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1. INTRODUCTION

The mesh (and its variant, the torus) is a popular topology
for processor interconnection in parallel computers. It
has practical advantages such as low degree and perfectly
compact layout when compared to other well-known
topologies, for example the hypercube. A notable example
of parallel computers based on the mesh topology is the
iWarp system [1]. Dally has shown that low-dimensional
networks have lower latency and higher hot-spot throughput
than high-dimensional networks [2]. In this paper, we study
the problem of finding a 2-median set in a two-dimensional
mesh.

The p-median problem is a well-known problem in
location theory, which is to locate p identical facilities in a
network so that the sum of the distance between every client
in the network and its nearest facility is minimized. This
has practical application in real mesh-connected parallel
computers, which is to locate servers in selected nodes
so that service requests from client nodes can be directed
to different servers to achieve load balancing, and the
traffic so generated can be more spread out over the links.
The problem has been proved to be NP-hard for general
networks. For a survey on the NP-hardness and algorithms
developed in recent years, one can refer to [3]. Mirchandani
[4] gives a strong mathematical background for the problem,
which also gathers many of the results before 1989. An early
survey [5, 6] by Tansel et al. is still very useful, especially
for beginners. Shmoys et al. [7] includes a short summary
of some of the results. Recently, Guha and Khuller used the
greedy approach to handle the problem [8]. Hamacher et
al. dealt with a variation of the problem with multicriteria,
instead of single criteria [9]. Lai and Chang proposed a

1A preliminary version of this paper, entitled ‘An Algorithm for the
Location Problem in Two-Dimensional Meshes’, appeared in Proc. MFCS
’98 Workshop on Communication, August 1998, pp. 76–90.

method for virtual path layout in ATM networks which is
based on solutions to the p-median problem [10]. Peeters
proposed some new median problems together with some
algorithms for these problems [11].

To our knowledge, no algorithm has yet been proposed
for solving the problem on a mesh. Among the
several topologies for which efficient algorithms for finding
p-medians exist, the tree topology seems to have received
the most attention. A recent paper by Auletta et al. [12] gives
a linear-time algorithm for finding a 2-median set on tree
networks having n vertices, which represents a significant
improvement over other existing algorithms for the tree
[13, 14, 15, 16]. Tree algorithms, however, cannot be easily
adapted to solve the problem on the mesh, because in order
to directly apply a tree algorithm, one would run into the
non-trivial problem of enumerating a large number of trees
that are embedded in the mesh.

In this paper, we assume the following system model.

• The mesh is non-oriented—that is, if d() is the distance
function, d(vi , vj ) = d(vj , vi) for any vertices vi

and vj .
• All links (connecting adjacent vertices) have a length

of 1.
• Clients and facilities are restricted to vertices of the

mesh.
• All clients have a demand of 1, but multiple clients can

co-reside in a vertex.
• The number and locations of clients are fixed and do

not change over time.
• Facilities are uncapacitated (they could serve any

number of clients) and can be located in any vertices.

Vertices having one or more clients are called demand
points. Since we assume a client has a demand of 1,
the (sum of) demand of vertex is equal to the number of
clients in that vertex. The first three features listed above
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FIGURE 1. P(1; T ) decomposed into two chain problems.

are in line with those in real parallel computers where
links are bidirectional and the ‘cost’ of traveling through
a link is uniform across the entire network, and links are
for communication only [17]. The last three features of
the model are for simplicity so that the problem becomes
tractable. Further research can consider variants of the
present problem that are without these constraints.

Our solution to the problem is based on a solution to the
1-median problem on the mesh. Section 3 presents the
1-median problem and its solution. Section 4 discusses
the properties of the specific kind of solutions to the
2-median problem we are after in this paper. Based on these
properties, Section 5 then gives and analyses an algorithm
that would find a 2-median set in O(mn2q) time, where
m, n (m ≥ n), and q are respectively the number of rows
having clients, the number of columns having clients, and
the number of demand points. Section 6 concludes the paper
and proposes some further problems.

2. PRELIMINARIES

Given an M × N mesh and a set T of clients, the 2-median
problem is to locate two identical facilities in one or two of
the mesh’s vertices so that the sum of the distance between
every client and its nearest facility is minimized.

We assume that the input is a random list of demand
points: 〈(x, y)1, z1〉, 〈(x, y)2, z2〉, . . . , 〈(x, y)q, zq 〉, where
(x, y)1 is the location of the first demand point with demand
z1, etc., and q is the number of demand points.

Let D be the sum of the distance between every client and
its nearest facility for any median problem discussed in this
paper. The objective is to minimize D.

All distances are shortest path distances—i.e. d(v1, v2) =
|v1.x − v2.x| + |v1.y − v2.y|, for any vertices v1 and v2.

Let Th = |T |/2.

Let P(1; T ) be the 1-median problem—to locate one
facility, and P(2; T ) the 2-median problem—to locate two
facilities.

Figure 1 shows a 7 (M) × 9 (N) mesh with 14 clients.
Every vertex of the mesh which is in black is a demand point
having a single client.

For a linear chain of t nodes, v1, . . . , vt , and c(i) being
the number of clients in node vi , let L−(i) = ∑

1≤l≤i c(l)

and L+(i) = ∑
i≤l≤t c(l); these quantities equal zero if i is

out of range (i.e. i < 1 or i > t , respectively).
For an M × N mesh, let R−(i, T ) = ∑

1≤r≤i row(r, T )

and R+(i, T ) = ∑
i≤r≤M row(r, T ), where row(r, T ) is

the number of clients of the set T in the rth row of the
mesh; similarly, let C−(j, T ) = ∑

1≤c≤j col(c, T ) and
C+(j, T ) = ∑

j≤c≤N col(c, T ), where col(c, T ) is the
number of clients of the set T in the cth column of the mesh;
these quantities have a value of zero if i (resp. j ) is out of
range.

3. 1-MEDIAN

The problem can be decomposed into two instances of the
1-median problem on a linear chain, one for each dimension.
Figure 1 shows a 7 × 9 mesh and the two corresponding
linear chains, the x-chain and the y-chain. The vertices
of the linear chains are indexed in the same way as their
corresponding rows or columns of the mesh. In the figure,
the label next to a vertex in a linear chain is the number of
clients in (also demand of) that vertex.

LEMMA 3.1. Given a linear chain containing the client
setT , and some vertexvi . If L−(i) ≥ Th > L−(i − 1), then
vi is an optimal location for the facility.

Proof. Since L−(i − 1) < Th, L+(i) > Th. Let L′ and L′′
(L′′ > L′) be these two quantities, respectively. If instead of
vi we choose vj , j < i, we increase D by at least (i − j)L′′,
and at the same time decrease D by at most (i − j)L′—
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FIGURE 2. Finding a solution to P(1; T ).

hence a net increase. Similarly, if we choose vj , j > i,
since L−(i) ≥ Th, D either increases or remains the same.
Hence, vi is an optimal location for the facility.

We say that the vi above is a solution to the 1-median
problem on a linear chain. The lemma identifies the solution
with the smallest i. There are cases where multiple solutions
exist. By symmetry, we can easily find the one with the
largest i. It is easy to see that a node (x, y) of the mesh is a
solution to P(1; T ) if and only if vx and vy are solutions to
the respective linear chains coming from the decomposition.
The example in Figure 1 has multiple solutions, where s1 is
the ‘smallest’, and s2 the ‘largest’ solution. We refer to the
set of all solutions to any median problem as the solution
spaceof that problem. The solution space for the mesh
as well as those for the two linear chains are identified by
dashed boxes in the figure.

The following theorem shows that a solution to P(1; T )

can be easily derived. Note that there is no need to actually
build the linear chains. The input is the set of demand
points in random order. We do not need to consider rows
or columns of the mesh that do not contain any demand
points—i.e., blank nodes in the x- or the y-chain (refer to
Corollary 3.2).

THEOREM 3.1. P(1; T ) can be solved inO(q) time,
whereq is the number of demand points.

Proof. We apply the standard O(n)-time algorithm for
finding the median of an unsorted set of n elements [18].

First, we find the total sum of demands, and denote that
by t . Next, we consider the x-coordinates (i.e. the x-chain).
In O(q) time, using the standard find-median algorithm, we
can find an element v such that the number of demand points
with a smaller x-coordinate is no more than �q/2� and the
number of demand points with a larger x-coordinate is no
more than �q/2�. We then divide the q demand points into
three sets, containing points having a smaller, the same,
and a larger x-coordinate, respectively. Summing up the
demand in each set, we then know which set the optimal
facility should belong to. If the first set (smaller coordinates)
has a total demand ≥t/2, the target facility is in the first
set. Otherwise, if total demand of the third set (larger
coordinates) is >t/2, the target facility is in the third set.
If the target facility is not in the first or the third set, it must
be in the second set (same coordinate), and we record the
x-coordinate (call it i) thus found. Obviously at this point
L−(i) ≥ Th > L−(i − 1) for the x-chain. All the above

takes kq time, where k is a constant. If indeed the target
facility is in the first or the third set, we apply the above
recursively to the set using kq/2 + kq/4 + . . . ≤ kq time.
Note that at the end of each of these steps except the last, the
sum of demand of the sets not chosen would be added to the
demand of the boundary node (the one closest to the middle
set) in the chosen set (as shown in Figure 2). The result is
the x-coordinate of the smallest solution to P(1; T ).

In other words, we can use O(q) time to find the smallest
i such that L−(i) ≥ Th > L−(i − 1) for the x-chain.
Similarly, we can find the y-coordinate for the smallest
solution in O(q) time.

Figure 2 shows a simple example of the above procedure
being applied to an x-chain, where q = 10, t = 14. At
each step, the circled demand point is the chosen median;
the dashed rectangle is the set containing the target demand
point. Note how the sum of demand of the sets not chosen is
added to the boundary node of the chosen set. The procedure
finds the smallest solution. Symmetrically, we can find the
largest i such that L+(i) ≥ Th > L+(i + 1) in O(q) time, if
we are interested in all solutions.

Using the mesh example in Figure 1 without loss
of generality, we have the following set of inequalities
governing the solution space of P(1; T ).

COROLLARY 3.1. The solution space ofP(1; T ) is
bounded bys1 and s2 (assuming thats1.x ≤ s2.x and
s1.y ≤ s2.y) where

R−(s1.x, T ) ≥ Th > R−(s1.x − 1, T ),

C−(s1.y, T ) ≥ Th > C−(s1.y − 1, T ),

R+(s2.x, T ) ≥ Th > R+(s2.x + 1, T ),

C+(s2.y, T ) ≥ Th > C+(s2.y + 1, T ).

Calling the rows containing s1.x and s2.x and the columns
containing s1.y and s2.y the boundary rowsand columns
respectively of the solution space, we have the following.

COROLLARY 3.2. All boundary rows and columns of the
solution space must contain a client.

Proof. Suppose without loss of generality that the row con-
taining s1.x does not contain a client, then R−(s1.x, T ) =
R−(s1.x − 1, T ), violating Corollary 3.1.

As a closing note to this section on 1-median, we should
mention the work by Hassin and Tamir [19] as well as the
work by Hsu et al. [20] on solving the p-median problem
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FIGURE 3. Solution to P(2; T ) forming (a) an upright rectangle, (b) a flat rectangle and (c) a square.

on a ‘line’. We could have applied their algorithms by
mapping vertices with k clients to a sub-chain of k clients
with a negligibly small edge cost assigned to the edges of
the sub-chain. For p = 1, however, the solution we give
here is simple enough to not warrant the use of their more
comprehensive algorithms.

4. 2-MEDIAN

The 2-median problem is to find a pair of nodes, {w, z}, such
that D, the sum of distances from the clients to their nearest
facility, is minimized. In the following, for convenience but
without loss of generality, when we say {w, z} is a solution
to P(2; T ), we assume w.x ≤ z.x and w.y ≤ z.y.

The following is obvious.

LEMMA 4.1. For any solution{w, z} to P(2; T ), we have
the following.

• The client setT can be divided into two disjoint subsets,
U andV , such thatw is a solution toP(1; U), andz is
a solution toP(1; V ).

• For anyw′ andz′ within the solution spaces ofP(1; U)

and P(1; V ), respectively,{w′, z′} can replace{w, z}
as a solution.

If a client is of equal distance from either facility, we assume
that an arbitrary choice of one of the facilities would be
assigned to the client. The solution {w, z} forms either an
upright rectangle, a flat rectangle, or a square, as shown
in Figure 3. Note that Corollary 3.1 and 3.2 apply to the
solution spaces of P(1; U) and P(1; V ). Such solution
spaces are shown as the dashed boxes in Figure 3.

LEMMA 4.2. There exists a solution{w, z} to P(2; T )

such that if|w.x − z.x| ≥ |w.y − z.y| (the solution forms an
upright rectangle), then

R−(w.x, T ) + R+(z.x, T ) ≥ Th > R−(w.x − 1, T )

+ R+(z.x + 1, T ); (1)

and if |w.x − z.x| ≤ |w.y − z.y| (the solution forms a flat
rectangle), then

C−(w.y, T ) + C+(z.y, T ) ≥ Th > C−(w.y − 1, T )

+ C+(z.y + 1, T ). (2)

Proof. Without loss of generality, consider Figure 3a, the
case of an upright rectangle, where w is a solution to
P(1; U) and z a solution to P(1; V ). By Lemma 4.1, we
can choose w to be among those solutions with the smallest
x-coordinate in the solution space (the dashed box in the
figure) of P(1; U). Then, by Corollary 3.1, we have

R−(w.x,U) ≥ |U |
2

> R−(w.x − 1, U).

Similarly, choosing z to be one of the solutions with the
largest x-coordinate in the solution space of P(1; V ), we
have

R+(z.x, V ) ≥ |V |
2

> R+(z.x + 1, V ).

Combining, we have

R−(w.x,U) + R+(z.x, V ) ≥ Th > R−(w.x − 1, U)

+ R+(z.x + 1, V ).

From Figure 3a, d(v1, w) = d(v1, v2) + d(v2, w), and
d(v1, z) = d(v1, v2) + d(v2, z). But d(v2, z) > d(v2, w),
and hence w is the facility for both v1 and v2 as well as all
other clients of T with x-coordinate ≤ w.x. Likewise, z

is the facility for all clients of T with x-coordinate ≥ z.x.
Therefore we can substitute T for U and V in the above
inequality, giving

R−(w.x, T ) + R+(z.x, T ) ≥ Th > R−(w.x − 1, T )

+ R+(z.x + 1, T ).

By symmetry, the second inequality, corresponding to
Figure 3b, can be proved in exactly the same way.

Note that both inequalities are true if the solution forms a
square (Figure 3c). In the algorithm, to be presented in
Section 5, the square case is treated as part of the upright-
rectangle case as well as the flat-rectangle case. The overlap
between the two cases (and hence duplicated effort) should
be minimal when compared to the number of upright and
flat rectangles the algorithm has to consider. It is important
to note that given an instance of P(2; T ), any solution must
form either an upright rectangle (and possibly a square) or a
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FIGURE 4. Solution to P(1; T ) falling outside the solution to
P(2; T ).

flat rectangle (and possibly a square), but the existence of a
solution forming a square cannot be guaranteed.

We refer to a solution {w, z} that satisfies Lemma 4.2 as a
max-solutionbecause for fixed U and V , w and z are chosen
to be on the two boundary edges of the solution spaces
of U and V respectively and therefore have a maximum
separation (along the x- or the y-dimension).

LEMMA 4.3. Given any solutions toP(1; T ), there exists
a max-solution{w, z} to P(2; T ) such that

w.x ≤ s.x ≤ z.x and w.y ≤ s.y ≤ z.y.

Proof. Without loss of generality, consider the upright-
rectangle case—i.e. Inequality 1 of Lemma 4.2. By
symmetry, the flat-rectangle case can be dealt with similarly.
Suppose that s.x does not lie between w.x and z.x; then, we
have two cases: w.x ≤ z.x < s.x and s.x < w.x ≤ z.x.
Consider the former. We have

|T | > 2(R−(w.x − 1, T ) + R+(z.x + 1, T ))

≥ 2(R−(w.x − 1, T ) + R+(s.x, T ))

≥ 2R+(s.x, T ).

But since s is a solution to P(1; T ), by Corollary 3.1,
R+(s.x, T ) ≥ Th. Substituting, we have |T | > |T |, a
contradiction. The case of s.x < w.x ≤ z.x is symmetric
to this one. Hence, all max-solutions to P(2; T ) must
‘surround’ s.x.

For the y-axis, the situation is as shown in Figure 4. By
Lemma 4.1, we could move w and z over to w′ and z′
respectively and still have a max-solution. Assume without
loss of generality that z′ > w′. If the new rectangle is a
flat one, then we can deal with it using the argument for the
x-axis as in the above, and then s.y must lie within w′ and
z′. Assume that the rectangle is upright and s is outside of
it (as shown in the figure). Since C−(w′.y − 1, U) < |U |/2
and C−(z′.y − 1, V ) < |V |/2 (Corollary 3.1), we have
C+(w′.y, U) > |U |/2 and C+(z′.y, V ) > |V |/2. Hence,

C+(w′.y, T ) = C+(w′.y, U) + C+(w′.y, V )

≥ C+(w′.y, U) + C+(z′.y, V ) >
|U |
2

+ |V |
2

= Th.

It follows that if s.y < w′ < z′ then C−(s.y, T ) < Th,
which is a contradiction to Corollary 3.1. The case of s

being on the other side of the rectangle can be dealt with
by symmetry.

Hence, given a solution s to P(1; T ), all max-solutions
that belong to the upright-rectangle case must surround s.x,
and there exists at least onemax-solution belonging to the
upright-rectangle case that surrounds s.y.

LEMMA 4.4. If {w, z} satisfies Inequality 1, then{w′, z′},
wherew′.x < w.x andz′.x > z.x, cannot be a max-solution
to P(2; T ); neither can{w′′, z′′}, wherew′′.x > w.x and
z′′.x < z.x, be a max-solution. Similarly for any pair
satisfying Inequality 2.

Proof. If {w, z} satisfies Inequality 1, R−(w′.x, T ) +
R+(z′.x, T ) ≤ R−(w.x − 1, T ) + R+(z.x + 1, T ) <

Th; hence, {w′, z′} does not satisfy Lemma 4.2. Then if
{w′′, z′′} is a max-solution, it should satisfy Inequality 1, and
therefore Th > R−(w′′.x − 1, T ) + R+(z′′.x + 1, T ) ≥
R−(w.x, T ) + R+(z.x, T ); hence, {w, z} cannot satisfy
Inequality 1.

We say that {w′, z′} in the above lemma surround{w, z}
and {w, z} surround{w′′, z′′}.

5. ALGORITHM

Lemma 4.3 says that for any given solution s to P(1; T ),
there exists a solution to P(2; T ) that surrounds s. This
solution to P(2; T ) satisfies Inequality 1 or 2 or both. The
following algorithm capitalizes on this proven fact. It begins
with an arbitrary solution s to P(1; T ). Then it enumerates
all pairs of x’s that surround s and satisfy Inequality 1. This
appears to be an O(M2) operation, but by the lemmas in
Section 4, a substantial number of such pairs can be skipped,
resulting in an O(M) operation. Then for each pair of x’s,
the algorithm considers all pairs of y’s so that every solution
thus formed surrounds s and is an upright rectangle or a
square; the solution generating the smallest D is recorded.
The same is then applied to the y dimension. The final result
is one pair of (x, y) whose D is the smallest.

Algorithm Find2Median is given in Figure 5.

LEMMA 5.1. Step 3 of Algorithm Find2Median will find
a pair of {x1, x2}, x1 = 1, satisfying Inequality 1 and
surroundings.x.

Proof. By Corollary 3.1, R+(s.x, T ) ≥ Th, and so
R−(x1, T ) + R+(s.x, T ) ≥ Th. Note that we also have
R−(x1 − 1, T ) = 0. But there must exist some x, s.x ≤ x ≤
M , such that R+(x + 1, T ) < Th ≤ R+(x, T ). When x2
reaches x, we have R−(x1 − 1, T )+R+(x2 + 1, T ) < Th ≤
R−(x1, T )+R+(x2, T ), and {x1, x2} satisfying Inequality 1
and surrounding s.x.

We denote the value of x2 after Step 3 by x◦
2 .

We call a pair of {x1, x2} that surrounds s.x in Algorithm
Find2Median a successif it satisfies Inequality 1; a failure
otherwise.
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1. find a solution, s, to P(1; T );
2. x1 = 1; x2 = s.x;
3. while [ {x1, x2} not satisfying Inequality 1 ]

x2 = x2 + 1;
4. repeat

if [ {x1, x2} satisfies Inequality 1 ]
X = X ∪ {x1, x2};
x1 = x1 + 1;

else
x1 = x1 − 1; x2 = x2 + 1;

until [ x1 > s.x or x2 > M ];
5. if [ x2 < M ]

x1 = x1 − 1;
for x2 = x2 + 1 to M

if [ {x1, x2} satisfies Inequality 1 ]
X = X ∪ {x1, x2};

6. similar to 3.–5., for the y-axis; results in Y ;
7. Dopt = ∞;
8. for each {x1, x2} in X

l = x2 − x1;
for y1 = max(s.y − l, 1) to s.y

for y2 = s.y to min(y1 + l, N)

D = sum of the distance between every
client and {x1, y1} or {x2, y2},
whichever is nearer;

if [ D < Dopt ]
Dopt = D and record {x1, y1}
and {x2, y2};

9. similar to 8., for pairs in Y and flat rectangles;
10. output Dopt and the recorded {x1, y1} and {x2, y2};

FIGURE 5. Algorithm Find2Median.

LEMMA 5.2. During Step 4 of Algorithm Find2Median, if
{x1, x2} is a failure, then{x1 − 1, x2 + 1} must be a success.

Proof. At the beginning of Step 4, by Lemma 5.1,
R−(x1, T ) + R+(x2, T ) ≥ Th, where x1 = 1 and x2 = x◦

2 .
As the loop progresses, as long as {x1, x2} is a success,
R−(x1 + 1, T ) + R+(x2, T ) ≥ Th continues to be true
because more rows are covered by x1. The else clause is
taken when the loop comes to an {x1, x2} pair that fails
Inequality 1 (refer to Figure 6). Obviously, the only possible
reason for the failure as far as Inequality 1 is concerned is
that Th �> R−(x1 − 1, T ) + R+(x2 + 1, T ), or R−(x1 −
1, T ) + R+(x2 + 1, T ) ≥ Th. Since there exists at least one
success pair before every failure (Lemma 5.1), {x1 − 1, x2}
is a success and satisfies Inequality 1. And so we have
Th > R−(x1 − 2, T ) + R+(x2 + 1, T ), implying that
Th > R−(x1−2, T )+R+(x2+2, T ). Recalling that R−(x1−
1, T ) + R+(x2 + 1, T ) ≥ Th, therefore {x1 − 1, x2 + 1}
satisfies Inequality 1. In other words, there cannot be any
consecutive failures.

THEOREM 5.1. Steps 4 and 5 of Algorithm Find2Median
cover all the pairs ofx-coordinates that satisfy Inequality 1
and surrounds.x.

Proof. First of all, Step 4. By Lemma 4.2, we do not need
to consider any {1, x}, x < x◦

2 . Step 4 uses x2 as a running
base, each time considering all the pairs {x, x2}, x ≤ x2.
x2 moves gradually from x◦

2 to M over Steps 4 and 5. For
any x2, the progression of x1 stops when a failure ({x1, x2})
occurs. x2 will change base, to x2 + 1. By Lemma 4.4,
the remaining {x, x2}’s, where x > x1, need not be checked
because they would all be surrounded by {x1 − 1, x2 + 1}
or {x ′

1, x
′
2} which, by Lemma 5.2, is a success. For the new

base, x ′
2, the checking needs only to begin from x ′

1 because
any {x, x ′

2}, 1 ≤ x < x ′
1, would surround a previous success

pair, {x1 − 1, x2}.
Step 4 terminates when incrementing x1 or x2 or both

would cross the respective boundaries, s.x or M . There
exist four possible scenarios when this happens, as shown
in Figure 7.

• (a) and (b) x1 and x2 are at their respective boundaries.
Either it is a success or failure, this should be the end
of Steps 4 and 5, because anything further would not
surround s.x.

• (c) x2 = M and {x1, x2} is a failure. By Lemma 5.2,
{x1−1, x2+1} or {x ′

1, x
′
2} would be a success (x ′

2, being
out of range, does not matter here). Therefore, the
search can stop here because by Lemma 4.4, no
{x1, x2}, x1 > x ′

1 and x2 < x ′
2, can be a success.

• (d) x1 = s.x and {x1, x2} is a success. Let these
x1 and x2 be x ′

1 and x ′
2. Step 4 terminates at this

point. But x2 has not reached its boundary. So Step 5
needs to finish the remaining x2’s—i.e. M ≥ x2 >

x ′
2. For each of these x2’s, the search needs only to

check {x ′
1, x2} because any {x, x2}, x < x ′

1, would
surround the success pair {x ′

1, x
′
2}. Moreover, there is

no need to respond to a failure like in Step 4, because
if we decrement x1 and increment x2, the result would
surround {x ′

1, x
′
2}. ✷

Figure 6 shows a possible scenario of the execution
of Steps 4 and 5. By symmetry, Step 6 of Algorithm
Find2Median covers all the pairs of y-coordinates that
satisfy Lemma 4.2 (Inequality 2) and surround s.y.

THEOREM 5.2. For a mesh of sizeM × N , M ≥ N , the
complexity of Algorithm Find2Median isO(MN2q), where
q is the number of demand points in the mesh.

Proof. Consider Steps 4 and 5. Let A = s.x, B = M −
x◦

2 , and K be the number of failures by the time Step 4
terminates (as shown in Figure 6). Note that K cannot
exceed B. The number of times Step 4 would execute is
equal to A + 2K . The number of times Step 5 would
execute is ≤ B − K . Hence the total time for Steps 3–5 is
≤ (x◦

2 − s.x)+A+ 2K +B −K = (x◦
2 − s.x)+A+B +K

< 2M or is O(M). Similarly, the time for Step 6 is O(N).
Consider Step 8. For each pair of {x1, x2} and l =

x2 − x1, we have ≤ l × (l + 1)/2 rectangles to consider,
each of which would be used to compute the total distance
from |T | clients. For vertices having more than one client,
the computation needs to be performed only once—i.e. the
distance is multiplied by the number of clients. The value
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FIGURE 6. Execution of Steps 4 and 5.
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FIGURE 7. Between Step 4 and Step 5.

of l could be as large as M , but since M ≥ N , the width
of a rectangle is bounded by N . Hence the number of
rectangles to consider at each step is O(N2), and so the time
for each step is O(N2q), where q ≤ |T | is the number of
demand points. The total time for the entire Step 8 would be
O(MN2q). For Step 9, l could be as large as N , and hence
the time for this step would be O(N3q).

Given the input which is a set of q demand points in
random order, we then build an m × n ‘compressed’ mesh,
as a 2D array, which has no empty row or column. This can
be done in O(q log q +mn) time, or O(mnq) since q ≤ mn,
where q log q is the sorting time for lining up the columns
and the rows as well as the time to insert the demand points
into the array; and mn the time to construct and initialize the
2D array. Figure 8 shows a compressed 6 × 7 mesh derived
from the 7 × 9 mesh in Figure 1. Since all max-solutions are
composed of two solutions to the corresponding 1-median

9

2s

1

1

2

3

1 2 3 4

5

6

7

y

x

7 8

s

FIGURE 8. A compressed mesh.

problems for two subsets of T , by Corollary 3.2, they must
be located in columns or rows that contain demand points.
Hence, we can apply Algorithm Find2Median as it is to the
compressed mesh, and the result will be correct.

COROLLARY 5.1. For a compressed mesh of sizem ×
n, m ≥ n, the complexity of Algorithm Find2Median is
O(mn2q).

6. CONCLUSION

The naive method to find a 2-median set—examining all
pairs of vertices—would take O(M2N2q) time. In the
worst case where all vertices of the mesh have clients, our
result represents an O(M) times improvement over the naive
method, assuming M ≥ N . For meshes that are relatively
sparse, our O(mn2q) time solution, where m is the number
of rows having clients, n the number of columns having
clients (m ≥ n), and q the number of vertices having clients,
is clearly much more efficient. The following should be
worth pursuing.
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• To find all solutions to P(2; T ) instead of just one
solution (the naive method finds all solutions).

• To find approximate solutions to P(2; T ) that are
based on simple but fast heuristical algorithms, such as
dividing the mesh into two submeshes according to the
distribution of the clients. Or to improve on existing
approximation results, such as the work by Charikar et
al. [21].

• To solve P(f : T ), f > 2.
• To consider meshes with wrap-around links, i.e. the

torus and higher-dimensional meshes and tori.
• To consider meshes by lifting some of the restrictions

as discussed in Section 1.
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