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Abstract

We show that the Hamiltonicity of a regular graph G can be fully characterized by the numbers of blocks of consecutive ones in
the binary matrix A + I, where A is the adjacency matrix of G, I is the unit matrix, and the blocks can be either linear or circular.
Concretely, a k-regular graph G with girth g(G)�5 has a Hamiltonian circuit if and only if the matrix A + I can be permuted on
rows such that each column has at most (or exactly) k − 1 circular blocks of consecutive ones; and if the graph G is k-regular except
for two (k − 1)-degree vertices a and b, then there is a Hamiltonian path from a to b if and only if the matrix A + I can be permuted
on rows to have at most (or exactly) k − 1 linear blocks per column.

Then we turn to the problem of determining whether a given matrix can have at most k blocks of consecutive ones per column
by some row permutation. For this problem, Booth and Lueker gave a linear algorithm for k = 1 [Proceedings of the Seventh
Annual ACM Symposium on Theory of Computing, 1975, pp. 255–265]; Flammini et al. showed its NP-completeness for general
k [Algorithmica 16 (1996) 549–568]; and Goldberg et al. proved the same for every fixed k�2 [J. Comput. Biol. 2 (1) (1995)
139–152]. In this paper, we strengthen their result by proving that the problem remains NP-complete for every constant k�2 even
if the matrix is restricted to (1) symmetric, or (2) having at most three blocks per row.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Graph Hamiltonicity is an important topic in graph theory and has been studied extensively. Many sufficient and/or
necessary conditions have been established for Hamiltonian path or circuit in general graphs as well as in special classes
of graphs [1,8,11]. In this paper we study the class of k-regular graphs and present a sufficient and necessary condition
for their Hamiltonicity. The condition is stated in terms of “blocks of consecutive ones” in some binary matrices related
to the graphs.

An m × n matrix Mm×n is binary if every entry M(i, j) is either 1 or 0. Given a binary matrix Mm×n, a block of
consecutive ones in column j is a maximal interval of consecutive entries M(i, j), M(i + 1, j), . . . , M(k, j) that are
all ones. Obviously, the block number of column j is the number of entries M(i, j) such that M(i, j) = 1 and either
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M(i +1, j)=0 or i =m. Such blocks are called linear blocks as they are defined with the assumption that the first row
is non-adjacent to the last row. If we consider the first row and the last row to be adjacent we have circular blocks. The
number of circular blocks in column j of a binary matrix Mm×n is the number of entries M(i, j) such that M(i, j) = 1
and either M(i + 1, j) = 0 or i = m and M(1, j) = 0.

A graph G = (V , E) with V = {v1, v2, . . . , vn} is k-regular if every vertex v ∈ V has a degree d(v) = k. The girth
of G, denoted by g(G), is the length of a minimum circuit (cycle) in G. The adjacency matrix of G, denoted by A(G),
is an n × n symmetric binary matrix such that A(i, j) = 1 if and only if (vi, vj ) ∈ E. The unit matrix, denoted by I, is
an n × n binary matrix such that I(i, j) = 1 if and only if i = j .

Our main results on the Hamiltonicity, given in Section 2, are (1) a k-regular graph G with k�3 and g(G)�5 contains
a Hamiltonian circuit if and only if the rows of the matrix A(G) + I can be permuted to make every column having
at most k − 1 circular blocks of consecutive ones, and (2) if G is k-regular except for two vertices a and b which are
of degree k − 1, then G contains a Hamiltonian path between a and b if and only if the rows of the matrix A(G) + I

can be permuted to make every column having at most k − 1 linear blocks. Moreover, these two results still hold if “at
most” is replaced by “exactly”.

The problem of consecutive ones blocks has been shown to be useful in such areas as data compression, information
retrieval, interval graphs, DNA computing, and interval routing [9,7,3,12]. Many variants on the total number of blocks
over all columns have been shown to be NP-complete (see for instance A4 in [4]). For the maximum number of blocks
in each column, Gavoille and Peleg [6] gave an upper bound m/4 + (1/4)

√
2m ln mn for m × n matrices. For the

problem to determine whether a given matrix can be row permuted to have at most k blocks per column, Booth and
Lueker [2] presented a linear algorithm for k = 1; Flammini et al. [3] showed that the problem is NP-complete, and
Goldberg et al. [7] proved the same for every constant k�2. In Section 3, we strengthen this last result by showing that
for every fixed k�2 the problem remains NP-complete even if restricted to symmetric matrices or matrices having at
most three blocks per row.

For convenience, in the following, “blocks” means (linear or circular) blocks of consecutive ones.

2. Hamiltonicity of regular graphs

In this section, we establish a connection between Hamiltonian circuit and circular blocks and a connection between
Hamiltonian path and linear blocks.

Theorem 2.1. Any k-regular graph G = (V , E) with g(G)�5 has a Hamiltonian circuit if and only if the matrix
A(G) + I can be row permuted to have at most k − 1 circular blocks in each column.

Proof. Let V = {v1, v2, . . . , vn} and B = A(G) + I. If G has a Hamiltonian circuit, vi1vi2 . . . vinvi1 , consider the
permutation that arranges the rows of B in the order of i1i2 . . . in. With this permutation, for any column ij , the
adjacency of row ij−1 (or in if ij = 1) and row ij and the adjacency of row ij and row ij+1 (or i1 if ij = n) will make
the three 1-entries, B(ij−1, ij ), B(ij , ij ), and B(ij+1, ij ), consecutive in column ij . So, column ij has no more than
k − 1 blocks (because each column has exactly k + 1 ones). The only if part of the lemma is proved.

To prove the if part, we need to consider what will happen after making two rows, i1 and i2, adjacent. If vi1 is adjacent
to vi2 in G, then making row i1 and row i2 adjacent in B makes the two 1-entries, B(i1, i1) and B(i2, i1), adjacent in
column i1 and the two 1-entries, B(i1, i2) and B(i2, i2), adjacent in column i2. But for any column i3 other than i1
and i2, we have either B(i1, i3) = 0 or B(i2, i3) = 0 (otherwise G has a circuit vi1vi2vi3vi1 of length 3, contradicting
g(G)�5). So, if vi1 is adjacent to vi2 in G, then making row i1 and row i2 adjacent in B makes exactly two pairs of 1’s
adjacent in all the columns (one pair in column i1 and the other in column i2).

If vi1 is not adjacent to vi2 , then for any two columns, j1 and j2, the four entries, B(i1, j1), B(i2, j1), B(i1, j2), and
B(i2, j2) cannot be all 1’s. Otherwise, one of the following three cases will happen.

Case 1: |{i1, i2} ∩ {j1, j2}| = 0: there would be a circuit vi1vj1vi2vj2vi1 of length four in G, contradicting g(G)�5.
Case 2: |{i1, i2} ∩ {j1, j2}| = 1: say i1 = j1 but i2 �= j2, then there would be a triangle vi1vi2vj2vi1 in G, again

contradicting g(G)�5.
Case 3: |{i1, i2} ∩ {j1, j2}| = 2: then (vi1 , vi2) ∈ E, a contradiction with the assumption that vi1 is not adjacent to

vi2 in G.
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So, the four entries, B(i1, j1), B(i2, j1), B(i1, j2), and B(i2, j2) are not all 1’s, implying that making row i1 and row
i2 adjacent in B makes at most one pair of 1’s adjacent in all the columns.

We can conclude that making a pair of rows adjacent leads to at most two pairs of adjacent 1’s in all the columns,
and exactly two pairs of adjacent 1’s if and only if the two vertices corresponding to the two rows are adjacent in G.
Since in the circular case a row permutation involves exactly n pairs of adjacent rows, therefore it makes at most 2n

pairs of 1’s adjacent within all the columns, and the permutation can make 2n pairs of 1’s adjacent in B if and only
if the permutation represents a Hamiltonian circuit in G. But if there is a row permutation for B making each column
having at most k − 1 blocks, the permutation must make at least two pairs of 1’s adjacent in each column (because
each column has k + 1 ones), and therefore it makes totally at least 2n pairs of 1’s adjacent in B, and thus there must
be a Hamiltonian circuit in G for this permutation to represent. �

For the linear case, a row permutation of B involves exactly n − 1 pairs of adjacent rows. A similar proof to that for
Theorem 2.1 would prove the next theorem.

Theorem 2.2. If G = (V , E) is a graph such that g(G)�5 and every vertex is of degree k except for two vertices a
and b which are of degree k − 1. Then G has a Hamiltonian path from a to b if and only if there is a row permutation
for A(G) + I resulting in a matrix having at most k − 1 linear blocks per column.

It is easy to see that the above proofs stay valid after replacing “at most” by “exactly”. Therefore we have the
following.

Theorem 2.3. A k-regular graph G = (V , E) with g(G)�5 has a Hamiltonian circuit if and only if A(G) + I can be
row permuted to have exactly k − 1 circular blocks of consecutive ones in each column.

Theorem 2.4. If G= (V , E) is a graph such that g(G)�5 and every vertex is of degree k except for two vertices a and
b which are of degree k − 1, then G has a Hamiltonian path from a to b if and only if A(G) + I can be row permuted
to have exactly k − 1 linear blocks of consecutive ones in each column.

3. The NP-completeness results

In this section, we prove that all of the following six problems are NP-complete, the first three of which are about
linear blocks, and the last three circular blocks.

Two linear blocks for symmetric matrices (2LBSM):
Instance: A symmetric binary matrix M with no more than three linear blocks of consecutive ones in each row.
Question: Is there a row permutation for M that would result in a matrix having at most two linear blocks of

consecutive ones per column?
Linear blocks for 3-block-row matrices (LB3M):
Instance: A binary matrix M with no more than three linear blocks of consecutive ones per row; and fixed constant

k�2.
Question: Is there a row permutation for M that would result in a matrix having at most k linear blocks of consecutive

ones per column?
Linear blocks for symmetric matrices (LBSM):
Instance: A symmetric binary matrix M; and fixed constant k�2.
Question: Is there a row permutation for M that would result in a matrix having at most k linear blocks of consecutive

ones per column?
Two circular blocks for symmetric matrices (2CBSM):
Instance: A symmetric binary matrix M with no more than three circular blocks of consecutive ones in each row.
Question: Is there a row permutation for M that would result in a matrix having at most two circular blocks of

consecutive ones per column?
Circular blocks for 3-block-row matrices (CB3M):
Instance: A binary matrix M with no more than three circular blocks of consecutive ones per row; and fixed constant

k�2.
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Fig. 1. Transformations among the seven problems.

Question: Is there a row permutation for M that would result in a matrix having at most k circular blocks of consecutive
ones per column?

Circular blocks for symmetric matrices (CBSM):
Instance: A symmetric binary matrix M; and fixed constant k�2.
Question: Is there a row permutation for M that would result in a matrix having at most k circular blocks of consecutive

ones per column?
The starting point of our transformation is the following NP-complete problem [5].
Hamiltonian circuit in cubic graphs (HCCG):
Instance: A bridgeless cubic graph G = (V , E).1

Question: Does G contains a Hamiltonian circuit?
In fact, the result given in [5] is much stronger: they proved that the well-known Hamiltonian Circuit Problem

remains NP-complete when restricted to graphs that are cubic, 3-connected, planar, and have no face with fewer than
five edges. Fig. 1 shows the polynomial transformations among the seven problems. The numbers with the arrows are
the subsections where we present the transformations.

3.1. Two linear blocks for symmetric matrices (2LBSM)

This section proves the NP-completeness of 2LBSM by a polynomial transformation from HCCG. The transformation
needs to use a matching in a constructed graph.2 The existence of the matching is guaranteed by the following lemma.

Lemma 3.1. Every bridgeless graph G = (V , E) with two specific vertices a, b ∈ V such that d(a) = d(b) = 2 and
d(v) = 3 for every vertex v other than a and b has a matching.

Proof. Petersen’s theorem of [11, Corollary 2.2.3] states that every bridgeless cubic graph has a matching. Here, the
graph G is bridgeless but not strictly cubic because of the two specific vertices a and b which are of degree 2. Fortunately,
the existence proof of matching in this situation can be conducted similarly as that for Petersen’s theorem in [11].

We show that the graph G = (V , E) satisfies Tutte’s condition: ∀S ⊆ V , q(G − S)� |S|, where q(G − S) is the
number of odd components of G − S.3 Tutte’s condition is necessary and sufficient for a graph to have a matching
[11]. Let S ⊆ V be given, and consider an odd component C of G − S which has no specific vertices (a or b). The
degrees of the vertices in C sum to an odd number,

∑
v∈V (C)d(v) = 3|C|, but the edges of C, E(C), contribute only an

even number, 2|E(C)|, to the sum (each edge contributes two); the difference between the sum and the contribution,
3|C| − 2|E(C)|, is odd and due to the edges between S and C. So G has an odd number of edges crossing S and C,
and therefore has at least three such edges (since G has no bridge). There are at least q(G − S) − 2 odd components
involving no specific vertices (since there are only two specific vertices), and every other component C has at least two
edges crossing S and C (again, because G has no bridge). The total number of edges crossing S and G − S is at least
3(q(G − S) − 2) + 4. All of them are the incident edges of the vertices of S and each vertex of S is incident upon at
most three of them. So, 3|S|�3(q(G − S) − 2) + 4, implying Tutte’s condition. �

Theorem 3.1. 2LBSM is NP-complete.

Proof. Starting from any bridgeless cubic graph G, an instance of HCCG, we present a way to construct in polynomial
time a symmetric binary matrix M with each row having no more than three linear blocks such that M can be row

1 A bridge is an edge of G such that G − e is not connected; cubic is synonymous with 3-regular.
2 A matching M in G is a set of independent edges of G such that each vertex is incident on exactly one edge of M.
3 An odd component is a maximally connected subgraph with an odd number of vertices.
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Fig. 2. The replaced vertex (a) and the substitution graph (b) with possible local paths (c) and (d) (alternate and symmetric paths omitted). A
Hamiltonian circuit, once entering the substitution graph, must visit all 19 vertices before leaving the substitution graph.

Fig. 3. The replaced vertex (a) and the substitution graph (b) with possible local paths (c) and (d) (alternate and symmetric paths omitted). A
Hamiltonian circuit, once entering the substitution graph, must pass through the edge (a,b) and visit all 11 vertices before leaving the substitution
graph.

permuted to make each column having at most two linear blocks if and only if G has a Hamiltonian circuit. The
construction proceeds in four steps.

The first step is to make the girth of the graph to be at least 5 while keeping the bridgeless and cubic properties and
the Hamiltonicity. This is achieved by replacing each vertex of G with the substitution graph shown in Fig. 2 (due to
[5]). The resulted graph G′ obviously remains bridgeless and cubic and has a girth g(G′)�5. Moreover, G′ and G
concurrently have or have no Hamiltonian circuits.

The second step is to choose an arbitrary vertex v in G′ to be replaced by the substitution graph shown in Fig. 3.
Obviously, the resulted graph G′′ is bridgeless and g(G′′)�5. It is cubic except for the two special vertices a and b.
Moreover, because every Hamiltonian circuit (if any) in G′′ must pass through the edge (a, b), G′′ has a Hamiltonian
path from a to b if and only if G′′ has a Hamiltonian circuit, if and only if G′ has a Hamiltonian circuit, and if and only
if G has a Hamiltonian circuit.

The third step is using G′′ to construct matrix B = A(G′′) + I. B is a symmetric binary matrix. By Theorem 2.2, B

can be row permuted to have at most two linear blocks per column if and only G′′ contains a Hamiltonian path from a
to b, and if and only if G contains a Hamiltonian circuit.

Clearly, the above three steps can be completed within polynomial time. The last step is to permute the rows and the
columns of B to result in a symmetric matrix M that has at most three linear blocks per row—an instance of 2LBSM.
This can be done in polynomial time, as follows.

Lemma 3.1 guarantees that the graph G′′ has a matching M. The matching M can be found in polynomial time using
standard techniques (see, for example, [10]). Consequently, we can for each (vi, vj ) ∈ M make column i and column
j adjacent to let the two 1-entries B(i, i) and B(i, j) be adjacent in row i and the two 1-entries B(j, i) and B(j, j) be
adjacent row j; at the same time, we can make row i and row j adjacent to keep the symmetry of the matrix, giving rise
to a symmetric matrix M that has at most three blocks in each row (because each row of B has at most four 1’s). This
ends the proof. �

3.2. Linear blocks for 3-block-row matrices (LB3M)

For every constant k�3, our NP-completeness proof for LB3M employs a matrix that depends only on k and is
constructed through Lemmas 3.2 and 3.3.

Lemma 3.2. For any k�3, we can construct a matrix Q of size 4(k − 2)2 × 4(k − 2) such that

(i) each row of Q has exactly two 1’s;
(ii) by any row permutation, there is a column having at least k − 1 blocks;

(iii) there is a row permutation by which Q has at most k − 1 blocks per column.
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Proof. Let I be the 2(k − 2) × 2(k − 2) unit matrix, and 1T be a 2(k − 2) × 1 matrix with all 1-entries. Then Q is
obtained by vertically juxtaposing 2(k−2) copies of I and then horizontally appending a matrix obtained by diagonally
duplicating 1T for 2(k − 2) times, as shown below.

Q =

⎛
⎜⎜⎝

I 1T 0T . . . 0T

I 0T 1T . . . 0T

...
...

...
. . .

...

I 0T 0T . . . 1T

⎞
⎟⎟⎠ , where 1T =

⎛
⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎠ and 0T =

⎛
⎜⎜⎝

0
0
...

0

⎞
⎟⎟⎠ .

Clearly, Q has 4(k − 2)2 rows and 4(k − 2) columns, with exactly two ones per row and 2(k − 2) ones per column.
(i) is proved.

Note that any 2 × 2 submatrix of Q cannot contain all ones, which means that making any two rows of Q adjacent
makes at most one pair of 1’s adjacent in all the 2(k − 2) columns. So, any row permutation of Q makes at most
4(k − 2)2 − 1 pairs of 1’s adjacent in all the columns because it makes only 4(k − 2)2 − 1 pairs of rows adjacent in
the linear case. Hence, by any row permutation there must exist a column of Q with fewer than k − 2 pairs of adjacent
1’s, implying that the column has at least k − 1 blocks (because there are 2(k − 2) ones in the column). We have (ii).

To show (iii), we present a permutation by which each column has no more than k − 1 blocks. We use qi,j to denote
the jth row of the ith I in Q (the (2(k − 2)(i − 1) + j)th row of Q). The permutation achieving at most k − 1 blocks
per column arranges the rows in the following order:

For j = 1, 3, 5, . . . , 2(k − 2) − 1 : q1,j q1,j+1q2,j+1q2,j q3,j q3,j+1q4,j+1q4,j . . .

q2(k−2)−1,j q2(k−2)−1,j+1q2(k−2),j+1q2(k−2),j .

We skip the straightforward verification that there are indeed k−1 blocks in each of the columns 1, 3, . . . , 2(k−2)−1,
and k − 2 blocks in each of the other columns. The verification implies (iii). �

Lemma 3.3. For any k�3, we can construct a matrix R of size

(40(k − 2)3 + 2k − 3) × 40(k − 2)2

such that

(a) each row of R has no more than two blocks;
(b) by any row permutation, there is a column having at least k blocks;
(c) there is a row permutation by which R has at most k blocks per column;
(d) in R there are 2k−3 rows r1, r2, . . . , r2k−3 called r-rows in the following such that any optimal permutation (which

achieves no more than k blocks per column) must permute them consecutively in the order of r1, r2, . . . , r2k−3, or
the reverse; and

(e) each of the 2k − 3 r-rows contains exactly one block.

Proof. By diagonally duplicating Q of Lemma 3.2 for 5 times we get

Q5 =

⎛
⎜⎜⎜⎝

Q

Q

Q

Q

Q

⎞
⎟⎟⎟⎠ ,
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a matrix of size 20(k − 2)2 × 20(k − 2) having the properties (i)–(iii) of Lemma 3.2. Note that, if two rows r1, r2 with
all 1-entries are added to Q5 to form

T =
( 1

1
Q5

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1
1 1 1 1 1
Q

Q

Q

Q

Q

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

then for this matrix T, we can let row r1 be adjacent to row r2 and extend this adjacency to a row permutation by which
each column would have at most k blocks. On the other hand, if r1 and r2 are not adjacent, since each of them can
be adjacent to at most two rows in any row permutation, among the five Q’s, there must be one Q that has no rows
adjacent to r1 or r2; thus, there is some column of T involving that Q having at least (k − 1) + 2 = k + 1 blocks; so,
r1 and r2 must be adjacent if no more than k blocks can be in each column.

With the above observation on T, the required matrix R is constructed as follows:

Roughly, R is obtained by first duplicating Q5 along the diagonal for 2k−4 times to form matrix S, and then appending
2k − 3 r-rows r1, r2, . . . , r2k−3 (on top of S), such that all the columns of R involving the ith Q5 form a submatrix
that (by the observation on T) forces row ri to be adjacent with row ri+1. It can be seen that R has 40(k − 2)3 + 2k − 3
rows and 40(k − 2)2 columns and satisfies (a)–(e), thus completing the proof. �

Note that the R stated in Lemma 3.3 is constructed in constant time if k is a constant.

Theorem 3.2. LB3M is NP-complete for every fixed k�2.

Proof. If k = 2, the theorem is implied by Theorem 3.1. So we can assume k�3. We transform 2LBSM to LB3M. Let
Mn×n be any instance of 2LBSM and R be the matrix stated in Lemma 3.3; then the matrix for LB3M is

of which the two O’s are matrices of appropriate sizes with all 0-entries. That is, M is obtained by (1) joining M and R in
the main diagonal (where M is a submatrix of M′ covering the first n rows and the first n columns of M′), (2) assigning
1 to the entries underneath M (i.e., in the first n columns) and corresponding to the k − 2 r-rows r2, r4, . . . , r2(k−2) of
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R, and (3) leaving other entries that are neither in M nor in R to be 0’s. Clearly, for constant k the matrix M′ can be
constructed within time polynomial of n.

M′ has no more than three blocks per row, because R has no more than two blocks per row and M has no more than
three blocks per row. So M′ and k form an instance of LB3M.

Note that underneath M each of the n columns has exactly k − 2 ones. If M can be row permuted such that each
column has at most two blocks, by (c) of Lemma 3.3, the row permutation for M can be extended to the rows of M′
with which each column of M′ has at most k blocks.

Conversely, if there exists a row permutation for M′ leading to each column having no more than k blocks, then by (d)
of Lemma 3.3, this permutation must arrange the 2k − 3 r-rows in the order (or the reverse order) of r1, r2, . . . , r2k−3;
this order separates the k − 2 r-rows r2, r4, . . . , r2(k−2) from one another, and thus k − 2 blocks are formed in each
of the n columns underneath M. So the permutation must make the matrix M to have at most two blocks per column.
In conclusion, M′ can be row permuted to have at most k blocks per column if and only if M can be row permuted to
have at most two blocks per column. �

3.3. Linear blocks for symmetric matrices (LBSM)

Theorem 3.3. LBSM is NP-complete for every fixed k�2.

Proof. The case of k =2 is directly implied by Theorem 3.1. We assume k�3. For a given matrix Mm×n with no more
than three blocks per row, we construct a symmetric matrix M′ such that LB3M replies “yes” for M and k if and only
if LBSM replies “yes” for M′ and k. Such an M′ can be simply constructed by joining M and MT (the transpose of
M) in the secondary diagonal, that is,

M′ =
(

O M

MT O

)
,

where O is a matrix of the appropriate size with all 0-entries. Obviously, (1) M′ is an (m + n) × (m + n) symmetric
matrix computable from M in polynomial time, and (2) for k�3, M′ can be row permuted so that each column has
at most k blocks if and only if M can be row permuted to achieve the same. Thus the construction of M′ from M is a
polynomial transformation from LB3M to LBSM. The NP-completeness of LBSM follows from that of LB3M. �

3.4. Circular blocks

Theorems 3.1–3.3 are for the case of linear blocks. In fact, they also hold for the case of circular blocks. The
transformations are simple. To a matrix M, an instance of 2LBSM or LB3M or LBSM, simply append a row and a
column of all 0-entries, giving us

M′ =
(

M 0T

0 0

)
.

Then, M′ is symmetric if and only if M is symmetric, M′ has no more than 3 circular blocks per row if and only if M

has no more than three linear blocks per row, and M′ can be row permuted to have at most k circular blocks per column
if and only if M can be row permuted to have at most k linear blocks per column. So we have the following.

Theorem 3.4. 2CBSM is NP-complete, and for every fixed k�2, CB3M and CBSM are NP-complete.

3.5. Remarks

We pointed out that 2LBSM and 2CBSM remain NP-complete after replacing “at most” in their questions with
“exactly”. This directly implies the NP-completeness result by Kou [9]—determining whether a given matrix can be
row permuted to have at most k blocks in all columns is NP-complete.



Author's personal copy

2320 R. Wang et al. / Discrete Applied Mathematics 155 (2007) 2312 – 2320

References

[1] B. Bollobas, Extremal Graph Theory, Academic Press, New York, 1978.
[2] K.S. Booth, S. Lueker, Linear algorithm to recognize interval graphs and test for consecutive ones property, Proceedings of the Seventh Annual

ACM Symposium on Theory of Computing, New York, 1975, pp. 255–265.
[3] M. Flammini, G. Gambosi, S. Salomone, Interval routing schemes, Algorithmica 16 (1996) 549–568 (Also in 12th Annual Symposium on

Theoretical Aspects of Computer Science (STACS), Lecture Notes in Computer Science, vol. 900, Springer, Berlin, 1995, pp. 279–290).
[4] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory of NP-Completeness, Freeman, San Francisco, CA, 1979.
[5] M.R. Garey, D.S. Johnson, R.E. Tarjan, The planar Hamiltonian circuit is NP-Complete, SIAM J. Comput 5 (1976) 704–714.
[6] C. Gavoille, D. Peleg, The compactness of interval routing, SIAM J. Discrete Math. 12 (4) (1999) 459–473.
[7] P.W. Goldberg, M.C. Glumbic, H. Kaplan, R. Shamir, Four strikes against physical mapping of DNA, J. Comput. Biol. 2 (1) (1995) 139–152.
[8] F. Harary, Graph Theory, Addison-Wesley, Reading, MA, 1969.
[9] L.T. Kou, Polynomial complete consecutive information retrieval problems, SIAM J. Comput. 6 (1977) 67–75.

[10] C.H. Papadimitriou, K. Steiglitz, Combinatorial Optimization, Algorithms and Complexity, Dover, New York, 1998.
[11] D. Reinhard, Graph Theory, Springer, Berlin, 2005 (Electronic Edition: 〈http://www.math.uni-hamburg.de/home/diestel/books/graph.theory/〉).
[12] R. Wang, F.C.M. Lau, Y.Y. Liu, NP-complete results for all-shortest paths interval routing, in: Proceedings of the 11th International Colloquim

on Structural Information and Communication Complexity (SIROCCO 2004), June 21–23, 2004.


