%(a) SOR

2

2
11

)(

)(
NN

ijij
N
j

N
i

EUC
b

ba
E ==

∑∑

−∑∑
=

(Euclidean distance)

50%

55%

60%

65%

70% Absolute/ABS

Relative/ABS

Absolute/EUC

Relative/EUC

2
11)(ij

N
j

N
i b== ∑∑

ijij
N
j

N
i ba

E 11 == −∑∑
(Absolute distance)

48

50%
512X 256X 128X 64X 32X 16X 8X 4X 2X 1X

(b) Barnes-Hutij
N
j

N
i

jjj
ABS b

E
11 == ∑∑

=

Profile-Guided Thread Migration
We assess this using a CRM application “Customer
Analytics“ with dynamic change in sharing patterns.

T1 T4 T7

D t D t D t

w w w
Epoch 1

Data
segment 1

Data
segment 2

Data
segment 3 …

r r r r r r
T2 T3 T5 T6 T8 T9

49

Effect of Profile-Guided Thread Migration
We assess this using a CRM application “Customer
Analytics“ with dynamic change in sharing patterns.

T1 T4 T7

Data Data Data

w w w
Epoch 2

Data
segment 1

Data
segment 2

Data
segment 3 …

r
r r r r r

T2 T3 T5 T6 T8 T9
r r r r

50

Effect of Profile-Guided Thread Migration
Without thread migration, locality is not preserved (out of
red boxes denoting node boundaries) as time goes by.

h1 h2 h3 h4epoch1 epoch2 epoch3 epoch4
T2,T3

epoch5 epoch6 epoch7 epoch8

51

Effect of Profile-Guided Thread Migration
With correlation-driven thread migration

epoch1 epoch2 epoch3 epoch4
T2,T3 migrated to node 2 T2,T3 migrated to node 3

epoch1 epoch2 epoch3 epoch4

epoch5 epoch6 epoch7 epoch8

52

Performance Gain

(Full sampling) 1024X

ed

128X

256X

512X

d
m

ig
ra

tio
n

en
ab

le

16X

32X

64X

n
tra

ck
in

g
+

th
re

ad

St t h

Adaptive rate (start at 4X)

4X

8X

C
or

re
la

tio
n

21.7%

0 50 100 150 200 250 300

Random

Round-robin

Stretch

N
o

co
r.

an
d

m
ig

ra
tio

n

53

0 50 100 150 200 250 300

Execution Time (sec)

Conclusion
Distributed Java Virtual Machine can
provide a high-performance platform for
running multithreaded Java applications on running multithreaded Java applications on
clusters
Java thread migration helps to improve the
performance flexibility and scalability of performance, flexibility, and scalability of
DJVM
A couple of advanced profiling strategies
for optimizing localityfor optimizing locality

Adaptive object sampling
Online stack sampling

Towards PGAS Parallel Programming Towards PGAS Parallel Programming –– why why
not JESSICA (“Easynot JESSICA (“Easy--toto--use”) use”)

54

JESSICA Launched to CNGrid HKU Portal

China National Grid
香港大学网格节点香港大学网格节点

55

Thanks!

For more information:

JESSICA2 Project
http://www.cs.hku.hk/~clwang/projects/JESSICA2.html

C.L. Wang’s webpage:
http://www.cs.hku.hk/~clwang/

56

