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Abstract— Evolutionary algorithms have been used since
the mid-eighties to solve complex single and multi-objective
optimization problems. More recently the swarm intelligent
approaches such as particle swarm optimization and ant
colony optimization have been successfully used for multi-
objective optimization. This paper proposes a new approach
based on the generic generalized particle model (GE-GPM)
for computing in parallel approximate efficient solutions for
the distribution problem with multiple objectives. Unlike the
swarm optimization approaches, GE-GPM is inspired by
physical models of particle dynamics. We use mathemati-
cal formulations to describe or predict the properties and
evolution of different states of the particles. In particular,
according to “differential equation theory”, we develop ef-
ficient optimization techniques for multi-objective problems.
We also adopt methods of classical mechanics to tackle the
problem of modeling the interaction among the particles. We
show that GE-GPM, being inspired by classical mechanics,
enables feasible multi-objective optimization in very large
scales. The GE-GPM approach has a low computational
complexity, which is crucial for the functioning of large-scale
distribution problems.

Keywords—Evolutionary algorithm (EA), multi-objective opti-
mization, swarm intelligence, generic generalized particle model
(GE-GPM), kinematics and dynamics

I. INTRODUCTION

While single-objective evolutionary algorithms (EAs) are
well established and relatively easy to parallelize, this is not
the case for multi-objective evolutionary algorithms. Until
recently, multi-objective combinatorial optimization did not
receive much attention in spite of its potential application.
The reason is probably due to the difficulty of deriving
multi-objective combinatorial optimization models that are
satisfactory. Nevertheless, the need for parallelizing multi-
objective evolutionary algorithms to solve multi-objective
combinatorial optimization problems exists.

“Distribution problem” is a well-known fundamental
combinatorial optimization problem. Distribution problems
are much more difficult to solve than assignment problems.
Many practical situations can be formulated as a distribution
problem. In fact, assignment problems and transportation
problems are both sub-problems of the distribution problem;
a distributed problem can be much more complex.

In [1], [2], some methods were proposed to generate
the entire set of exact solutions for simple assignment
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problems. These methods however seemed to be efficient
only for small-scale instances. For large-scale instances
or more complex problems, their NP-hard complexity and
the multi-objectivity make these problems “intractable” for
those methods. For this reason, it makes sense to consider
“approximate” methods such as swarm intelligent methods
which have been found to be efficient in treating combi-
natorial optimization problems; these latter methods can
function independently of the mathematical structure of the
problem, and generate excellent solutions in a very short
time [3].

This paper proposes a new approach—based on the
generic generalized particle model (GE-GPM)—to compute
in parallel approximate efficient solutions to the distribution
problem with multiple objectives. By proposing the GE-
GPM approach, we try to explore a potentially new branch
of EA, which is based on the laws of physical mechanics.
Just like other EAs which draw from observations of phys-
ical processes that occur in nature, the GE-GPM approach
is inspired by physical models of particle kinematics and
dynamics.

In GE-GPM, we use mathematical formulations to de-
scribe or predict the properties and the evolution of the
different states of particles. The particles represent pa-
rameters in the problem which follow a path towards a
solution. Borrowing from “differential equation theory”, we
developed efficient techniques for solving multi-objective
optimization problems. The goal: all objectives to be opti-
mized individually and then collectively, and satisfying all
the given restrictions.

In the physical world, mutual attraction between particles
causes motion. The reaction of a particle to the field
of potential would change the particle’s coordinates and
energies. The change in the state of the particle is a result of
the influence of the potential. For GE-GPM, the objectives
of individual optimizations are reached by the autonomous
self-driving forces of the particles. Global optimization is
achieved by the potential of the field, and any restrictions of
the problem are satisfied via interaction potential between
the particles.

Each particle is described by some differential dynamic
equations, and it moves (to a new state in the field) accord-
ing to the results of these calculations. Specifically, each
particle computes the effect of its autonomous self-driving
force, the field potential and the interaction potential. If the
particles cannot reach an equilibrium, they will proceed to
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execute a goal-satisfaction process.
Although there are obvious differences between particles

in classical mechanics and those in GE-GPM, GE-GPM
is by and large inspired by classical mechanics. GE-GPM
enables feasible multi-objective optimization in very large
scales. The approach has a low computational complexity,
which is crucial for the functioning of large-scale distribu-
tion problems.

This paper is part of the authors’ research work on
distributed parallel theories and approaches for intelligent
processing based on the generalized particle model (GPM).
They proposed the crossbar composite spring net (CCSN)
approach [4] from which the GPM approach has evolved.
They studied distributed and parallel algorithms for intel-
ligent processing based on GPM, and their application in
networks. GPM’s application in the bandwidth allocation
problem was presented in [5]. Variations of the basic theme
then resulted in several extended GPM models, includ-
ing the “economic generalized particle model” (E-GPM)
which draws upon the economics theory of Tatonnement
processes; the model has also been applied to the bandwidth
allocation problem.

All the authors’ past methods based on GPM targeted at a
specific application to a real-life problem. In this paper, the
GE-GPM method is described as a “generic” method such
that potentially it can be applied to a range of different
problems.

The structure of this paper is as follows. In Section II,
we present the multi-objective generic generalized particle
model (GE-GPM). Section III introduces the parallel evo-
lutionary GE-GPM algorithm for solving multi-objective
problems. In Section IV, we discuss the physical meanings
of GE-GPM. In Section V, we give some experimental
results. We conclude the paper in Section VI.

II. THE GE-GPM APPROACH FOR THE

MULTI-OBJECTIVE DISTRIBUTION PROBLEM

Definition 1: In a multi-objective framework, the distri-
bution problem can be formulated as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : z
q(X) = (Cq)T

X =
I∑

i=1

J∑
j=1

c
q
ijxij q = 1, 2, · · · , Q

s.t.

I∑
i=1

xij = 1 j = 1, 2, · · · , J

J∑
j=1

xij = 1 i = 1, 2, · · · , I

(1)
where X is a two-dimensional distribution vector, and Cq

a two-dimensional weight vector (q = 1, 2, · · · , Q).
With this problem model, we can now examine the

evolutionary multi-objective model which can mathemati-
cally describe GE-GPM for the multi-objective distribution
problem. The theory of evolution is a dynamical theory.
The evolutionary dynamics will drive GE-GPM to the
equilibrium state.

Definition 2: The distribution and weight dynamic equa-
tions of GE-GPM are defined, respectively, by

x(t + 1) = x(t) + Δx(t) (2)
c(t + 1) = c(t) + Δc(t) (3)

The two dynamic equations are seen as the “GE-GPM
evolution” by fictitious agents (service particles and task
particles), which manipulate the distribution and weight
vectors until an equilibrium is reached. In GE-GPM, the
rows and columns of distribution vector X are treated as
two kinds of fictitious agents (service particles and task par-
ticles). In fact, the weight vector is invariable; the evolution
of the weight vector only occurs in the computing process in
order to obtain efficient solutions of the distribution vector.

For fictitious agents—service particles (O) and task par-
ticles (S), there are three factors related to the distribution
vector (X) and the weight vector (C):

• personal utility (u) (to realize the multiple objectives);
• minimal personal utility (to realize max-min fair dis-

tribution and to increase the whole utility) (F);
• interaction among particles (to satisfy the restrictions)

(I).

According to “differential equation theory”, a variable’s
increment to make it minimum is equal to the sum of neg-
ative items from related factors differentiating the variable.
So we have the following definitions.

Definition 3: The increments of distribution and weight
are defined, respectively, by

Δx ≈
dx

dt
= −

Q∑
q=1

(λq
1

∂u
q
O

∂x
+ λ

q
2

∂F
q
O

∂x
) − λ3

∂IO

∂x
(4)

Δc
q
≈

dp

dt
= −(γq

1

∂u
q
S

∂c
+ γ

q
2

∂F
q
S

∂c
) − γ3

∂IS

∂c
q = 1, 2, · · · , Q

(5)
where λ

q
1, λ

q
2, λ3, γ

q
1 , γ

q
2 , γ3 are coefficients (q =

1, 2, · · · , Q).
Definition 4: Three kinds of factor functions for service

particles and task particles are defined, respectively, by

u
q
Oi = 1 − exp

(
−

J∑
j=1

c
q
ij · xij

)
q = 1, 2, · · · , Q (6)

F
q
O = (kq

O)2In

I∑
i=1

exp[(uq
Oi)

2
/
2(kq

O)2] q = 1, 2, · · · , Q (7)

IO = a1

I∑
i=1

(
J∑

j=1

xij − 1

)2

+ a2

J∑
j=1

(
I∑

i=1

xij − 1

)2

(8)

u
q
Sj = 1 − exp

(
−

I∑
i=1

c
q
ij · xij

)
q = 1, 2, · · · , Q (9)

F
q
S = (kq

S)2In

J∑
i=1

exp[(uq
Sj)

2
/
2(kq

S)2] q = 1, 2, · · · , Q (10)

IS = IO (11)
where k

q
O, a1, a2, k

q
S are coefficients.

Now, we explain why the three kinds of functions are
chosen.

1) The smaller the value of the summation in Eq. (6), the
more profit the ith service particle gets. The optimiza-
tion problem here is posed as a minimization problem.
And we use the exponential function in order that
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u
q
Oi(t) would be between 0 and 1. u

q
Oi(t) can be

regarded as the q-th dimensional utility of service
particle. The smaller u

q
Oi(t) is, the more profit service

particle Oi gets. Schematically, the q-th dimensional
utility function u

q
Oi of a particle corresponds to the

q-th dimensional coordinate of the q-th dimensional
force-field. We define the distance from the bottom
boundary to the upper boundary of all q dimensional
force-fields to be 1. The physical meaning of GE-
GPM is discussed in Section IV. A graphical pre-
sentation of u

q
Oi(t) is shown in Fig. 1. Obviously,

the smaller u
q
Oi(t) is the better. The presentation of

u
q
Sj(t) in Eq. (9) is similar.

Fig. 1 Graphical presentation of uq
Oi

(t).

2) For Eq. (7), 0 < k
q
O < 1 is a parameter to be tuned

in the implementation. The smaller F
q
O is, the better.

With Eq. (7), we attempt to construct a potential
energy function, F

q
O, such that the decrease of its

value would imply the decrease of the maximal utility
of all the service particles. We prove that in Theorem
1. This way we can optimize the distribution problem
in the sense that we consider not only the individual
personal utility, but also the aggregate utilities, by
decreasing the maximum utility of all the service
particles again and again. In fact, k

q
O represents the

strength of the downward gravitational force in the q-
th dimensional force-field. The bigger k

q
O is, the faster

the particles would move down; hence, k
q
O influences

the convergence speed of the distribution problem. k
q
O

needs to be carefully adjusted in order to minimize
the q-th objective. Likewise, the explanation of F

q
S in

Eq. (10) is similar.
3) For Eq. (8), 0 < a1, a2 < 1 . The smaller IO

is, the better. a1, a2 are weights applied to the
distribution availability of service and the satisfactory
ratio of the demands, respectively. Eq. (8) describes
the effect of interactions among service particles
during the distribution process. The first term and
the second term of IO(t) perform penalty functions
with respect to the constraints on the utilization of
service (or resources) (i.e., service particles) and the
degree of satisfaction of the demands (i.e., task par-
ticles) respectively. Therefore, distribution utilization
and demands’ satisfaction can be explicitly included
as optimization objectives through some appropriate
choices of the coefficients a1 and a2 respectively.

We presume that there are specific interactive forces
among particles, and these forces may cause the
potential energy components represented by the first
and second term of IO(t) to decrease. In Eq. (11), IS

is defined as the same as IO.

We can therefore obtain the iteration velocity of service
particles and task particles by the following equations,
respectively.

v
q
Oi = du

q
Oi/dt =

∂u
q
Oi

∂xij

dxij

dt
(12)

v
q
Sj = du

q
Sj

/
dt =

∂u
q
Sj

∂c
q
ij

dc
q
ij

dt
(13)

v
q
Oi represents the iteration velocity of the q-th objective

by service particle Oi. Meanwhile, v
q
Oi represents the veloc-

ity of the downward movement of service particle Oi in the
q-th dimensional force-field. The meaning of v

q
Sj is similar;

it represents the iteration velocity of the q-th objective by
task particle Sj and the velocity of the downward movement
of task particle Sj in the q-th dimensional force-field.

Theorem 1: If k
q
O is very small, the decrease of F

q
O will

cause a decrease of the service particles’ maximal utility.
(Likewise, if k

q
S is very small, a decrease of F

q
S will cause

a decrease of the task particles’ maximal utility.)
Proof. Supposing that
M(t) = max

i
[(uq

Oi)
2(t)]. Because

M(t) = max
i

(uq
Oi)

2(t) ≤
I∑

i=1

(uq
Oi)

2(t)

≤ I · max
i

(uq
Oi)

2(t)=I · M(t),

we have[
e

M(t)

2(k
q
O

)2

]2(kq

O
)2

≤

[
I∑

i=1

e

(u
q
Oi

)2(t)

2(k
q
O

)2

]2(kq

O
)2

≤

[
I · e

M(t)

2(k
q
O

)2

]2(kq

O
)2

.

Simultaneously taking the logarithm of each side of the
equation above leads to

M(t) ≥ 2(kq
O)2In

I∑
i=1

e

(u
q
Oi

)2(t)

2(k
q
O

)2 ≥ M(t) + 2(kq
O)2InI ,

2(kq
O)2In

I∑
i=1

e

(u
q
Oi

)2(t)

2(k
q
O

)2 ≤ M(t)

≤ 2(kq
O)2In

I∑
i=1

e

(u
q
Oi

)2(t)

2(k
q
O

)2 − 2(kq
O)2InI ,

2FO(t) ≤ max
i

u
q
Oi(t) ≤ 2FO(t) − 2(kq

O)2InI .

Since I is the number of service particles (the number of
rows of the distribution vector X), 2(kq

O)2InI is constant.
It turns out that F

q
O(t) at time t represents the maximum

among u
q
Oi(t) obtained by the service particle Oi, namely,

the minimum of the personal profit obtained by a service
particle at time t. Hence decreasing F

q
O(t) implies the

decrease of the maximal utility of the service particles.
Definition 5: (Max-min Fairness) [6] A feasible distri-

bution X is max-min fair if and only if a decrease of any
distribution x within the domain of feasible distributions
must be at the cost of an increase of some already larger
distribution x. Formally, for any other feasible distribution
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Y , if yij < xij then there must exist some i′ such that
xi′j ≥ xij and yi′j > xi′j .

Theorem 2: The behavior of the service particle Oi that
is related to the term of Eq.(4), −λ

q
2

∂F q

O

∂x , will always
bring about the decrease of the maximal utility of all
service particles, and the decrement of the maximal utility is
directly proportional to the coefficient vector λ

q
2. (Likewise,

The behavior of the task particle Sj that is related to the
term of the Eq.(5), −γ

q
2

∂F q

S

∂c , will always bring about the
decrease of the maximal utility of all task particles, and the
decrement of the maximal utility is directly proportional to
the coefficient vector γ

q
2 .)

Theorem 3: The behavior of the service particle Oi that
is related to the term of the Eq.(4), −λ

q
1

∂uq

O

∂x , will always
result in the decrease of the personal utility of service
particle Oi, and the decrement of its personal utility is
related to coefficient vectors λ

q
1. (Likewise, The behavior

of the task particle Sj that is related to the term of the
Eq.(5), −γ

q
1

∂uq

S

∂c , will always result in the decrease of the
personal utility of task particle Sj , and the decrement of its
personal utility is related to coefficient vectors γ

q
1 .

Theorem 4: The behavior of the service particle Oi that
is related to the term of the Eq.(4), −λ3

∂IO

∂x , will decrease
the potential interaction energy function IO, with the inten-
sity of the decrease being proportional to coefficient vector
λ3. (Likewise, The behavior of the task particle Sj that is
related to the term of the Eq.(5), −γ3

∂IS

∂c , will decrease the
potential interaction energy function IS , with the intensity
of the decrease being proportional to coefficient vector γ3.

Theorem 5: (Max-min fair allocation) Max-min fair al-
location can be obtained by the mathematical model for
the distribution problem with multi-objectives as defined in
Eq.(1–13).

The proofs of Theorem 2-5 are omitted.

III. THE PARALLEL GE-GPM ALGORITHM

The results given in the previous sections suggest that
we may use a parallel implementation of the evolutionary
generic generalized particle model approach to solve the
multi-objective distribution problem. We consider the algo-
rithm in Table 1 for this purpose.

The algorithm GE-GPM has in general a complexity of
O(I + J), where I + J is the number of particles (the
sum of the number of rows and columns of X). The
time complexity of the algorithm is O(I1), where I1 is the
number of iterations for Costep 2 (the while loop).

IV. PHYSICAL MEANING OF GE-GPM

GE-GPM puts emphasis on

• providing a view of individual and whole optimization
(with one to two objectives);

• parallelization with reasonably low time complexity;
• all objectives being optimized individually as well as

collectively;
• the ability to deal with social interactions;
• the physical meaning of the model.

The mathematical model of GE-GPM has its physical
meaning.

In GE-GPM, the rows and columns of the distribution
vector X are treated as two kinds of generalized particles
(service particles and task particles) that are located in two
sets of force-fields, respectively, hence transforming the
distribution problem into the kinematics and dynamics of
the particles in the two sets of force-fields.

The two sets of force-fields are a set of service (or
resource) force-fields and a set of task force-fields. Every
force-field in a set of service force-fields or in a set of task
force-fields is a Q-dimensional space where coordinates in
the space are in [0, 1].

If the number of minimum objectives is 1, the parti-
cles will move downwards on a 1-dimensional space (a
line) (x1 ∈ [0, 1]) during the optimization process. If the
number of minimum objectives is 2, the particles will
move towards the origin in a 2-dimensional space (a plane)
(x1 ∈ [0, 1], x2 ∈ [0, 1]) during the optimization process.
Analogously, if the number of minimum objectives is Q, the
particles will move towards the origin on a Q-dimensional
space (x1 ∈ [0, 1], · · · , xq ∈ [0, 1], · · · , xQ ∈ [0, 1]) during
the optimization process, where xq is a coordinate of the
q-dimensional space.

Particles in GE-GPM move not only under outside forces,
but also under their internal forces; hence they are different
from particles in classical physics. The kinds of force-
fields (resource force-field FR and demands force-field FD)
are geometrically independent, without any forces directly
exerted from each other; they are mutually influenced and
conditioned by each other through a reciprocal procedure
whereby the distribution policy of the distributions x and the
weight policy of the weights c change alternatively. In this
way, the two sets of force-fields form a pair of reciprocal
dual force-field sets.

In a resource force-field FR, the coordinates of the Q-
dimensional space of service particles represent the utilities
of the rows of the distribution vector X that are described
by the service particles. A particle will be influenced simul-
taneously by several kinds of forces in the Q-dimensional
space, which include the gravitational force of the Q-
dimensional space force-field where the particle is located,
the pulling or pushing forces stemming from the interactions
with other particles in the same force-field, and the particle’s
own autonomous driving force.

When the number of minimum objectives is 1, all the
above-mentioned forces that are exerted on a particle are
dealt with as forces along a vertical direction (along a line).
Thus a particle will be driven by the resultant force of all
the forces that act on it upwards or downwards, and moves
along a vertical direction. The larger the downward resultant
force on a particle, the faster the downward movement of the
particle. When the downward resultant force on a particle
is equal to zero, the particle will stop moving, being at an
equilibrium status. As shown in Fig. 2, the service particles
that have service or resource move in the resource force-
fields FR, and the task particles that require distribution
move in the demand force-fields FD.
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Table 1: GE-GPM algorithm

1. Initialization:
t← 0
xij(t) , cq

ij(t) ——Initialize in parallel
2. While (vq

Oi
�= 0 or vq

Sj
�= 0 ) do

t← t + 1
uq

Oi
(t) ——Compute in parallel according to Eq. (6)

vq
Oi

——Compute in parallel according to Eq. (12)
uq

Sj
(t) ——Compute in parallel according to Eq. (9)

vq
Sj

——Compute in parallel according to Eq. (13)
dxij(t)/dt ——Compute in parallel according to Eq. (4)
xij(t)← xij(t− 1) + dxij(t)/dt ——Compute in parallel according to Eq. (2)
dcq

ij(t)/dt ——Compute in parallel according to Eq. (5)
cq
ij(t)← cq

ij(t− 1) + dcq
ij(t)/dt ——Compute in parallel according to Eq. (3)
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(a) Service particles in resource force-fields. (b) Task particles in demand force-fields.

Fig. 2 The physical model of GE-GPM for the distribution problem with one objective.

(a) Service particles in resource force-fields. (b) Task particles in demand force-fields.

Fig. 3 The physical model of GE-GPM for the distribution problem with two objectives.

The downward gravitational force of a force-field on
a particle causes a downward component of the motion
of the particle, which represents the tendency that the
particle pursues the common benefit of the whole group.
The downward or upward component of the motion of
a particle, which is related to the interactions with other
particles, depends upon the strengths and categories of the
interactions. The particle’s own autonomous driving force
is proportional to the degree the particle tries to move
downwards in the force-field where it is located, i.e., the
particle (service particle or task particle) tries to acquire its
own minimum utility.

When the number of minimum objectives is 2, each
service particle and task particle move towards the origin
in a unit plane, as shown in Fig. 3.

When the number of minimum objectives is Q, each
service particle and task particle move towards the origin

in a Q-dimensional space.
One major difference between the particle of the pro-

posed generalized particle model and the particle of a
classical physical model is that the generalized particle
has its own driving force which depends upon the au-
tonomy of the particle. All the generalized particles, both
in different Q-dimensional spaces of the same force-field
and in different force-fields simultaneously, evolve under
their exerted forces; as long as they gradually reach their
equilibrium positions from their initial positions which are
set at random, we can obtain a feasible solution to the multi-
objective distribution problem.

V. SIMULATIONS

Here we give a distribution problem, and then use our
method to find the solution.
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C1 =

⎛
⎜⎜⎜⎝

8 7 10 1 4
7 11 16 0 5
2 7 6 19 15
3 6 4 7 11
14 5 7 3 2

⎞
⎟⎟⎟⎠

C2 =

⎛
⎜⎜⎜⎝

10 7 10 5 11
3 19 5 3 13
2 18 9 0 1
13 3 7 5 12
7 4 6 15 3

⎞
⎟⎟⎟⎠ q = 1, 2.

Find an X satisfying⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

min : zq(X) = (Cq)T X =

5∑
i=1

5∑
j=1

cq
ijxij q = 1, 2

s.t.

5∑
i=1

xij = 1 j = 1, 2, · · · , 5

5∑
j=1

xij = 1 i = 1, 2, · · · , 5

We use the GE-GPM algorithm to solve this distribution
problem.
Step 1. Initialization: (t = 0)

X =

⎛
⎜⎜⎜⎝

0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2
0.2 0.2 0.2 0.2 0.2

⎞
⎟⎟⎟⎠

xij is also initialized as a random number between 0 and
1. Based on some experiments we have done, we found that
the results are not affected by the initialization of X .

Standardization of C1 and C2:

C1 =

⎛
⎜⎜⎜⎝

0.80 0.70 1.00 0.10 0.40
0.44 0.69 1.00 0 0.31
0.11 0.37 0.32 1.00 0.79
0.27 0.55 0.36 0.64 1.00
1.00 0.36 0.50 0.21 0.14

⎞
⎟⎟⎟⎠

C2 =

⎛
⎜⎜⎜⎝

0.91 0.64 0.91 0.45 1.00
0.16 1.00 0.26 0.16 0.68
0.11 1.00 0.50 0 0.06
1.00 0.23 0.54 0.38 0.92
0.47 0.27 0.40 1.00 0.20

⎞
⎟⎟⎟⎠

1. According to Eq. (1),zq(X) = (Cq)T X =
5∑

i=1

5∑
j=1

c
q
ijxij ,

we get
z1 = 2.6120, z2 = 2.6500

2. According to Eq. (6), u
q
Oi = 1−exp

(
−

5∑
j=1

c
q
ij · xij

)
,

we compute in parallel and get

u1

O1
= 0.4512 u1

O2
= 0.3861 u1

O3
= 0.4043

u1

O4
= 0.4311 u1

O5
= 0.3573

u2

O1
= 0.5425 u2

O2
= 0.3636 u2

O3
= 0.2839

u2

O4
= 0.4588 u2

O5
= 0.3737

3. According to Eq. (9), u
q
Sj = 1−exp

(
−

5∑
i=1

c
q
ij · xij

)
,

we compute in parallel and get

u1

S1
= 0.4079 u1

S2
= 0.4137 u1

S3
= 0.4706

u1

S4
= 0.3229 u1

S5
= 0.4102

u2

S1
= 0.4114 u2

S2
= 0.4663 u2

S3
= 0.4067

u2

S4
= 0.3283 u2

S5
= 0.4356

Step 2. Compute in parallel:
The first evolutionary iteration (t = 1):

1. According to Eq. (4), we have

Δxij ≈
dxij

dt = −
2∑

q=1
(λq

1
∂uq

Oi

∂xij
+ λ

q
2

∂F q

O

∂xij
) − λ3

∂IO

∂xij

= −λ1
1

∂u1
Oi

∂xij
− λ1

2
∂F 1

O

∂xij
− λ2

1
∂u2

Oi

∂xij
− λ2

2
∂F 2

O

∂xij
− λ3

∂IO

∂xij

where ∂uq

Oi

∂xij
= c

q
ij · exp

(
−

J∑
j=1

c
q
ij · xij

)

∂F q

O

∂xij
=

∂F q

O

∂uq

Oi

·
∂uq

Oi

∂xij

= (kq
O)2 ·

exp{(uq

Oi
)2/[2(kq

O
)2]}·[(uq

Oi
)/(kq

O
)2]

5∑
i=1

exp{(uq

Oi
)2/[2(kq

O
)2]}

·
∂uq

Oi

∂xij

∂IO

∂xij
= 2Ja1

I∑
i=1

(
J∑

j=1

xij − 1

)
+ 2Ia2

J∑
j=1

(
I∑

i=1

xij − 1

)

2. According to Eq. (5), we have

Δc
q
ij ≈

dcq
ij

dt = −(γq
1

∂uq

Sj

∂cq
ij

+ γ
q
2

∂F q

S

∂cq
ij

) − γ3
∂IS

∂cq
ij

where
∂uq

Sj

∂cq
ij

= xij · exp

(
−

I∑
i=1

c
q
ij · xij

)

∂F q

S

∂cq
ij

=
∂F q

S

∂uq

Sj

·
∂uq

Sj

∂cq
ij

= (kq
S)2 ·

exp{(uq

Sj
)2/[2(kq

S
)2]}·[(uq

Sj
)2/(kq

S
)2]

5∑
j=1

exp{(uq

Sj
)2/[2(kq

S
)2]}

·
∂uq

Sj

∂cq
ij

∂IS

∂cq
ij

= 0

3. In addition,

xij(t = 1) = xij(t = 0) + Δxij(t = 1)

c1ij(t = 1) = c1ij(t = 0) + Δc1ij(t = 1)

c2ij(t = 1) = c2ij(t = 0) + Δc2ij(t = 1)

λ1

1
= 0.05 λ1

2
= 0.05 λ2

1
= 0.05 λ2

2
= 0.05 λ3 = 0.01

γ1

1
= 0.05 γ1

2
= 0.05 γ2

1
= 0.05 γ2

2
= 0.05 γ3 = 0.01

a1 = 0.5 a2 = 0.5 k1

O = k2

O = k1

S = k2

S = 0.8

As for these coefficients, we can draw the following
conclusions from some experiments we have done.

• When k
q
O (or k

q
S) is larger, the corresponding conver-

gence speed is faster.
• If the values of λ and γ change in direct proportion,

the experimental results will hardly be influenced.
• If we increase λ

q
1, λ

q
2 and do not touch the other

coefficients, the q-th-objective will take precedence
over all the other objectives.

We compute in parallel and get
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X(t = 1) =

⎛
⎜⎜⎜⎝

0.1890 0.2007 0.1819 0.2277 0.2006
0.2133 0.1708 0.1881 0.2301 0.1978
0.2246 0.1766 0.2001 0.1968 0.2019
0.1973 0.2138 0.2100 0.2054 0.1736
0.1778 0.2109 0.2003 0.1886 0.2223

⎞
⎟⎟⎟⎠

C1(t = 1) =

⎛
⎜⎜⎜⎝

0.7751 0.6784 0.9719 0.0965 0.3876
0.4263 0.6687 0.9719 0 0.3004
0.1066 0.3586 0.3110 0.9648 0.7655
0.2616 0.5330 0.3499 0.6175 0.9690
0.9688 0.3489 0.4860 0.2026 0.1357

⎞
⎟⎟⎟⎠

C2(t = 1) =

⎛
⎜⎜⎜⎝

0.8818 0.6219 0.8816 0.4343 0.9702
0.1550 0.9717 0.2519 0.1544 0.6597
0.1066 0.9717 0.4844 0 0.0582
0.9690 0.2235 0.5231 0.3667 0.8926
0.4554 0.2624 0.3875 0.9650 0.1940

⎞
⎟⎟⎟⎠

z1(t = 1) = 2.5243, z2(t = 1) = 2.5590

Obviously, z1(t = 1) < z1(t = 0) and z2(t = 1) <

z2(t = 0), the distribution problem is optimized.
The evolutionary experimental results and the optimiza-

tion trend from t = 0 to t = 18 are shown in Fig. 4 and
Fig. 5.

The detailed evolutionary experimental results from t = 2
to t = 18 can be found in Appendix A.

Fig. 4 Optimization from t = 0 to t = 18.

Fig. 5 Optimization from t = 5 to t = 18.

As shown in Fig. 4 and Fig. 5, the two-objective distri-
bution problem is optimized by the evolution of the GE-
GPM algorithm. The convergence speed is faster at the
beginning of evolution. The optimization trend of z1 and
z2 reflects exactly the optimization of the problem, that is,
the distribution problem is optimized step by step.

VI. CONCLUSIONS

In this paper, we propose a novel evolutionary approach
to solving multi-objective distribution problems, which is
based on the generic generalized particle model (GE-GPM).
The approach maps a given distribution problem to the
movement of particles in a multi-dimensional space in a pair
of (dual) sets of force-fields. The particles move according
to certain rules defined by a mathematical model until
arriving at a stable state; subsequently, the solution of the
multi-objective distribution problem is obtained by anti-
mapping the stable state.

Although there are many differences between particles
in classical mechanics and those in GE-GPM, we have
shown that being inspired by classical mechanics, GE-GPM
enables feasible multi-objective optimization in very large
scales. The GE-GPM approach has a low computational
complexity, which is crucial for the functioning of large-
scale distribution problems.

Appendix A

The evolutionary experimental results from t = 2 to t =
18 are as follows.

X(t = 2) =

⎛
⎜⎜⎜⎝

0.1756 0.2015 0.1596 0.2620 0.2013
0.2292 0.1359 0.1738 0.2659 0.1952
0.2531 0.1493 0.2001 0.1934 0.2042
0.1940 0.2305 0.2219 0.2120 0.1416
0.1519 0.2236 0.2006 0.1755 0.2484

⎞
⎟⎟⎟⎠

Z1(t = 2) = 2.4192
Z2(t = 2) = 2.4505

X(t = 3) =

⎛
⎜⎜⎜⎝

0.1590 0.2025 0.1319 0.3044 0.2022
0.2482 0.0942 0.1566 0.3088 0.1921
0.2860 0.1175 0.2000 0.1896 0.2068
0.1899 0.2506 0.2363 0.2201 0.1031
0.1214 0.2384 0.2009 0.1603 0.2789

⎞
⎟⎟⎟⎠

Z1(t = 3) = 2.2931
Z2(t = 3) = 2.3211

X(t = 4) =

⎛
⎜⎜⎜⎝

0.1384 0.2037 0.0974 0.3572 0.2033
0.2710 0.0442 0.1360 0.3602 0.1885
0.3240 0.0807 0.1998 0.1856 0.2100
0.1848 0.2749 0.2537 0.2301 0.0564
0.0857 0.2558 0.2012 0.1426 0.3147

⎞
⎟⎟⎟⎠

Z1(t = 4) = 2.1414
Z2(t = 4) = 2.1664

X(t = 5) =

⎛
⎜⎜⎜⎝

0.1194 0.2047 0.0655 0.4059 0.2045
0.2913 0 0.1176 0.4058 0.1852
0.3556 0.0497 0.1995 0.1824 0.2128
0.1803 0.2966 0.2690 0.2391 0.0150
0.0554 0.2705 0.2013 0.1278 0.3450

⎞
⎟⎟⎟⎠

Z1(t = 5) = 2.0071
Z2(t = 5) = 2.0307
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X(t = 6) =

⎛
⎜⎜⎜⎝

0.1184 0.2047 0.0633 0.4089 0.2046
0.2914 0 0.1174 0.4060 0.1853
0.3525 0.0522 0.1993 0.1832 0.2128
0.1801 0.2966 0.2689 0.2394 0.0150
0.0573 0.2695 0.2012 0.1290 0.3431

⎞
⎟⎟⎟⎠

Z1(t = 6) = 2.0071
Z2(t = 6) = 2.0325

X(t = 7) =

⎛
⎜⎜⎜⎝

0.1172 0.2048 0.0610 0.4122 0.2047
0.2915 0 0.1171 0.4061 0.1853
0.3500 0.0544 0.1991 0.1838 0.2127
0.1799 0.2969 0.2689 0.2397 0.0146
0.0589 0.2687 0.2010 0.1299 0.3415

⎞
⎟⎟⎟⎠

Z1(t = 7) = 2.0062
Z2(t = 7) = 2.0336

X(t = 8) =

⎛
⎜⎜⎜⎝

0.1160 0.2049 0.0586 0.4157 0.2048
0.2916 0 0.1168 0.4063 0.1853
0.3479 0.0564 0.1990 0.1842 0.2125
0.1797 0.2973 0.2690 0.2400 0.0140
0.0603 0.2681 0.2009 0.1307 0.3402

⎞
⎟⎟⎟⎠

Z1(t = 8) = 2.0045
Z2(t = 8) = 2.0340

X(t = 9) =

⎛
⎜⎜⎜⎝

0.1148 0.2050 0.0560 0.4193 0.2049
0.2917 0 0.1165 0.4065 0.1853
0.3462 0.0581 0.1989 0.1844 0.2124
0.1795 0.2978 0.2692 0.2403 0.0131
0.0614 0.2676 0.2007 0.1312 0.3391

⎞
⎟⎟⎟⎠

Z1(t = 9) = 2.0021
Z2(t = 9) = 2.0338

X(t = 10) =

⎛
⎜⎜⎜⎝

0.1135 0.2052 0.0533 0.4231 0.2049
0.2919 0 0.1161 0.4067 0.1853
0.3448 0.0597 0.1988 0.1845 0.2122
0.1793 0.2985 0.2695 0.2407 0.0121
0.0623 0.2672 0.2006 0.1316 0.3383

⎞
⎟⎟⎟⎠

Z1(t = 10) = 1.9993
Z2(t = 10) = 2.0331

X(t = 11) =

⎛
⎜⎜⎜⎝

0.1121 0.2054 0.0506 0.4270 0.2049
0.2920 0 0.1157 0.4070 0.1853
0.3436 0.0611 0.1987 0.1845 0.2120
0.1791 0.2992 0.2698 0.2410 0.0109
0.0631 0.2669 0.2005 0.1318 0.3377

⎞
⎟⎟⎟⎠

Z1(t = 11) = 1.9959
Z2(t = 11) = 2.0319

X(t = 12) =

⎛
⎜⎜⎜⎝

0.1108 0.2057 0.0478 0.4309 0.2049
0.2922 0 0.1153 0.4072 0.1853
0.3427 0.0623 0.1987 0.1844 0.2118
0.1789 0.2999 0.2702 0.2414 0.0096
0.0637 0.2668 0.2004 0.1319 0.3373

⎞
⎟⎟⎟⎠

Z1(t = 12) = 1.9923
Z2(t = 12) = 2.0305

X(t = 13) =

⎛
⎜⎜⎜⎝

0.1094 0.2059 0.0449 0.4349 0.2049
0.2924 0 0.1149 0.4074 0.1853
0.3420 0.0635 0.1987 0.1843 0.2116
0.1787 0.3008 0.2706 0.2418 0.0082
0.0642 0.2666 0.2003 0.1319 0.3369

⎞
⎟⎟⎟⎠

Z1(t = 13) = 1.9883
Z2(t = 13) = 2.0287

X(t = 14) =

⎛
⎜⎜⎜⎝

0.1080 0.2062 0.0420 0.4390 0.2048
0.2925 0 0.1145 0.4077 0.1853
0.3414 0.0645 0.1987 0.1841 0.2114
0.1784 0.3016 0.2711 0.2421 0.0067
0.0646 0.2666 0.2002 0.1319 0.3367

⎞
⎟⎟⎟⎠

Z1(t = 14) = 1.9842
Z2(t = 14) = 2.0267

X(t = 15) =

⎛
⎜⎜⎜⎝

0.1065 0.2065 0.0392 0.4430 0.2048
0.2927 0 0.1142 0.4079 0.1853
0.3410 0.0654 0.1987 0.1838 0.2111
0.1782 0.3025 0.2716 0.2425 0.0052
0.0650 0.2666 0.2001 0.1317 0.3366

⎞
⎟⎟⎟⎠

Z1(t = 15) = 1.9799
Z2(t = 15) = 2.0245

X(t = 16) =

⎛
⎜⎜⎜⎝

0.1051 0.2068 0.0363 0.4471 0.2047
0.2928 0 0.1138 0.4081 0.1852
0.3406 0.0662 0.1987 0.1835 0.2109
0.1780 0.3035 0.2721 0.2428 0.0036
0.0653 0.2666 0.2000 0.1315 0.3366

⎞
⎟⎟⎟⎠

Z1(t = 16) = 1.9754
Z2(t = 16) = 2.0222

X(t = 17) =

⎛
⎜⎜⎜⎝

0.1037 0.2070 0.0334 0.4512 0.2046
0.2930 0 0.1134 0.4083 0.1852
0.3404 0.0670 0.1987 0.1832 0.2107
0.1778 0.3044 0.2726 0.2432 0.0020
0.0655 0.2667 0.2000 0.1313 0.3366

⎞
⎟⎟⎟⎠

Z1(t = 17) = 1.9709
Z2(t = 17) = 2.0198

X(t = 18) =

⎛
⎜⎜⎜⎝

0.1023 0.2073 0.0306 0.4552 0.2046
0.2931 0 0.1131 0.4085 0.1852
0.3402 0.0677 0.1988 0.1828 0.2105
0.1776 0.3053 0.2731 0.2435 0.0004
0.0657 0.2668 0.1999 0.1310 0.3367

⎞
⎟⎟⎟⎠

Z1(t = 18) = 1.9664
Z2(t = 18) = 2.0172

u1

Oi(t = 18) =
(

0.1752 0.1394 0.2105 0.2106 0.1558
)

u2

Oi(t = 18) =
(

0.2839 0.1267 0.1027 0.2171 0.1746
)

u1

Sj(t = 18) =
(

0.1637 0.1974 0.1880 0.1841 0.1601
)

u2

Sj(t = 18) =
(

0.1756 0.1552 0.1753 0.2221 0.1884
)
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