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hinese calligraphy is among the finest and most important of all Chinese art forms

and an inseparable part of Chinese history. Its delicate aesthetic effects are gen-

erally considered to be unique among all calligraphic arts. Its subtle power is integral to

traditional Chinese painting, where—as figure 1a shows—calligraphy is not just an

annotation but also a stylized visual component
affecting the viewer’s emotional response to a paint-
ing. This emotional effect also explains why, as fig-
ure 1b shows, calligraphy is often preferred to printed
type in Asian banners, signage, newspaper mast-
heads, and other promotional contexts. The 2008
Beijing Olympics Games logo (http://en.beijing-
2008.org) is a recent example.

Chinese calligraphers predominantly use a soft
hair brush. Generating artistically appealing callig-
raphy with the brush can be highly challenging. The
brush-stroke shapes as well as the topology over mul-
tiple strokes are often very complex. The Chinese
language’s large character set—more than 3,000
commonly used characters—presents a problem all
its own. Being able to master some of the characters
doesn’t mean that you can also write the other char-
acters as satisfactorily. Similarly, mastery of one or
more styles doesn’t necessarily indicate mastery in
other styles, let alone creativity in generating new
styles. This is where computers can help.

In the digital world, calligraphic art is most often
applied to creating typographic or artistic fonts for
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printing or display; Donald Knuth has done pioneer-
ing work in this area.! We propose an intelligent sys-
tem that can automatically create novel, aesthetically
appealing Chinese calligraphy from a few training
examples of existing calligraphic styles. To demon-
strate the proposed methodology’s feasibility, we have
implemented a prototype system that automatically
generates new Chinese calligraphic art from a small
training set—typically, fewer than 10 samples for each
character. To the best of our knowledge, no other pub-
lished work uses our approach. One remotely related
project uses analogous reasoning to simulate the cre-
ativity in jazz performance and to model other artis-
tic activities from the simulation.”

Overall approach and
system architecture

Let P denote a model with a parameterization E
that is flexible enough to represent a class of highly
deformable shapes—different Chinese character
styles, in our case. Normally, constructing a flexible
model requires significant effort. At the same time,
arbitrary instantiations from such models can easily
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generate unacceptable results. Thus, a model-
based approach to generating novel and yet
aesthetically appealing calligraphy is by no
means straightforward. Our approach uses a
constraint-based analogous-reasoning process
(ARP), which we apply to a given set of train-
ing examples. Analogous reasoning basically
fuses knowledge from multiple sources to sup-
port a restricted form of reasoning.? In our
case, the knowledge sources are training
examples, which are in the form of images.
In our experiments using the prototype
system, the training examples come from
printed “copybooks” that present multiple
calligraphic styles. Because Chinese charac-
ters derived from pictographs, which evolved
over time into symbols, many basic features
recur in different Chinese characters. To take
advantage of this redundancy, we devised a
hierarchical representation for Chinese char-
acters as the basis for our process. The pro-
posed ARP consists of three major phases:

e Shape decomposition. Decomposing (or
recovering) the calligraphic shapes of a
given training example is equivalent to the
problem of extracting structural features
for constructing a reference model P. The
reference model is an instance of the
model 7P that best represents the input
example. The underlying mechanism in
our approach is character stroke segmen-
tation and extraction.

e Calligraphy model creation from exam-
ples. Given n reference models {P;},
where i is the index of the reference model
constructed from a set of training exam-
ples, we can define a family of novel
shapes P(w) by blending the reference
models: first, we identify the correspond-
ing structural features among the reference
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Figure 1. Artistic Chinese calligraphy in Asian societies: (a) Chinese painting with
calligraphy; (b) top—ceiling of a Kong Zi (Confucius) temple; bottom—masthead of

the China Daily newspaper.

models; then, we combine the aligned
models by interpolating or extrapolating
the parameterizations {E}. The newly
derived shape family is essentially a “re-
parameterization” via the blending para-
meters, @, which control the contribution
of each training example.

e Artistic calligraphy generation. Given
P(w) and a set of aesthetics-related geo-
metrical constraints, we identify some ®
that satisfies the given constraints.

Figure 2 shows the overall architecture of the
proposed intelligent calligraphy generation
system.

Character representation

Our proposed system decomposes Chi-
nese calligraphy into the six levels shown in
figure 3a: constructive ellipse, primitive
stroke, compound stroke, radical, single
character, and complete artwork. We adopted
parametric representations at all levels. Taken
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Figure 2. System architecture for intelligent calligraphy generation.
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Figure 3. Chinese calligraphy representation: (a) six-level representation hierarchy; (b) four levels in the representation for the

Chinese character “zhe.”

together, these representations form the para-
meter space E for modeling Chinese callig-
raphy artwork.

Prototype implementation

In the prototype system, we’ve imple-
mented five typical, frequently occurring
primitive strokes: points, horizontals, verti-
cals, left slants, and right slants. Figure 4
shows these strokes as well as 24 typical, fre-
quently occurring compound strokes and 36
radicals. Figure 3b shows the hierarchical rep-
resentation of the Chinese character “zhe,” as
in “Zhejiang,” a scenic coastal province and
the home of Zhejiang University.

Level O of the hierarchical representation
views an artwork as a collection of con-
structive ellipses (see figure 3a). The system
will render the artwork’s “image” as the
image space regions that the constructive
ellipses cover. This representation is inspired
by the Blum model,* which defines a zonary
area by an ellipse moving along a predefined
curve. A 4 X 1 matrix parameterizes each
constructive ellipse: two rows store the coor-
dinates of the constructive ellipse’s center,

and the other two rows store the lengths of
its major and minor axes.

Traversing the hierarchy from the bottom
up, the system first “lines up” the construc-
tive ellipses to form primitive strokes (level
1). Then, using shape grammar rules, it com-
bines primitive strokes to form compound
strokes (level 2), which are subsequently
combined to form radicals (level 3). By
grouping radicals according to their spatial
proximity, the system forms single charac-
ters (level 4). It blends learned examples of
the same character in different styles into a
flexible character model.

Finally, the top-level constructive element
is calligraphy artwork (level 5), which might
combine more than one character.

Advantages of the hierarchical
parametric approach

Because our approach generates new cal-
ligraphic styles by reasoning from a set of
existing styles, it belongs to the hard domain
of qualitative reasoning. Our parametric
representation offers a tool to attack the
challenging qualitative-reasoning problem
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through quantitative means—analogous
reasoning together with aesthetic constraint
satisfaction.

Hierarchical representation enables effi-
cient local learning of constructive elements
and reduces the huge global-knowledge
representation space to only local shape-
variation characterizations. It also supports
efficient retrieval (and thus reuse) of past
calligraphy artwork reasoning results.

The hierarchical parametric approach
can represent all calligraphy styles—
including cursive styles that are heavily
deformed and distorted—in a uniform six-
level hierarchy, and it can process the char-
acters using the same reasoning pipeline.
This increases our system’s capability to
learn and generate cursive calligraphy,
which is an important aspect of calligraphic
aesthetics.

Shape decomposition

In the first of its three phases, our system
extracts hierarchical and parametric represen-
tations from the knowledge sources, which are
static images of calligraphy artwork.
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Extracting levels 0-1 elements

To extract primitive strokes and thus the
corresponding constructive ellipses from a
training example, we first compute the input
image’s skeleton—that is, a close approxi-
mation to the brush’s actual trajectory when
the calligrapher created the artwork.

Various approaches exist for skeletoniz-
ing binary character images. We employed
the algorithm proposed by Rong He and
Hong Yan,> which composes the extracted
skeleton from segmented primitive strokes.
Figure 5 gives a step-by-step illustration.
Such a stroke decomposition is by no means
optimal, and our system can benefit from any
improved decomposition algorithm.

To further enhance the robustness of the
stroke identification step, the system uses
several structural variants of the five prim-
itive strokes in figure 4. Once it identifies
the primitive stroke skeletons, the system
uses Bresenham’s ellipse rasterization algo-
rithm® to compute all the constructive
ellipses.

Extracting levels 2-3 elements

We identify compound strokes and radi-
cals by analyzing the spatial relation between
the primitive and compound strokes, respec-
tively. The analysis uses carefully designed
shape grammar production rules. The syn-
tactic description of any constructive element
is represented using the production system’s
syntax and generated using rule deduction.

As an example, the shape production rule
for the compound stroke in the upper left-
most corner of figure 4b, denoted as (51, is
as follows:

IF horizontal(a) AND

vertical(h) AND ontop(a,b) AND onleft(a,b) AND
touch(a,b)

THEN (51 := {a,b}

where horizontal(a), vertical(b), onfop(a,b), onleft(a,b),
and touch(a,b) are the predicates indicating the
relationships of horizontal primitive stroke,
vertical primitive stroke, o on top of b, a on
left side of b, and {a,b} touching each other,
respectively.

We use fuzzy set theory to increase the
extraction process’s reliability.” This approach
lets us associate a confidence value with each
shape production rule via the deduction
process. The system derives an overall confi-
dence value for the shape grammar produc-
tion from the confidence values of all its state-
ments. Then it applies the rule that yields the
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Figure 4. (a) Five primitive strokes, (b) 24 compound strokes, and (c) 36 radicals.

highest overall confidence for the corre-
sponding stroke composition.

Extracting level 4 elements

To extract the level 4 constructive ele-
ments, we must determine which radicals can
be grouped to form a character. This is equiv-
alent to the well-known “character segmen-
tation” problem in pattern recognition. In our
system, we use standard projection analysis®
to segment the individual characters in a cal-
ligraphy artwork.

Calligraphy model creation
from examples

To generate new calligraphic art, we apply
analogous reasoning to a training set of dif-

ferent calligraphic styles. Our approach has
roots in Herbert A. Simon’s notion of artistic
design generation and synthesis, discussed in
19753 and in Mark Keane’s later application
of analogical mechanisms to problem solv-
ing.” In general, we can view ARP as a
process that synthesizes new knowledge—
shapes, in our case—by fusing or blending
with existing, independent knowledge
sources—that is, the training examples. To
support the fusion, the process must establish
feature correspondence between the knowl-
edge sources.

In principle, we can apply ARP at difter-
ent hierarchical levels, resulting in different
artistic effects. Assume that we apply it to
Py ,,» the mth constructive element at the kth
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Figure 5. Extracting levels 0-1 elements of a character from its image: (a) the input
image, (b) the raw skeleton computed using a thinning algorithm, (c) the plausible
short branches detected and color marked, (d) the short branches identified and

removed, (e) the skeleton segmented into different strokes in the character and color

coded, and (f) the reconstructed character using the extracted levels 0-1 elements.
Note that the reconstructed image (f) and the original image (a) have slight
differences at the ends of some strokes, as shown in the red rectangles.
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level of the hierarchical representation, and
that n different versions of Py, exist, P}, ...,
P} ., derived from n training examples—the
independent ARP knowledge sources. The
ARP result is denoted as P},,. We can then
state the general mathematical principle:

n
roo_ i pi
Pk,m —260 Pk,m
i=1

where w/(i = 1, ..., n) is defined as the anal-
ogous reasoning intensity for P}, with the
constraint that ¥/ @' = 1.

Obviously, a P}, with a higher @ value
would contribute more to the overall reason-
ing result.

We can interpret the proposed ARP as
either an interpolation or an extrapolation
process. We’re assuming a one-to-one corre-
spondence among different versions of Py ,,..
In reality, a constructive element, such as a
constructive ellipse or a primitive stroke,
derived from a training example can corre-
spond to one element in another training
example in more than one way. The process
therefore requires a feature correspondence
step before it can blend together features
extracted from the different examples. In our
intelligent calligraphy generation system, the
user can either adjust all the analogous rea-
soning intensities manually through a graph-
ical interface or generate them randomly. The
intensities are fed to a subsequent phase that
automatically filters out those that violate
aesthetic constraints.

Fusing knowledge sources in ARP

To establish the feature correspondence
between training examples, we first derive a
discrete planar curve for each constructive
element Pf,, using the centers of all the con-
structive ellipses associated with it. The
curve forms the element’s skeleton, and we
use Pengfei Zhu and Paul Chirlian’s algo-
rithm'? for detecting the critical points on the
planar curves as the key points for setting up
the correspondence. Details of this process
are available online at http://pantheon.
yale.edu/~sx25/ca.

In our application, we first assume the
shape of a constructive element in the font
style “Kai” (the GB2312 character set used
in the recent version of Microsoft Word) to be
the standard reference, which we denote as
P34, Because the shape decomposition
phase has already extracted the Py ,,’s shape,
we can easily compute the deviation F}, by
which the shape of the ith source P}, differs

RERSONING

from that of P§4,, as follows:
Fj, = P, © P,

After computing all the deviations of the
reasoning sources F} ,, -+, F{ ,, we can then
derive the overall deviation F7, as follows:

Fim = Q(F}(,m, AR} Fﬁm’ w)

where @ is defined as the analogous reason-
ing mechanism simulation operator, which
our prototype system implements as an inter-
polation or extrapolation process, and @ is
the aesthetic viewpoint sequence dictating
the weights and contribution order for dif-
ferent sources. The ordered set of intensities
is ARP’s viewpoint sequence. So not only dif-
ferent reasoning intensities affect the final
output, but also different orders of the train-
ing examples.

Finally, by adding back the P4, shape
(that is, the standard constructive element
associated with ARP’s reasoning result P} ),
we obtain

Plm=Fi, @ Pl

where the operator @ is a reverse function of
the operator ©.

Note that the system can apply ARP not
only to the constructive elements from all the
reasoning sources but also to some topolog-
ical constructors in the form of geometric
transformation matrices for the correspond-
ing constructive elements. The topological
constructors further increase the reasoning
power. Simple ARP simulation operators for
the topological constructors include arith-
metic mean, geometric mean, and harmonic
mean.

A computational-psychology
perspective

If all the knowledge sources’ intensities
fall within (0, 1), ARP is simulated using an
interpolation process; otherwise, it’s simu-
lated using an extrapolation process. From a
psychological point of view, the negative val-
ues for the reasoning intensities reflect the
brain’s inverse reasoning activities, which
treat certain input source knowledge as neg-
ative examples.

By contrast, positive values correspond to
exaggeration of brain activities, in which the
larger an input example’s reasoning inten-
sity, the more heavily the generated result
will follow the input source knowledge’s
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style. When the number of knowledge
sources is greater than two, ARP mimics
combined thinking activity, which will make
use of several knowledge reference cases
during the reasoning process.

Artistic calligraphy generation

With the mechanisms of calligraphic
shape decomposition and model creation
from examples in place, we can easily gen-
erate candidates for original calligraphy art-
work by randomly perturbing the reasoning
intensities. The analogous reasoning steps
apply equally as well to a single parameter
of a constructive ellipse as they do to all the
parameters of a character. This provides a
highly flexible system for varying shapes to
generate many possible candidates.

A filtering step ensures that only candi-
dates meeting aesthetic requirements are
output.

Extracting aesthetic constraints
from training examples

Aesthetic constraints are criteria that quan-
tify the aesthetic quality of a candidate or its
parts. There are two categories:

* constraints for the visual appearance of a
constructive element, and

e constraints for the spatial relationship
between neighboring constructive ele-
ments.

Fortunately, the proposed ARP can auto-
matically guarantee satisfaction of the first
constraint—at least under most circum-
stances—because the constructive elements
are parametric. Therefore, we need focus
only on deriving and applying constraints of
the second type to guarantee the generation
of visually pleasing calligraphy.

An important consideration for a quantifi-
able constraint on aesthetics is the degree of
overlap between two constructive elements.
Our system uses three types of overlapping
between a pair of elements, a and b: the x-
dimensional overlapping ¥ ,(a, b), the y-
dimensional overlapping v,(a, b), and the
area overlapping ¥(a, b). All three measures
are based on the constructive element’s
bounding boxes. After computing the over-
lapping measures for all element pairs of the
training examples, the system records their
upper and lower bounds. The upper bound
keeps two neighboring elements in a new cal-
ligraphy artwork from being squeezed too
closely together while the lower bound keeps
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them from being too far apart. These over-
lapping measures then direct the process of
generating the upper-level constructive ele-
ments from the lower-level ones.

The overall effect is to constrain ARP
from perturbing the spatial relationships of
each constructive element’s subcomponents
too much beyond what they are in the train-
ing examples. Thus, for example, if ARP
generates a calligraphy candidate that con-
tains subconstructive elements whose x-
dimensional overlapping is smaller than the
derived lower bound, the prototype system
will reject the candidate.

If needed, end users can relax the upper-
and lower-bound constraints to allow for new
styles that cannot be easily imagined. In our
system, users can adjust the two bounds
interactively according to their preferences.
Thus, choosing the best values for the two
bounds becomes a matter of personal aes-
thetic taste. According to our experience with
the prototype system’s behaviors, relaxing or
ignoring the ARP constraints seems to cre-
ate a more cursive and running-style writing.

Using past results for
efficient reasoning

You could choose a random process to sim-
ulate ARP, but this might be computationally
intensive. Reusing past results can make the
reasoning process more efficient. In addition,
the hierarchical representation lets users reuse
whole or partial results. Our proposed system
therefore offers a high degree of reusability
of past reasoning results.

Experimental results

Figure 6 shows the results our prototype
system obtained using six training examples
as the input knowledge sources and linear
interpolation to simulate the ARP generation
step. Figure 7 shows the results of using five
training examples and a nonlinear interpola-
tion process. In the latter case, you can easily
see the consistency in style among characters
within the same newly generated calligraphic
piece. Space limitations restrict the results
shown to a small set; more results are avail-
able at http://pantheon.yale.edu/~sx25/ca.

The results show that our approach can
yield novel calligraphy styles given some
existing ones. To verify that the system was
generating quality outputs, we asked practic-
ing artists, art school professors, and calligra-
phy enthusiasts to examine the outputs; most
of them considered the generated calligraphy
to be novel with regard to their writing style.

MAY/JUNE 2005

K Z’*iiié?i‘( By
AFSFAPRSPAPAPS
SaENE LS S5 SEUER
i34 502 A i< e o
X”" ,Zi: ,]’/. FE 4’§< ;Iz. é; 7‘}(

Figure 6. A single character in many styles; the first row is the training examples, and
the other rows are automatically generated by our system.

In addition, we analyzed the system’s sen-
sitivity in terms of its “creativity” by vary-
ing the number of training examples. In this
experiment, we used training examples in
training examples of different calligraphy
styles, including Kai, Li, Xingshu, Weibei,

Xingkai, Xingchao, and Kuangchao. We
invited six calligraphic fans with at least two
years’ writing experience and four profes-
sional calligraphists to form a review com-
mittee. They cast votes on the system-gener-
ated calligraphic art. If a result received more
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Figure 7. A calligraphic couplet, or epigram, in many styles: (a) the training examples;

(b)—(l) selected computer-generated results.
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Figure 8. “Forever running.” The calligra-
phy is styled to match a horse created
with paint-brush software.

RERSONING

than seven votes, it was considered a new cal-
ligraphic work. With more training examples
of different styles, the chance of generating
a creative and yet aesthetically acceptable
calligraphic art increased. Also, nonlinear
ARP generated more creative calligraphic art
than linear APR. Using from six to seven
training examples, the linear process gener-
ated about 30 acceptable calligraphic works
and the nonlinear process generated more
than 50.

Figure 8 shows an interesting example. An
artist generated the horse using paint-brush
software.!! OQur prototype system automati-
cally generated the calligraphy (the charac-
ter “forever” in Chinese).

Applications

This system for computer-generated orig-
inal Chinese calligraphy has several poten-
tial applications.

For example, users could generate per-
sonalized fonts with it. First, they would
import computer-installed fonts. Then our
system could compute a flexible model of
each character by aligning all corresponding
characters of the different fonts. Next, the
system would ask for a small set of charac-
ters in the user’s handwriting as additional

knowledge. On the basis of these knowledge
sources, the system could simulate the pro-
posed ARP but now with the additional cri-
terion to best match the user inputs. The uni-
formity of the hierarchical representation
means that the resulting set of intensities
applies directly to the full character set of all
the existing fonts, generating a font cus-
tomized to the user’s handwriting.

Figure 9 shows the results from a simple
test. The top row shows handwritten input
characters from different users, and the rows
below show the characters generated by
mimicking the input style. The results are
impressive. Of course, if the user’s hand-
writing is so peculiar that it lies outside the
feasible space composed from all the existing
fonts, the system might fail.

An application along the same lines could
make an individual’s handwriting style more
beautiful, which could improve readers’
impressions of the writer. With our system,
users can input their handwriting as one ARP
source and then specify an appealing existing
style as another source. By manually setting
the reasoning intensities, users could choose
the extent to which they rectified their per-
sonal handwriting while still preserving a
degree of its unique qualities.
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Figure 9. Personalized font generation from a single character. The first row shows a single character written by different users in
their respective handwriting styles, and the second row shows automatically generated characters that mimic the captured
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The proposed system is essentially a specific
version of a deformable model for modeling
Chinese characters of different calligraphic
styles. The model’s representation power
makes the system suitable for deformable
model-based handwriting recognition. In
addition, the unified ARP modeling approach
is an excellent candidate for writer adapta-
tion in existing or emerging handwriting
recognition systems.

Carnegie Mellon University’s CAPTCHA
project (www.captcha.net) presents another
possible application of our approach.
CaptcHa stands for “Completely Automated
Public Turing Test to Tell Computers and
Humans Apart.” A CAPTCHA is any program
that can generate and grade tests that com-
puters cannot pass, and one kind—popular
for protecting Web sites from massive auto-
mated registrations—uses words written in
distorted letters that humans can read but
computers cannot. Our system could be used
to develop a Chinese CAPTCHA agent that
would generate similarly distorted Chinese
writing that humans but no machine-com-
putable algorithms could read.

P arametric hierarchical knowledge rep-
resentation enables computer-gener-

ated Chinese calligraphy artwork in a vari-
ety of styles—fully automated in real time
from a compact set of printed calligraphic
inputs. The creative capability of the pro-
posed intelligent system lies mainly in the
huge feasible space available for the simu-
lated analogous reasoning process. Our pro-
totype system has generated artwork that can
stand among existing instances, whether real-
istic or completely inventive in appearance.

We are considering several extensions to
our proposed system. We could extend the
approach to other languages. We might also
add a feedback component to fine-tune the
aesthetic constraints through reinforcement
learning. Finally, we could capture and
translate the “psychological” states of other
media and then link them to the corre-
sponding states in calligraphy—for exam-
ple, allowing music to direct the generation
of calligraphy. &
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