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Abstract

Interval routing (IR) is a space-efficient routing method for computer networks. For longest

routing path analysis, researchers have focused on lower bounds for many years. For any n-

node graph G of diameter D, there exists an upper bound of 2D for IR using one or more labels,

and an upper bound of � 3
2D� for IR using O(

√
n log n) or more labels. We present two upper

bounds in the first part of the paper. We show that for every integer i > 0, every n-node graph

of diameter D has a k-dominating set of size O( i+1
√

n) for k ≤ (1 − 1
3i )D. This result implies a

new upper bound of �(2 − 1
3i )D� for IR using O( i+1

√
n) or more labels, where i is any positive

integer constant. We apply the result by Kutten and Peleg [8] to achieve an upper bound of

(1 + α)D for IR using O( n
D ) or more labels, where α is any constant in (0, 1). The second part

of the paper offers some lower bounds for planar graphs. For any M -label interval routing

scheme (M -IRS), where M = O(
√

n), we derive a lower bound of 2M+1
2M D − 1 on the longest

path for M = O( 3
√

n), and a lower bound of 2(1+δ)M+1
2(1+δ)M D, where δ ∈ (0, 1], for M = O(

√
n).

The latter result implies a lower bound of Ω(
√

n) on the number of labels needed to achieve

optimality.
∗Preliminary versions of the planar graph results have appeared under the titles “Lower Bounds for Multi-

Label Interval Routing” in Proc. 2nd International Colloquium on Structural Information & Communication Complexity

(SIROCCO’95), 123–134, 1995, and “Some Results on the Space Requirement of Interval Routing” in Proc. 6th Inter-

national Colloquium on Structural Information & Communication Complexity (SIROCCO 6), 264–279, 1999.
†Correspondence: F.C.M. Lau, Department of Computer Science and Information Systems, The University of Hong

Kong, Hong Kong / Email: fcmlau@csis.hku.hk / Fax: (+852) 2858 4141.
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1 Introduction

Interval routing as a research topic has been under study for many years. For a detailed survey

of results up to 1999, one can refer to [2]. Interval routing is attractive because of its simplicity:

every node is assigned a unique integer ID from a cyclicly-ordered set, and every outgoing link

is assigned an interval label which is a range of integers from the same set. Message routing is

carried out by comparing the destination ID with interval labels as the message moves from node

to node in the network. This is the one-label interval routing scheme, or 1-IRS. A valid IRS is one

that can route a message from any node to any other node along a deterministic path. There are

advantages to attaching more labels to an edge. An M -label IRS, or M -IRS, is an IRS where up to

M labels can be attached to any edge.

One way of measuring the quality of interval routing scheme is to look at the longest routing

path. We say that the an IRS is optimal if the resulting longest path is equal to the diameter, D,

in length. For arbitrary graphs, there exists a 1-IRS such that the longest path is bounded by 2D

[11], and an O(
√

n log n)-IRS such that the longest path is bounded by � 3
2D� [6]. With respect to the

lower bounds of 2D−3 and � 3
2D�−1 given in [12, 3], the 2D and �3

2D� upper bounds are very close

to the optimal for 1-IRS and O(
√

n log n)-IRS, respectively. Between M = 2 and M = O(
√

n log n),

there has been a lack of upper bound results for many years. A trivial upper bound for this range

is 2D by the fact that the path lengths cannot be longer with using more labels. In this paper, we

propose an upper bound of �(2 − 1
3i )D� for O( i+1

√
n)-IRS, where i is any positive integer constant.

A summary of the existing upper and lower bounds, including the ones given in this paper, is

shown in Figure 1. The upper bounds for i ≥ 3 are marked by a ∆ in the figure.1

We also present an O( n
αD )-IRS in which the longest path is bounded by (1 + α)D, for any

α ∈ (0, 1). This result is applicable to graphs with large diameters. If a small constant is chosen

for α, this result is close to the lower bound result in [13] which says that there exists a graph such

that for any M -IRS, if M ≤ n
18D − O(

√
n
D ), the longest path is no shorter than D + Θ( D√

M
), where

D = Ω( 3
√

n).

As shown in Figure 1, for the cases of one label, Θ(
√

n log n) to Θ( n
D log n

D
) labels, and then

more than Θ( n
D ) labels, the upper bounds and the lower bounds are very close to each other.

But between two to Θ(
√

n log n) labels, and Θ( n
D log n

D
) to Θ( n

D ) labels, there is an appreciable gap

between the upper bounds and the lower bounds, such as a gap of 1
6D with the best known lower

bound of �3
2D� − 1 for the case of Θ(

√
n) to Θ(

√
n log n) labels [3]. One could hope for a narrower

1The figure describes the case of D = O(
√

n
log3 n

).
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Figure 1: Spectrum of upper and lower bounds (not to scale).

gap in the future.

Techniques that have been used to achieve the upper bound results include BFS tree for 1-IRS

[11] and k-dominating set for O(
√

n log n)-IRS [6] and O(1
ε )-IRS, where ∀ε > 0 [5]. (The O( 1

ε )-IRS

is for planar graphs, which we will discuss later in this paper.) We will also use the technique of

k-dominating set and some related results to derive some of our results.

The k-dominating set C of a graph G = (V,E) is a subset of V such that ∀v ∈ V , ∃x ∈ C ,

d(x, v) ≤ k, where d(x, y) is the distance between x and y, x, y ∈ V .

The application of the concept of k-dominating set to interval routing was implicitly initiated

by Kráľovič et al. in [6]. The connection between k-dominating set and interval routing was further

elaborated on and strengthened by Gavoille et al. [5]. Lemma 1 will give a proof on the relationship

between k-dominating set and interval routing. In Section 3.4, we re-state and directly apply a

lemma by Kutten and Peleg [8]. This simple and direct application can result in a sudden drop

of the upper bound in the spectrum (Figure 1) for Θ( n
D )-IRS. This drop would shift leftward as D

increases.

Since many graph algorithms perform better in planar graphs than in non-planar graphs, we

would like to know how interval routing would perform in planar graphs. Several lower bounds

have been proposed for non-planar graphs. For planar graphs, there exists only one lower-bound

result— 3
2D− 1—which is due to Ružička [10]. His proof is based on a simple planar graph, which

he later referred to as the globe graph [6] (see Figure 2 for an example). In the second part of this

paper, we present two lower bounds for planar graphs:

1. 2M+1
2M D − 1 for M = O( 3

√
n), and
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2. 2(1+δ)M+1
2(1+δ)M D for M = O(

√
n), for any constant δ ∈ (0, 1].

The second bound directly implies a lower bound of Ω(
√

n) on the number of labels needed to

achieve optimality—i.e., where the longest path is at least equal to D in length. It also implies a

lower bound of Ω(
√

n) on the number of labels needed to achieve shortest-path routing, coinciding

with a result due to Gavoille and Pérennès [4].

A spectrum of lower bounds for planar graphs is given as the bottom solid line in Figure 1. It

is smoother than the spectrum of lower bounds for non-planar graphs (the dashed line), although

we do not yet have an idea about the optimality of these planar graph lower bounds. As for upper

bounds, planar graphs have a better spectrum, �( 12
7 + ε)D�, for any O(1

ε )-IRS [5], ∀ε > 0. In other

words, using fewer than O(
√

n) labels, planar graphs can perform better. Using Ω(
√

n) labels,

planar graphs and non-planar graphs share the same spectrum. At present, however, we still

cannot conclude that interval routing always performs better in planar graphs than in non-planar

graphs at any point of the spectrum. The picture will become clearer when better upper bounds

can be derived for planar graphs, or better lower bounds for non-planar graphs.

2 Definitions and Properties

We consider a connected simple graph, G = (V,E), where V is the set of nodes and E the set

of directed edges such that (u, v) ∈ E ⇔ (v, u) ∈ E. In other words, G is an undirected graph.

There are n nodes in V and each node has a unique label from the set ΓV = {0, 1, . . . , n − 1}.

The node labels are cyclicly ordered, denoted 0 ≺ 1 ≺ · · · ≺ n − 1 ≺ 0. We further define the

expression u ≺ {v,w} ≺ x to be two simultaneous relations based on the cyclic order: u ≺ v ≺ x

and u ≺ w ≺ x.

Definition 1 An interval 〈a, b〉 is the set {a, a + 1, . . . , b (mod n)}. The elements a, b are called the

marginal elements of the interval. In particular, 〈a, a〉 = 〈a〉 = {a}, and ∅ is the empty interval.

Definition 2 Let B be an interval. A set A is a sub-interval of B if A is an interval and is a subset of B.

A is a proper sub-interval of B if A is a sub-interval of B and neither of the marginal elements of A is a

marginal element of B.

Definition 3 Two intervals A and B are non-overlapping if A ∩ B = ∅.

Definition 4 Two intervals A and B are disjoint if A ∪ B is not an interval.

Any two disjoint intervals are non-overlapping.

Let L be a node labeling function such that for each u ∈ V , L(u) ∈ ΓV , and is the unique node number

of u. For any M ≥ 2, let L∗ be an M -label edge labeling function such that for each (u, v) ∈ E, L∗(u, v)
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is a union of M intervals. Each of these M intervals is an interval label of u on (u, v). Since the

union of two non-disjoint intervals is an interval, L∗(u, v) is a union of at most M disjoint intervals.

Definition 5 An M -interval routing scheme, or M -IRS, on a graph G = (V,E) is an ordered pair (L,L∗)

where L is a node labeling function and L∗ is an M -label edge labeling function such that the following are

satisfied.

• ∀u, v ∈ V , u �= v, ∃ a simple path u, x1, x2, . . . , xk, v in G such that L(v) ∈ L∗(u, x1)∩L∗(x1, x2)∩
. . . ∩ L∗(xk, v), and

• ∀u ∈ V , if (u, v1), (u, v2) ∈ E, and v1 �= v2, then L∗(u, v1) ∩ L∗(u, v2) = ∅.

Definition 5 guarantees the completeness of every M -IRS in the sense that the routing scheme

should provide all-to-all paths of which each is a simple path. Definition 5 also guarantees a

deterministic routing scheme that provides exactly one path between any two nodes. Hence, we

have the following.

Property 1 (Complete) The set of interval labels for edges directed from a node u is complete. That is,

∀u ∈ V , ΓV − {L(u)} ⊂ ∪(u,v)∈EL∗(u, v).

Property 2 (Deterministic) The interval labels for edges directed from a node u are disjoint. That is, for

any v, where v �= u, L(v) is contained in exactly one of these interval labels.

It should be noted that these two properties are necessary but not sufficient for a valid IRS for

general graphs.

3 Upper Bounds on Multi-Label Interval Routing

3.1 Basic lemmas

Definition 6 Given a graph G = (V,E) with diameter D, a node x ∈ V , a positive integer i, a positive

constant α < 1 and positive constants p0 = 1, p1, . . . , pi, we define

• ∆i = αD
pipi−1···p1p0

,

• V i
x = {v ∈ V |d(x, v) ≤ ∆i}, and

• d(x,A) = min{d(x, a)|a ∈ A}, for A ⊂ V .

In particular, V 0
x = {v ∈ V |d(x, v) ≤ αD}.

Lemma 1 For any graph G = (V,E) with diameter D, if there exists a D′-dominating set of size O(M),

where D′ ≤ D, then there exists an O(M)-IRS such that the length of the longest path is bounded by

D + D′.
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Proof: We partition G into at most O(M) connected subgraphs such that each subgraph accom-

modates a spanning tree of depth D ′. Assume that there are m = O(M) subgraphs, denoted as

Gi = (Vi, Ei), with corresponding roots Ri, i = 1, . . . ,m.

We label the nodes in each Vi. The nodes’ labels of V1 are from 0 to |V1| − 1. For Vi, i =

2, 3, . . . ,m, the nodes’ labels are from
∑i−1

j=1 |Vj| to
∑i

j=1 |Vj| − 1. The labels of each Vi, i ∈ [1,m],

form an interval, Ii. Consider Gi. Its root Ri is labeled with the number
∑i−1

j=1 |Vj|, or 0 if i = 1. We

label the remaining nodes in a pre-order fashion based on the spanning tree.2

For routing inside Gi, we use the edges of the spanning tree only. We assign at most two inter-

val labels to each edge of the spanning tree. For downward routing, one interval label per down-

ward edge is enough, because with the pre-order numbering, the nodes’ labels for a downward

edge form an interval. Hence, each downward edge will have one interval label. The upward

edge will have two interval labels because for a node u, the labels of u and its descendants form

an interval due to the pre-order numbering, which means that the complement of this interval as

a set forms two intervals in Ii.

For routing from x to y, x ∈ Vi, y ∈ Vj , i, j ≤ m, i �= j, we first find a shortest path from x to

Rj . Let x, a1, a2, . . . , ak, Rj be the shortest path. If ai,∀i ∈ [1, k], is not in the spanning tree of Gj ,

we simply assign the directed edges (x, a1), (ak, Rj), (ai, ai+1), ∀i ∈ [1, k − 1], an interval Ij . If the

path x, a1, a2, . . . , ak is not disjoint with the spanning tree, we choose the minimum r such that

ar is in the spanning tree of Gj . We label the directed edges (a, a1), (a1, a2), . . . , (ar−1, ar) with an

interval Ij .

We count the maximum number of interval labels used by the edges. A directed edge (u, v)

which is not in any spanning tree and u ∈ Vi, i ∈ [1,m], has at most m − 1 interval labels which

are I1, I2, . . . , Ii−1, Ii+1, . . . , Im.3 (I1 ∪ I2 ∪ . . . ∪ Im = {0, 1, . . . , n − 1}.) A directed edge, which is

in one of the spanning trees, has two more intervals—i.e., m + 1 interval labels.

Consider the routing paths’ lengths. For routing inside each Gi, i ∈ [1,m], the routing paths

are at most two times the depth of the spanning tree, which is no longer than 2D ′, or less than

D + D′. For a routing from x to y, x ∈ Vi, y ∈ Vj , i, j ∈ [1,m], i �= j, we have two cases:

• The routing path passes through Rj .

The path from x to Rj takes at most D steps, and the path from Rj to y takes at most D′

steps, and so totally the routing path takes at most D + D ′ steps.

• The routing path does not pass through Rj .

It will reach the first node in Vj , say u. If y �= u, the routing path will be x, . . . , u, . . . , z, . . . , y,

where z is the root of the smallest subtree containing u and y. The path from x to z takes
2A similar technique was used in [9, 11].
3We can use at most m

2
interval labels because any two adjacent interval labels can be combined into one.
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less than D steps, and the path from z to y takes less than D ′ steps, and so the whole routing

path takes less than D + D′ steps.

We check the validity of this IRS with respect to Definition 5. The IRS is a simple path routing

scheme because a path from x to y, where x ∈ Vi, y ∈ Vj , i, j ≤ m, will follow their shortest path if

i �= j; otherwise, the path will follow the spanning tree to which x, y belong. This also guarantees

Property 2. Property 1 is guaranteed since we have considered all kinds of destinations from any

node in V . �

Actually, we can drop the big-O notation in the lemma statement such that if there exists a D ′-

dominating set of size M , where D ′ ≤ D, then we have an (M
2 + 1)-IRS such that the length of the

longest path is bounded by D + D ′. Moreover, from the result of Theorem 8 in [5], for M
log n → ∞,

we have an (M
4 + o(M))-IRS with the same dilation. This constant factor reduction of the space

complexity will benefit the result in Theorem 4. The same benefit may not apply to Theorem 5.

Lemma 2 Suppose ∃v ∈ V such that |V i
v | ≤ M , where i is a non-negative integer. Then there exists a

k-dominating set of size no greater than M , where k = max(2�∆i�, �D − ∆i�).

Proof: We find a BFS tree rooted at v. At the �∆ i�-th level of the tree, there must be less than M

nodes; otherwise, |V i
v | > M .

We assign a k-dominating set C to be the set containing the nodes at the �∆ i�-th level. Hence,

its size is bounded by M . For w (∈ V ) situated above the �∆i�-th level in the tree, d(w,C) ≤ 2�∆i�;
for w situated below the �∆i�-th level in the tree, d(w,C) ≤ D − �∆i� = �D − ∆i�. The result

follows by setting k = max(2�∆i�, �D − ∆i�). �

Lemma 3 Suppose ∀v ∈ V , |V 0
v | > M . Then there exists a k-dominating set of size no greater than n

M ,

where k = 2�∆0�.

Proof: There are at most n
M elements of V forming a subset C such that for any distinct x, y ∈ C ,

V 0
x ∩ V 0

y = ∅. Then, ∀w ∈ V \ C , ∃c ∈ C such that V 0
w ∩ V 0

c �= ∅. Since ∃t ∈ V 0
w ∩ V 0

c , d(w, c) ≤
d(w, t)+d(t, c) ≤ 2�∆0�. The result follows from letting C be a k-dominating set, where k = 2�∆0�.
�

Lemma 4 Suppose ∃v ∈ V , M ′ < |V i
v | ≤ M , and ∀a ∈ V i

v , |V i+1
a | > M ′, where i is a non-negative

integer. Then there exists a k-dominating set of size no larger than M
M ′ , where k = max(2�∆i+1�, �D −

∆i + 3∆i+1�).

Proof: Since |V i
v | ≤ f i(n), there exist at most M

M ′ elements of V i
v forming a subset C such that for

any x, y ∈ C , V i+1
x ∩ V i+1

y = ∅, and V i+1
x , V i+1

y ⊂ V i
v . We focus on a BFS tree rooted at v.
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Consider a w ∈ V \C such that d(w, v) ≤ �∆i� − �∆i+1�. That is, w is a node in V i
v and V i+1

w ⊂
V i

v . The reason that w �∈ C is that ∃c ∈ C such that V i+1
w ∩ V i+1

c �= ∅. Therefore, ∃t ∈ V i+1
w ∩ V i+1

c

such that d(w, c) ≤ d(w, t) + d(t, c) ≤ 2�∆i+1�.
For a node w ∈ V \ C such that d(w, v) > �∆i� − �∆i+1�, since the tree must have more

than �∆i� − �∆i+1� levels, we can find a (�∆i� − �∆i+1�)-th level element t such that d(t, w) ≤
�D − ∆i + ∆i+1�. If t ∈ C , the lemma is proved. If t �∈ C , ∃c ∈ C such that V i+1

t ∩ V i+1
c �= ∅;

and ∃t′ ∈ V i+1
t ∩ V i+1

c such that d(t, c) ≤ d(t, t′) + d(t′, c) ≤ 2�∆i+1�. Hence, d(w, c) ≤ d(w, t) +

d(t, c) ≤ �D − ∆i + 3∆i+1�. The result follows by letting C be a k-dominating set, where k =

max(2�∆i+1�, �D − ∆i + 3∆i+1�). �

3.2 The k-dominating set problem

Theorem 1 For any graph G, there exists a k-dominating set of size O(
√

n) where k ≤ �2
3D�.

Proof: We have two cases. First, consider that ∃v ∈ V such that |V 0
v | ≤

√
n. By Lemma 2, there

exists a k1-dominating set of size no greater than
√

n, where k1 = max(2�∆0�, �D − ∆0�). Second,

consider that ∀v ∈ V , |V 0
v | >

√
n. By Lemma 3, there exists a k2-dominating set of size no greater

than
√

n, where k2 = 2�∆0�. Take α = 1
3 . Then, k1 = k2 = �2

3D�, and the result follows. �

Theorem 2 For any graph G, there exists a k-dominating set of size O( 3
√

n) where k ≤ �8
9D�.

Proof: We have three cases. First, consider that ∃v ∈ V such that |V 0
v | ≤ 3

√
n. By Lemma 2, there

exists a k1-dominating set of size no greater than 3
√

n, where k1 = max(2�∆0�, �D − ∆0�). Second,

consider that ∀v ∈ V , |V 0
v | >

3
√

n2. By Lemma 3, there exists a k2-dominating set of size no greater

than n
3√

n2
= 3

√
n, where k2 = (2�∆0�). Third, consider that ∃v ∈ V , 3

√
n < |V 0

v | ≤ 3
√

n2. We have

two sub-cases.

1. ∃a ∈ V 0
v such that |V 1

a | ≤ 3
√

n.

By Lemma 2, there exists a k3-dominating set of size no greater than 3
√

n, where k3 =

max(2�∆1�, �D − ∆1�).

2. ∀a ∈ V 0
v , |V 1

a | > 3
√

n.

By Lemma 4, there exists a k4-dominating set of size no greater than
3√

n2

3
√

n
= 3

√
n, where

k3 = max(2�∆1�, �D − ∆0 + 3∆1�).

Let α = 4
9 and p1 = 4, k = max(k1, k2, k3, k4). Then, k = � 8

9D�, and the result follows. �

Theorem 3 For any graph G, there exists a k-dominating set of size O( 2+i
√

n), where k ≤ (1 − 1
3i+1 )D

and i is any integer constant greater than one.
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Proof: We first show the existence of a k-dominating set of size O( 2+i
√

n), for

k = max{2�∆0�, �D − ∆i�, max
j∈[1,i]

(�D − ∆j−1 + 3∆j�)},

and then we will bound the value of k by (1− 1
3i+1 )D. Let f j(n) = 2+i

√
ni+1−j,∀j ∈ [0, i]. Consider

the following three cases.

1. ∃v ∈ V, j ∈ [0, i] such that |V j
v | ≤ f i(n).

Since ∆i ≤ ∆j ≤ ∆0, the result follows from Lemma 2.

2. ∀v ∈ V , |V 0
v | > f0(n).

The result follows from Lemma 3.

3. ∃j ∈ [1, i], p ∈ [0, i − 1] such that f j(n) < |V p
v | ≤ f j−1(n) and ∀a ∈ V p

v , |V p+1
a | > f j(n).

The result follows from Lemma 4.

It remains to be shown that the above cases are complete. We assume that Cases 2 and 3 are

false and then prove that Case 1 must be true. Let the claim be that ∀p ∈ [0, i], ∃a ∈ V such that

|V p
a | ≤ fp(n). This claim implies Case 1, and will be proven by induction on p.

Since Case 2 is false, ∃v ∈ V such that |V 0
v | ≤ f0(n). So the base case is true. Assume ∃a ∈ V

such that |V p′
a | ≤ fp′(n), 0 < p′ < i. If |V p′

a | ≤ f i(n), then |V p′+1
a | ≤ |V p′

a | ≤ f i(n) ≤ fp′+1(n). If

|V p′
a | > f i(n), then ∃j ∈ [p′ + 1, i] such that f j(n) ≤ |V p′

a | ≤ f j−1(n). Since Case 3 is false, ∃b ∈ V p′
a

such that |V p′+1
b | ≤ f j(n), which implies |V p′+1

b | ≤ fp′+1(n). This completes the proof of the claim.

We need to bound value of k, that is to bound the terms 2�∆0�, �D−∆i�, and �D−∆j−1+3∆j�,
∀j ∈ [1, i], by (1 − 1

3i )D. We use the standard technique of making the above terms equal to each

other. Recall that ∆i = αD
pipi−1···p1p0

. We take pi = 4 and pi−1 = 13
4 . Let the denominators of pj

be qj , j ∈ [1, i − 1]. We take pj = 3qj+1
qj

, ∀j ∈ [1, i − 1], and qj−1 = 3qj + 1, ∀j ∈ [2, i − 1]. And

we take α = 3q1+1
2(3q1+1)+1 . Therefore, k = � 2(3q1+1)

2(3q1+1)+1D� = �(1 − 1
2(3q1+1)+1 )D�. We need to prove

2(3q1 + 1) + 1 = 3i+1.

Obviously, the value of q1 depends on i. For i = 2, we have p2 = 4 and p1 = 13
4 . Then,

3q1 + 1 = 13, or 2(3q1 + 1) + 1 = 27 = 32+1.

Assume 2(3q1 + 1) + 1 = 3k+1 when i = k. When i = k + 1, 2(3q2 + 1) + 1 = 3k+1 because the

value of q2 at i = k +1 equals the value of q1 at i = k. Then, 2(3q1 +1)+1 = 2(3(3q2 +1)+1)+1 =

3(2(3q1 + 1) + 1) = 3k+2. Hence, 2(3q1 + 1) + 1 = 3i+1, ∀i > 1. �

3.3 An O( i+1
√

n)-IRS, i ≥ 1

Theorem 4 For any graph G of diameter D and any non-negative integer i, there exists an O( 2+i
√

n)-IRS

such that the longest path length is bounded by �(2 − 1
3i+1 )D�.
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Proof: Together with Lemma 1, Theorems 1, 2 and 3 imply the cases of i = 0, i = 1 and i > 1,

respectively. �

Theorem 4 directly implies an O( i+1
√

n)-IRS with the length of all paths bounded by �(2 − 1
3i )D�,

where i is any positive integer constant.

3.4 An O( n
αD

)-IRS for any α ∈ (0, 1)

Lemma 5 (From [8]) For every connected graph G of n vertices and for every k ≥ 1 there exists a k-

dominating set of size at most max{1, � n
k+1�}.

The proof of Lemma 5 is based on a BFS tree. We apply the lemma to Theorem 5.

Without requiring the construction of a BFS tree, we can alternatively aim at a 2k-dominating

set of size at most �n
k �. We can partition V into V1, V2, . . . , Vm and V ′ such that (1) for all i ∈ [1,m],

the induced subgraph of Vi is a connected graph of size k, for some m ≤ �n
k �; and (2) the induced

subgraph of V ′ is a disconnected graph having m′ connected components, m′ ∈ [0, n − k], with

none of them having a size ≥ k. Let Gi be the induced subgraph of Vi, for all i ∈ [1,m], and let

G′
j = (V ′

j , E′
j) be the j-th connected component of the induced subgraph of V ′, for all j ∈ [1,m′].

For any j ∈ [1,m′], ∃i ∈ [1,m] and ∃(u, v) ∈ E such that u ∈ V ′
j , v ∈ Vi. Intuitively, a G′

j is a

neighbor of one or more Gi’s, but not a neighbor of G′
j′ , j′ �= j. For each j ∈ [1,m′], we attach G′

j

to one of its neighbors, Gi, i ∈ [1,m].

For those Gi’s not having been attached any G′
j , i ∈ [1,m], j ∈ [1,m′], a spanning tree of depth

≤ k exists.

For those Gi’s that have been attached G′
i1 , G

′
i2 , . . . , G

′
ip , i ∈ [1,m], is ∈ [1,m′], s ∈ [1, p], p ∈

[1,m′], we consider the subgraph Gi induced by Vi ∪ V ′
i1 ∪ V ′

i2 ∪ . . . ∪ V ′
ip . In Gi, there exists a

spanning tree of depth < k, and with root r. Let the edge connecting V i and V ′
is be (uis , vis),

s ∈ [1, p] and uis ∈ Vi, vis ∈ V ′
is . For all x ∈ V ′

is , there exists a path from r to x, passing through the

spanning tree of Gi, the edge (uis , vis), and a path from vis to x. The length of this path is at most

k + 1 + (k − 1) = 2k. Hence, a spanning tree of depth at most 2K for Gi exists.

It suffices to perform a DFS once. Starting from an arbitrary node, we start DFS and use a

counter to count the number of nodes within a connected component. If the counter reaches k,

then we can confirm that a subgraph Gi exists, i ∈ [1,m], and reset the counter. If we find a con-

nected component which cannot grow before the counter reaches k, we confirm that a subgraph

G′
j exists, j ∈ [1,m′]. This subgraph should be attached to its neighbor Gi, i ∈ [1,m]. Afterwards,

the counter is reset and the DFS continues.

Theorem 5 For any graph G, there exists an O( n
αD )-IRS such that the longest path is bounded by (1 +

2α)D, for any α ∈ (0, 1
2).

10



Proof: By Lemmas 1 and 5. �

3.5 Some remarks

We have presented two results on upper bounds:

1. An O( i+1
√

n)-IRS whose longest path is bounded by �(2 − 1
3i )D�, where i is any constant

positive integer.

2. An O( n
D )-IRS whose longest path is bounded by (1 + α)D, for any constant α ∈ (0, 1).

According to Definition 6, our first result is meaningful if αD ≥ pipi−1 · · · p1. This means that

if i is a constant, we can apply our result to arbitrary graphs of any diameter which can be as small

as O(1).

Our second result is mainly for graphs of large diameter, preferably Ω(
√

n). For graphs of

smaller diameter, this scheme uses more labels even though the longest path is shorter. For ex-

ample, if D = Ω(2
log n

log log n ), this scheme gives an O(n1− 1
log log n )-IRS whose longest path is slightly

longer than D. The other scheme above would give an O(log n)-IRS whose longest path is slightly

shorter than 2D.

We can easily generate an o(n3)-time labeling algorithm for each scheme. First, we apply

Fredman’s algorithm for the all-pair-shortest-path problem, whose running time is o(n3) [1]. By

scanning its output once, we can construct an n×n all-to-all distance matrix. With this matrix, we

can use O(n2) time to build an n×D matrix, where each cell (i, j) stores the number of nodes in V

having distance j from node i. With the second matrix, we can easily find the set C in each case.

We can then build the disjoint spanning trees rooted at elements in C and label the nodes, which

will take O(n2) time. Labeling the edges requires the shortest paths from all the nodes to each

element in C , which is available in the output of Fredman’s algorithm. Searching needs O(log n)

time. Labeling a path needs O(D) time. Totally, this part takes O(D|C| log n) time. Hence, we

have an o(n3)-time algorithm for each IRS.

4 Lower Bounds for Planar Graphs

4.1 The Graph

We use the globe graph GS,C,K , as shown in Figure 2, to prove our lower bounds. We define

GS,C,K = (VS,C,K , ES,C,K) which is of diameter D = CK, and size n = SCK + CK −S + 1, where

11
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Figure 2: The skeleton of GS,C,K .

K ≥ 2, C is even, and VS,C,K and ES,C,K are as follows.

VS,C,K = {vs,c|0 ≤ s ≤ S, 1 ≤ c ≤ C − 1}
∪ {xs,c,k|0 ≤ s ≤ S, 1 ≤ c ≤ C, 1 ≤ k ≤ K − 1}
∪ {tl, tr}

ES,C,K = {(xs,c,k, xs,c,k+1)|0 ≤ s ≤ S, 1 ≤ c ≤ C, 1 ≤ k ≤ K − 2}
∪ {(vs,c, xs,c+1,1)|0 ≤ s ≤ S, 1 ≤ c ≤ C − 1}
∪ {(xs,c,K−1, vs,c)|0 ≤ s ≤ S, 1 ≤ c ≤ C − 1}
∪ {(tl, xs,1,1)|0 ≤ s ≤ S}
∪ {(xs,C,K−1, tr)|0 ≤ s ≤ S}

There are S + 1 rows, of which the 0-th row is the “base row”. In each row, there are C − 1 vs,c’s.

All vs,c’s are grouped into C − 1 columns, as shown in Figure 2. With the columns formed by

xs,1,1’s and xs,C,K−1’s, there are C + 1 columns. For the convenience of discussion, let Xl be the

set {xs,1,1|1 ≤ s ≤ S}, Xr be {xs,C,K−1|1 ≤ s ≤ S}, and Ic be {vs,c| ≤ s ≤ S}, ∀c ∈ [1, C − 1].

Here, we consider the interval structure of the elements in X l ∪ Xr ∪ I1 ∪ I2 ∪ . . . ∪ IC−1. Also for

convenience, we let L+
c ≡ L∗(v0,c, x0,c+1,1) and L−

c ≡ L∗(v0,c, x0,c,K−1), for all c ∈ [1, C − 1]. For

the sake of simplicity, but without loss of generality, we assume that VS,C,K ≡ {0, 1, . . . , n−1} and

the node labeling function L is an identity function—i.e., ∀v ∈ VS,C,K, L(v) = v.

4.2 Basic Lemmas

We prove by contradiction. If there is an M -IRS such that the longest path is shorter than C+1
C D−1,

the following lemmas (7 and 8) must hold.
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Lemma 6 ∃pr ∈ [1,M ] such that there are pr disjoint intervals which contain all elements in Xr but none

of the elements in Xl ∪ I2 ∪ I4 ∪ · · · ∪ IC−2.

Proof: Consider a base node v0,1. By the assumption on the path length, we have Xl ∪ I2 ∪ I4 ∪
· · · ∪ IC−2 ⊂ L−

1 , and Xr ⊂ L+
1 . By the definition of M -IRS, we have at most M disjoint intervals

containing Xr but not any elements in Xl ∪ I2 ∪ I4 ∪ · · · ∪ IC−2. Therefore, the existence of a pr in

the lemma statement is guaranteed. �

Lemma 7 ∃pl ∈ [1,M ] such that there are pl disjoint intervals which contain all elements in Xl but none

of the elements in Xr ∪ I2 ∪ I4 ∪ · · · ∪ IC−2.

Proof: Similar to the proof of Lemma 6. �

Lemma 8 For each c ∈ {2, 4, . . . , C − 2}, ∃pc ∈ [1, 2M ] such that there are pc disjoint intervals which

contain all elements in Ic but none of the elements in Ic′ , c′ ∈ {2, 4, . . . , C − 2}, c′ �= c, and not any

elements in Xl ∪ Xr.

Proof: Consider v0,C−γ−1, γ ∈ [1, C − 2]. Let A be Xr ∪ IC−2 ∪ IC−4 ∪ · · · ∪ Iγ+2 and B be Xl ∪
I2 ∪ I4 ∪ · · · ∪ Iγ−2. By the assumption of path length, A ⊂ L+

C−γ−1 and B ∪ Iγ ⊂ L−
C−γ−1. Then,

∃p ∈ [1,M ] such that there are p disjoint intervals—A1,A2, . . . ,Ap—containing all elements in A

but not any elements in B ∪ Iγ , and there are p disjoint intervals—B∗1,B∗2, . . . ,B∗p—containing

all elements in B ∪ Iγ but not any elements in A. Then, we have

A1 ≺ B∗1 ≺ A2 ≺ B∗2 ≺ · · · ≺ Ap ≺ B∗p.

The A’s and B∗’s alternate (Figure 3); otherwise, we can group two A’s or two B∗’s together and

choose a smaller p.

Similarly, by considering v0,C−γ+1, ∃q ∈ [1,M ] such that there are q disjoint intervals—B1,B2, . . . ,Bq—

containing all elements in B but not any elements in A ∪ Iγ . For the convenience of discussion,

we can restrict the marginal elements of B’s to be in B. Then, the q B’s may intersect with p B∗’s

only; they cannot have any intersections with any one of A’s. Therefore, these p + q intervals— p

A’s and q B’s—are non-overlapping (Figure 3).

All elements of Iγ cannot be in the p A’s, nor in the q B’s. They can only be in the “gap”

between two A’s, or between two B’s, or between one A and one B. There are p + q such gaps.

In other words, they belong to the set {0, 1, 2, . . . , n − 1} \ (∪p
i=1Ai ∪ ∪q

j=1Bj) which are in at most

p + q disjoint intervals.

Hence, all elements in Iγ are in at most p + q ≤ 2M disjoint intervals which do not contain any

elements of A ∪ B. �
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Figure 3: Cyclic structures of three A’s, three B∗’s and four B’s.

Lemmas 7 and 8 show the interval structure of the elements in Xl ∪ Xr ∪ I2 ∪ I4 ∪ · · · ∪ IC−2.

By a similar argument, we have the following, Lemma 9, which states the interval structure of

I1 ∪ I3 ∪ · · · ∪ IC−1.

If there is an M -IRS such that the longest path is shorter than C+1
C D, the following lemma

holds. Note that the additive term “−1” is not necessary here.

Lemma 9 (1) ∃p1 ∈ [1,M ] such that there are at least p1 disjoint intervals which contain I1 but not any

elements in I3 ∪ I5 ∪ · · · ∪ IC−1. (2) ∃pC−1 ∈ [1,M ] such that there are at least pC−1 disjoint intervals

which contain IC−1 but not any elements in I1 ∪ I3 ∪ · · · ∪ IC−3. (3) For each c ∈ {3, 5, . . . , C − 3},

∃pc ∈ [1, 2M ] such that there are at least pc disjoint intervals which contain Ic but not any elements in Ic′ ,

c′ ∈ {1, 3, . . . , C − 1}, c′ �= c.

Proof: Similar to the proofs of Lemmas 7 and 8. �

4.3 The first bound: 2M+1
2M

D − 1 for M = O( 3
√

n)

Theorem 6 There exists a planar graph of diameter D = 2MK such that for any valid M -IRS, the longest

path will be no shorter than 2M+1
2M D − 1.

Proof: We use the graph GS,C,K and let C = 2M . Assume that there exists a valid M -IRS such that

every path is shorter than 2M+1
2M D − 1. Then, Lemmas 7 to 9 hold.
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Let A be the set Xl ∪ Xr ∪ ∪M−1
c=1 I2c. By Lemmas 7, 6, and 8, we have (1) pl (≤ M ) disjoint

intervals which contain all elements in Xl but not A \ Xl, (2) pr (≤ M ) disjoint intervals which

contain all elements in Xr but not A \ Xr, and (3) for each c ∈ {2, 4, . . . , 2M − 2}, pc (≤ 2M )

disjoint intervals which contain all elements in Ic but not A \ Ic, where these pl + pr +
∑M−1

c=1 p2c

(≤ 2M2) intervals, called A’s intervals hereafter, are non-overlapping.

For convenience, the marginal elements of A’s intervals are assumed to be in A; mathemati-

cally, if any one of these intervals has marginal element(s) not in A, we can replace it by its largest

sub-interval such that its marginal elements are in A.

Consider the set B = ∪M
c=1I2c−1. By Lemma 9, for each c ∈ {1, 3, . . . , 2M − 1}, there are pc

disjoint intervals which contain all elements in Ic but not B \ Ic, where p1, p2M−1 ≤ M , pc ≤
2M,∀c ∈ {3, 5, . . . , 2M − 3} and these

∑M
c=1 p2c−1 (≤ 2M2 − 2M) intervals, called B’s intervals

hereafter, are non-overlapping. Similarly, if any one of these intervals has marginal element(s) not

in B, we can replace it by its largest sub-interval such that its marginal elements are in B.

We now show that the two sets of intervals will lead to a contradiction. Since there are at

most two marginal elements in an interval, there are at most 8M 2 − 4M rows, each of which

having at least one marginal element in any one of A’s intervals or in any one of B’s intervals.

Assume there is a sufficiently large number of rows. We take a row, say the i-th row, which has

marginal elements neither in A’s intervals nor in B’s intervals. Consider L∗(tl, xi,1,1). It contains

xi,1,1, vi,2, vi,4, . . . , vi,2M−2; otherwise, a routing path from tl will be longer than 2M+1
2M D − 1. Since

these M elements—xi,1,1, vi,2, vi,4, . . . , vi,2M−2—are not marginal elements of A’s intervals, an in-

terval containing any two of them (vi,2, vi,4, say) will contain the marginal elements (vi′,2, vi′′,4,

say) of A’s intervals to which the two elements belong (Figure 4). According to the assump-

marginal elements

Figure 4: Two marginal elements are grouped.

tion on the path length, L∗(tl, xi,1,1) cannot contain any elements in A \ Xr except that from the

i-th row; hence it cannot contain any marginal elements of those A’s intervals containing A\Xr be-

cause these marginal elements are not from the i-th row. In order to contain x i,1,1, vi,2, vi,4, . . . , vi,2M−2,

L∗(tl, xi,1,1) must be a union of M disjoint intervals which contain xi,1,1, vi,2, vi,4, . . . , vi,2M−2, re-

spectively.

Since vi,1, vi,3, . . . , vi,2M−1 ∈ L∗(tl, xi,1,1), by similar argument, the M disjoint intervals of

L∗(tl, xi,1,1) must contain vi,1, vi,3, . . . , vi,2M−1, respectively. Hence, ∃q ∈ {1, 3, . . . , 2M − 1} such
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that vi,q and xi,1,1 belong to the same interval label of L∗(tl, xi,1,1), say L1(tl, xi,1,1). Let the A’s in-

terval which contains xi,1,1 be Xo
l . Since L1(tl, xi,1,1) contains xi,1,1 but not the marginal elements

of Xo
l , L1(tl, xi,1,1) is a proper sub-interval of Xo

l . Hence, vi,q is a non-marginal element of Xo
l

(although it is not an element of Xl).

Consider L∗(tr, xi,C,K−1). vi,q, vi,2, vi,4, . . . , vi,2M−2, xi,C,K−1 ∈ L∗(tr, xi,C,K−1); otherwise, the

assumption on the path length will be violated. Hence, L∗(tr, xi,C,K−1) contains M + 1 non-

marginal elements of different A’s intervals. By the Pigeon Hole Principle, one of the interval

labels of L∗(tr, xi,C,K−1), say L1(tr, xi,C,K−1), will contain two elements from vi,q, vi,2, vi,4, . . . ,

vi,2M−2, xi,C,K−1, and one of them must be from vi,2, vi,4, . . . , vi,2M−2, xi,C,K−1 (∈ A\Xl). L1(tr, xi,C,K−1)

will therefore contain a marginal element of the A’s interval containing A\Xl. Hence, the assump-

tion on the path length is violated. �

Corollary 1 There exists a planar graph G of diameter D such that if we use 3

√
n
32 or fewer labels, then G

has a path of length at least 2M+1
2M D − 1.

Proof: To reach a contradiction in the proof of Theorem 6, we set C = 2M ,

S = 8M2 − 4M + 1 and K = 2. Recall that n = SCK + CK − S + 1, and so we have M > 3

√
n
32 . �

4.4 The second bound: 2(1+δ)M+1
2(1+δ)M

D for M = O(
√

n)

By extending the length of the chain in GS,C,K , we can arrive at a different lower bound on the

longest path and a different requirement on the number of labels. We again prove by contradiction.

Unlike the previous proof, here we make use of Lemma 9, and the following lemma.

Object
Gap in a subfile

Gap not in a subfile

First Example Second Example

Figure 5: Two examples of Lemma 10 with M = 5 and δ = 4/5.

Lemma 10 Suppose that (1+δ)M objects arranged in a single file and a gap between two adjacent objects,

where δM is an integer. Dividing them into M sub-files (some of them may be empty) would result in at

least δM gaps being in the sub-files.

Proof: (Outline) A sub-file containing K objects will contain K − 1 gaps. �

An example is shown in Figure 5.
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Theorem 7 There exists a planar graph of diameter D = 2(1 + δ)MK such that for any valid M -IRS, the

longest path will be no shorter than 2(1+δ)M+1
2(1+δ)M D for any constant δ ∈ (0, 1].

Proof: We use the graph GS,C,K and set C = 2(1 + δ)M . Assume the contrary that there is an

M -IRS such that the longest routing path is shorter than 2(1+δ)M+1
2(1+δ)M D.

Let B be the set ∪(1+δ)M
c=1 I2c−1. By Lemma 9, for each c ∈ {1, 3, . . . , 2(1 + δ)M − 1}, there

are pc disjoint intervals which contain Ic but not B \ Ic, where p1, p2(1+δ)M−1 ≤ M,pc ≤ 2M ,

∀c ∈ {3, 5, . . . , 2(1 + δ)M − 3}, and these
∑(1+δ)M

c=1 p2c−1 (≤ 2(1 + δ)M2 − 2M) intervals, called B’s

intervals hereafter, are non-overlapping.

Consider L∗(tl, xi,1,1). {vi,j |j = 1, 3, . . . , 2(1 + δ)M − 1} ⊂ L∗(tl, xi,1,1); otherwise the assump-

tion on the path length will be violated. The elements {vi,j |j = 1, 3, . . . , 2(1 + δ)M − 1} all fall

into different (1 + δ)M B’s intervals, but L∗(tl, xi,1,1) is a union of at most M disjoint intervals.

By Lemma 10, at least δM gaps between B’s intervals are “covered” by L∗(tl, xi,1,1) (Figure 6). By

gap

Figure 6: Two gaps between B’s intervals are covered.

Property 2, these δM covered gaps cannot be covered again by L∗(tl, xi′,1,1), for i �= i′.

Hence, each row will cover at least δM gaps, but there are 2(1 + δ)M 2 − 2M B’s intervals and

hence 2(1+ δ)M2 −2M gaps in between. If we set s to be 2(1+δ)M−2
δ + 1

δM , we have a contradiction

since we cannot provide δM gaps for each row to cover. �

Corollary 2 There exists a planar graph G of diameter D such that if we use
√

δn
4(1+δ)2 or fewer labels, then

G has a path of length at least 2(1+δ)M+1
2(1+δ)M D, for any constant δ ∈ (0, 1].

Proof: To reach a contradiction in the proof of Lemma 7, we set C = 2(1+δ)M , S = 2(1+δ)M−2
δ + 1

δM

and K = 1. Recall that n = SCK + CK − S + 1, and so we have M >
√

δn
4(1+δ)2 . �

5 Conclusion

We have presented an O( i+1
√

n)-IRS whose longest path is bounded by �(2 − 1
3i )D�, where i is

any positive integer constant. Comparing with the lower bound of 3
2D − 1 [3], there is still much

room for narrowing the gap. The second result is an O( n
D )-IRS whose longest path is bounded by

(1 + α)D, for any constant α ∈ (0, 1). It is applicable to graphs with a large diameter. For these
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graphs, our result improves the results in [5, 6]. For graphs with a very large diameter such as

D = O(n), this result is close to the optimal. Further research is necessary for graphs with a small

diameter.

Our results for planar graphs are based on the globe graph which is a very simple but useful

graph structure. The first result is a lower bound of 2M+1
2M D − 1 on the longest path length for

any M -IRS, where M = O( 3
√

n). The second result is another lower bound of 2(1+δ)M+1
2(1+δ)M D for

M = O(
√

n), for any constant δ ∈ (0, 1]. Both lower bounds are slightly above the trivial lower

bound of D. Comparing with the upper bound result in [5], we can see that a wide gap still exists.

Acknowledgements

We thank the referees for their very clear and useful advice and comments. This research is sup-

ported in part by a Hong Kong RGC grant (HKU7034/99E).

References

[1] M.L. Fredman, ”New Bounds on the Complexity of the Shortest Path Problems”, SIAM Jour-

nal on Computing, vol 5, no. 1, pp.83–89, 1976.

[2] C. Gavoille, “A Survey on Interval Routing”, Theoretical Computer Science, 245(2):217–253,

2000.

[3] C. Gavoille, “On Dilation of Interval Routing”, The Computer Journal, 43(1), 1–7, 2000.

[4] C. Gavoille and S. Pérennès, “Lower Bounds on Interval Routing on 3-Regular Networks”,

Proc. 3rd International Colloquium on Structural Information & Communication Complexity

(SIROCCO’96), 88–103, 1996.

[5] C. Gavoille, D. Peleg, A. Raspaud, and E. Sopena, “Small k-Dominating Sets in Planar Graphs

with Applications”, in Proc. 27th Internation Workshop on Graph-Theoretic Concepts in Computer

Science (WG’01), Lecture Notes in Computer Science, vol 2204, 201–216, 2001.
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