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a b s t r a c t

The problem of bandwidth allocation in computer networks can be likened to the supply–
demand problem in economics. This paper presents the economic generalized particle model
(EGPM) approach to intelligent allocation of network bandwidth. EGPM is a significant
extension and further development of the generalized particle model (GPM) [1]. The
approach comprises two major components: (1) dynamic allocation of network bandwidth
based on GPM; and (2) dynamic modulation of price and demands of network bandwidth.
The resulting algorithm can be easily implemented in a distributed fashion. Pricing being
the network control mechanism in EGPM is carried out by a tatonnement process. We dis-
cuss the EGPM’s convergence and show that the approach is efficient in achieving the glo-
bal Pareto optimum. Via simulations, we test the approach, analyze its parameters and
compare it with GPM and a genetic-algorithm-based solution.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

1.1. Approaches to the bandwidth allocation problem

Well-known optimization approaches that have been
applied to network resource allocation include: the max–
min fairness (progressive filling) algorithm [2], Lagrangian
multiplier approaches such as the ones by Kelly and
Low et al. [3–9], the ant colony optimization approach
[10–12], and genetic algorithms [13–15].

The max–min fairness algorithm has been widely used
in digital networks, where it is used to allot bandwidth
as equally as possible to all the users under certain trans-
mission conditions. Although the algorithm is easy to real-
ize, it tends to yield lower utilization of bandwidth
resources than other approaches. The algorithms proposed
by Kelly and Low et al. dynamically control the data trans-
mission rates of source nodes in the network so that the
global utility of all the source nodes may be maximized.

These algorithms can usually achieve a comparatively
higher utilization of network resources with some degree
of fairness. Using these algorithms, however, flow control
is centralized, which makes the algorithms difficult to real-
ize in real environments. Evolutionary algorithms (EA) are
heuristic-based global search and optimization methods
that have found their way into virtually every area of real
world optimization. Ant colony optimization (ACO) and
genetic algorithm (GA) are well-known examples; they be-
long to the class of meta-heuristics or approximate algo-
rithms capable of obtaining fairly good solutions to hard
combinatorial optimization problems in a reasonable
amount of computation time. Their main limitation is that
their empirical performance is unknown, and they could
sometimes consume excessive amounts of computation
time.

During the past several years, a number of approaches
using economic models for resource allocation have been
proposed, which include [16–21]. Some of them divide
the traffic into multiple priority classes, and use a fixed
price for each class. To achieve greater network’s effi-
ciency, a better strategy may be to use dynamic pricing
whose variation depends on network activities such as
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congestion. Wang and Schulzrinne [16] proposed a strat-
egy where the price depends on the service class’s average
demand. The price is negotiable through a negotiation pro-
tocol. The strategy however requires resource reservation
which obviously would incur some amount of overhead.
In the pricing model of Baglietto et al. [17], the same
amount of bandwidth is assigned to all traffic classes.
Although simple, this approach may not be that reasonable
as different customers may have different demands for
bandwidth. Pricing in the scheme proposed in [18] is gov-
erned by a well-defined statistical model based on the
source traffic. The scheme however does not take into ac-
count dynamic changes in the traffic.

Auction-based algorithms could be an effective model
for solving classical assignment problems. Bitsaki et al.
[19] pointed out that auctioning as an approach can out-
perform its main competitors by a margin for some impor-
tant types of problems, and is also well suited for parallel
implementation.

Pricing as an effective means to achieve economic effi-
ciency for computer networks has attracted much atten-
tion recently. A number of pricing schemes have been
proposed, such as [20,21]. An appropriate pricing policy
will provide incentives for users to behave in a way that
would improve the overall utilization and performance of
the network. A proper pricing policy influences the users’
demands and the network revenue. There exist many pa-
pers on pricing for communication networks using the
principles of microeconomics. Kelly et al., for example,
use congestion price for rate control in wired networks,
where elastic traffic users for throughput reasons can
dynamically change their data rates [4]. Siris adopts a sim-
ilar approach for CDMA networks [22]. Low presented a
duality model of several TCP/AQM gate protocols [6],
which treats these protocols as distributed primal–dual
algorithms carried out over the Internet in real-time to
maximize the aggregate utility and subject to certain
capacity constraints. Kelly et al.’s and Low’s methods can
be regarded as directly or indirectly based on the Lagrang-
ian multiplier method, and because of that, flow control is
centralized.

1.2. The generalized particle model (GPM)

Recently, Shuai and Feng proposed the generalized parti-
cle model (GPM) approach [1]1 which is based on hybrid en-
ergy functions. GPM can overcome some of the main
deficiencies of the other approaches while retaining some
of the good features of those well-known approaches just
discussed. GPM was shown to be easy to realize, able to
achieve comparatively higher network resource availability,
and suitable for distributed implementation. GPM uses two
‘‘force-fields”, the demand force-field and the resource
force-field. There are numerous particles and forces in every
force-field, where the particles and forces follow their own
dynamic equations to represent the network entities and
their behaviors and interactions respectively. The approach

features high parallelism, low computational complexity,
and simplicity for hardware implementation. The GPM ap-
proach, however, has the following limitations when applied
to the network bandwidth allocation problem.

� The demand force-field in GPM is used to determine the
pricing. Since the prices of bandwidth computed based
on the demand force-field are linked to many factors
such as congestion, supply and demands of bandwidth,
interaction of various network entities, etc., the conver-
gence rate to the equilibrium prices is low.

� Since many parameters in GPM need to be correctly cho-
sen, GPM may not always produce a solution for effi-
cient resource utilization. In order to accommodate as
many connections as possible in a congested network,
the resources need to be used efficiently. GPM’s complex
solutions (in both pricing and resource allocation) may
be impractical although theoretically they can achieve
better resource utilization.

� When the network traffic changes dynamically, the pric-
ing is modulated via several or more iterative steps, and
only when these steps are completely over can the new
price take effect. Thus, prices modulate slowly in
response to changes of the network traffic.

1.3. Economic generalized particle model (EGPM)

This paper presents the EGPM approach for network
bandwidth allocation. EPGM is based on GPM [1] and the
excess demand function [28]. EGPM retains the advantages
and overcome the disadvantages of the price-based ap-
proaches mentioned above, as follows.

� It adds congestion-dependent components to the price.
� It takes network activities and dynamic traffic changes

into account.
� Its pricing depends on the excess demands of network

resources.
� It does not require resource reservation.
� It uses price to reflect the dynamic situation of resource

demands and the supply.
� It does not assign the same amount of bandwidth to all

classes of traffic.
� Its complexity is relatively low.

Similar to the auction algorithm, EGPM rests on the be-
lief that an appropriate pricing policy will provide incen-
tives for the users to behave in ways that would improve
the overall utilization and performance. EGPM makes use
of the following ideas in the field of economics.

1.3.1. Yield management
By adjusting the allocation of (limited) resources, a

company can optimize its total revenue or ‘‘yield.” In
[23], it is suggested that (1) it is expensive or impossible
to store excess resources; (2) commitments need to be
made when future demand is uncertain; (3) the company
should differentiate among customers who may have dif-
ferent demand curves; (4) the same unit of capacity can
be used to deliver many different products or services;

1 The work reported in [25] predated that of [1]; the latter incorporated
several major improvements and achieved better results for the bandwidth
allocation problem.
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and (5) producers are profit-oriented and have absolute
freedom of action. Obviously, the bandwidth allocation
problem has all these characteristics.

1.3.2. General equilibrium model
General equilibrium theory seeks to explain production,

consumption and prices in an economy. Walras suggests
that equilibrium can be achieved through a process of
tatonnement [24].

1.3.3. Tatonnement process
Prices are lowered for goods with positive prices and

excess supply, and should be raised for goods with excess
demand [24]. EGPM applies the tatonnement process to
GPM for the pricing of bandwidth.

1.3.4. Pareto efficiency
If an economic system is Pareto efficient, then no indi-

vidual can be made better off without another individual
being made worse off [24]. In this paper, we prove that
the solution obtained by the EGPM algorithm is globally
Pareto optimal.

We study particularly the relationship between price
and demands in networks, and present the detailed EGPM
approach which exploits the price–demands trade-off in
solving the bandwidth allocation problem.

The following summarizes the differences of EGPM
from GPM.

� In EGPM, the resource force-field is retained for allocat-
ing network resources; but instead of the demand force-
field, the economic tatonnement process is used to
determine the prices.

� The solution obtained by the EGPM algorithm is globally
Pareto optimal.

� The EGPM algorithm is simpler than GPM in terms of the
initial conditions and the choice of the main parameters
in the algorithm, hence more practical.

� By the tatonnement process, EGPM is more effective in
resource utilization than GPM. Also, EGPM’s conver-
gence rate is faster.

� In EGPM, only the value of the excess demand function
is used in updating the price; hence, price modulation
works faster than GPM in response to dynamic network
traffic changes.

The provision of network services can be viewed as an
economy where users are consumers and network re-
sources are commodities. The price for bandwidth dynam-
ically reflects the equilibrium between demand and
supply. When the supply of bandwidth is less than the de-
mands of bandwidth, the network becomes congested, and
the price will rise; whereas when the supply of bandwidth
is more than the demands of bandwidth, the price will fall.
In EGPM, prices depend on the traffic demands and the
available bandwidth. The bandwidth allocated to a user is
equal to the demand for a price that the user can accept.
Hence, the pricing scheme in EGPM is dynamic where the
prices are not fixed and can change as the traffic load in
the network changes.

In this paper, we consider the idealized situation where
users can freely choose their shares of fixed or variable
bandwidth in order to maximize their benefit. The network
coordinates their choices through resource pricing. By
bringing up the price at times of peak usage of bandwidth,
the demands would adjust themselves, and the result is
that less capacity is needed to meet the demands, and
the capital utilization becomes higher. Some traditional
approaches would reserve certain capacity for the users
ahead of time. Reservation however neglects the efficiency
gains that are possible through sharing of resources. EGPM
avoids reservation so as to take advantage of statistical
multiplexing.

To avoid large communication overheads in the compu-
tation, we (1) price only bandwidth (but not buffers), and
(2) avoid reservation. In typical network situations, both
bandwidth and buffer capacities will eventually become
scarce. We believe that scarcity is best treated through
pricing as price-based allocation is consistent with a com-
petitive marketplace. We consider bandwidth to be a nat-
ural commodity to price, whereas pricing buffers is less
satisfactory from a user’s point of view. Furthermore, net-
work performance is usually more sensitive to bandwidth
than to buffers.

The EGPM algorithm is divided into two parts, as
shown in Fig. 1: (1) dynamic allocation of network band-
width based on GPM, and (2) dynamic modulation of
prices and demands based on the tatonnement process.
The tatonnement process and auctioning share some
common features. Allocation based on GPM can realize
the optimization of multiple objectives, including the glo-
bal utility, the personal utilities, the minimal personal
utility, the resource utilization, the users’ satisfaction de-
grees, etc. Auction-based allocations cannot achieve the
same.

The design of the EGPM algorithm pays special atten-
tion to the three ‘‘evaluation indices”: bandwidth utiliza-
tion, demand satisfaction, and fairness. These are in fact
rather common measures for network performance. The
former two indices are embodied in Eq. (4). Proposition 5
for the equation implies that the EGPM algorithm will be
able to narrow the gap between bandwidth resources
and the demand and maximize the utilization of the links’
bandwidth. Max–min fairness is embodied in Eq. (3) and
assured by Proposition 1.

1.4. Paper structure

Section 2 presents the model of bandwidth allocation
problem. In Section 3, we give an overview of the EGPM
architecture. In Sections 4 and 5, the evolution of the allo-
cation policy and that of the pricing policy are addressed,
respectively. The convergence of the EGPM algorithm is
discussed and proved in Section 6. Section 7 presents the
EGPM algorithm which is a synthesis of the results of the
previous sections. In Section 8, we present the perfor-
mance of EGPM-based on simulation, and compare it with
GPM, genetic algorithm and other well-known bandwidth
allocation approaches. Finally, we draw conclusions in Sec-
tion 9.
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2. Problem model for bandwidth allocation

The following are the important issues to consider in
our solution.

1. Allocation effectiveness: the customers should be satis-
fied, the available bandwidths should be utilized as
fully as possible, and the allocation should be fair.

2. Pricing strategy: how the various bandwidths should be
priced in order to maximize every link’s and network’s
revenue.

3. Parallel allocation: the allocation method should be
easy to be implemented in a distributed fashion with
minimal communications among the computing
entities.

The first issue above presents specific objectives which
are common to most bandwidth allocation problems and
solutions. In our approach, the degree of this objective
being met is measured by the demand satisfaction level
(DSL), the bandwidth utilization level (BUL), and a fairness
term. Every link’s revenue and network’s revenue are two
artificial objectives in our EGPM algorithm, which are
means to optimizing the real objectives of the problem.
EGPM purports to address all the above issues.

In the bandwidth allocation problem, a source–destina-
tion pair communicate through a channel associated with
the pair, and have a certain demand for bandwidth. The
channel can be realized through one or more paths into
which the channel’s traffic would be split. We consider
the scenario with a given number of links and their capac-
ities, a given number of channels and their demands for
bandwidth, and a given number of paths per each of these
channels. This is the case of a static environment. Our ap-
proach applies also to the dynamic case where these

parameters may change over time. If the environment does
change during the calculation of an allocation, the EGPM
algorithm will allocate the bandwidths based on the cur-
rent calculation and then perform a new calculation from
the beginning according to the new conditions.

The network is an undirected graph of N nodes and m
links, and there are J channels. The main parameters of
any problem instance are as follows.

Ai: The ith physical link (i ¼ 1;m).
TðjÞ: The jth channel ðj ¼ 1; J; J 6 N � ðN � 1Þ=2Þ.
nj: The number of the paths of channel
TðjÞ n ¼

PJ
j¼1nj

� �
.

TðjÞk : The kth path of the jth channel.
ri: The maximum bandwidth of link Ai.
dðjÞ: The median of the bandwidth demand of channel
TðjÞ.
1j: The mean square deviation of the bandwidth
demand of channel TðjÞ.
xðjÞik : xðjÞik ¼ 1 if path TðjÞk passes through link Ai; otherwise
0.
aðjÞik : The bandwidth of link Ai that is allotted to path TðjÞk .

pðjÞk : The price per unit bandwidth that path TðjÞk has to
pay.

aðjÞk : The actual bandwidth obtained by path T ðjÞk —that is,

aðjÞk ¼mini aðjÞik j8xðjÞik ¼ 1
n o

.2

Table 1 shows a snapshot of allocation.
The above parameters of the problem fall into several

categories, as in Table 2.
The bandwidth allocation problem is defined as:

Fig. 1. The EGPM architecture.

2 If xðjÞik ¼ 0; aðjÞik ¼ 0.
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Bandwidth allocation problem:
Try to guarantee: satisfaction indicator (SI).
Maximize: demand satisfaction level (DSL), bandwidth
utilization level (BUL), and fairness.
Given conditions: N; m; J; nj; ri; dðjÞðt ¼ 0Þ; 1j; xðjÞik , and
topology.
Solution: aðjÞk .

Definition 1. The satisfaction indicator is a logical variable
indicating whether the demand of a channel is met or not.

SIðjÞ ¼ Yes
Pnj

k¼1
aðjÞk ðtÞ 2 ½d

ðjÞ � 1j; dðjÞ þ 1j�

No otherwise:

8><>:
Definition 2. The demand satisfaction level of a channel
(source–destination pair) shows the actual degree of satis-
faction (or dissatisfaction) of the channel.

DSLðjÞ ¼
Pnj

k¼1 aðjÞk ðtÞ
dðjÞðtÞ

� 100%:

Definition 3. The bandwidth utilization level of every link is
defined as

BULi ¼
Pp

j¼1

Pnj

k¼1 aðjÞk ðtÞ � x
ðjÞ
ik ðtÞ

riðtÞ
� 100%:

Definition 4. The fairness of the allocation is measured by
(according to [26])

f ðy1; y2; . . . ; yJÞ ¼
XJ

j¼1

yj

 !2,
J
XJ

j¼1

y2
j ;

where y1; y2; . . . ; yJ are the bandwidths allocated to J chan-
nels, respectively.

In addition, we introduce two artificial measures—the
network’s revenue and every link’s revenue—and some arti-
ficial variables ðdðjÞðt > 0Þ; aðjÞik ; pðjÞk Þ into the EGPM algo-
rithm which are useful in the derivation of the final
solution.

Definition 5. The revenue of link Ai is given by

XJ

j¼1

Xnj

k¼1

pðjÞk ðtÞ � a
ðjÞ
k ðtÞ � x

ðjÞ
ik ðtÞ

and the revenue of the network is the sum of the revenues of
all the links.

The former two indices are embodied in Eq. (4). Accord-
ing to Proposition 5, the EGPM algorithm will always result
in a decrease of Eq. (4)—i.e., the algorithm will narrow the
gap between bandwidth resources and the demand, and
will increase the utilization of the links’ bandwidth.
Max–min fair allocation can be obtained by the EGPM
algorithm, which is assured by Proposition 6 as well as
Proposition 1. Max–min fairness is embodied in Eq. (3).
The degree of fairness achieved is quantified by the fair-
ness measure f ð Þ defined above.

3. The EGPM architecture

As shown in Fig. 1, our EGPM-based approach and its
corresponding algorithm are divided into two parts: (1)
dynamic allocation of network bandwidth based on GPM,
and (2) dynamic modulation of prices and demands for
network bandwidth.

GPM uses a resource force-field to model the interactions
of the network entities [1]. A similar force-field is used
here by EGPM, which consists of numerous particles and
forces. A particle with its own dynamic equations repre-
sents an entity of the network being modeled, a network
link in this case; each force with its own time-varying
properties represents a certain kind social interaction
among the network entities. The evolution process is iter-
ative: at every step the allocation module would produce
an allocation based on which the modulator module would
generate a new set of modulated prices and demands. The
iteration terminates when an equilibrium is reached. In

Table 1
The bandwidth allocation problem.

Link Path

Tð1Þ1
� � � Tð1Þn1

� � � TðjÞ1
� � � TðjÞnj

� � � Link bandwidth

A1 xð1Þ11 ; a
ð1Þ
11

� � � xð1Þ1;n1
; að1Þ1;n1

� � � xðjÞ11; a
ðjÞ
11

� � � xðjÞ1;nj
; aðjÞ1;nj

� � � r1

..

. ..
. ..

. ..
. ..

. ..
.

Ai xð1Þi1 ; a
ð1Þ
i1

� � � xð1Þi;n1
; að1Þi;n1

� � � xðjÞi1 ; a
ðjÞ
i1

� � � xðjÞi;nj
; aðjÞi;nj

� � � ri

..

. ..
. ..

. ..
. ..

. ..
.

Am xð1Þm1; a
ð1Þ
m1

� � � xð1Þm;n1
; að1Þm;n1

� � � xðjÞm1; a
ðjÞ
m1

� � � xðjÞm;nj
; aðjÞm;nj

� � � rm

Allotted bandwidths (price) to paths pð1Þ1 ; apð1Þ1
� � � pð1Þn1

; að1Þn1
� � � pðjÞ1 ; a

ðjÞ
1

� � � pðjÞnj
; aðjÞnj

� � �

Required bandwidths of channels dð1Þ; 11
� � � dðjÞ; 1j

� � �

Table 2
The notations.

Category Parameter(s) During calculation

The network Ai; T
ðjÞ; TðjÞk ;N;m; J;nj ; x

ðjÞ
ik

Fixed

Supply and demand ri; d
ðjÞðt ¼ 0Þ; 1j

Fixed

Solution aðjÞk
Changing

Artificial variables dðjÞðt > 0Þ; aðjÞik ; p
ðjÞ
k

Changing

510 X. Feng, F.C.M. Lau / Computer Networks 54 (2010) 506–524
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this paper, the two modules are combined in a single EGPM
algorithm.

A particle in the resource force-field would move along
a certain trajectory under the influence of a composite
force. The particles’ behaviors are characterized by the
following.

� Each particle has an autonomous self-driving force cor-
responding to the ‘‘personality” of the network link
being modeled.

� The stimulus of a particle is a function of the particle’s
objective, utility, and intention, which presents a multi-
ple objective optimization problem to be solved.

� There are a variety of interactive forces among the par-
ticles, including unilateral forces, corresponding to the
various kinds of social interaction that are possible in a
network.

4. Evolution of the allocation policy

The allocation module accepts new parameter values
at every step of the iterative process to produce an alloca-
tion which is closer to equilibrium than the previous allo-
cation. Since the evolution of the allocation policy in GPM
and that in EGPM are essentially the same, we only high-
light the relevant definitions and properties here. For fur-
ther details and the missing proofs, we refer the reader to
[1].

The mathematical model involving m links and n paths
is defined as follows. We refer to a particle in the force-
field that represents a link in the network a link particle.

Definition 6. Let uiðtÞ be the distance of link particle
Ai from the upper boundary of the force-field at time t, and
let JðtÞ be the total utility of all link particles. We define

uiðtÞ ¼ exp �
XJ

j¼1

Xnj

k¼1

pðjÞk ðtÞ � a
ðjÞ
k ðtÞ � x

ðjÞ
ik ðtÞ

" #
; ð1Þ

JðtÞ ¼
Xm

i¼1

uiðtÞ: ð2Þ

The larger the value of the double summation in Eq. (1)
(hence the smaller the value of uiðtÞ), the more profit the
ith link earns. The optimization problem here is posed as
a minimization problem and so the term is negated. The
exponential function makes uiðtÞ fall between 0 and 1.
uiðtÞ indeed is the utility of link particle Ai. The distance be-
tween the bottom and the upper boundary is set to be 1. As
for the total utility (Eq. (2)), the smaller the value of JðtÞ the
better.

Definition 7. At time t, the potential energy function PðtÞ,
which is created by the upward gravitational force of the
force-field, is defined by

PðtÞ ¼ e2 ln
Xm

i¼1

exp �u2
i ðtÞ=2e2� �

; ð3Þ

where 0 < e < 1 is a parameter to be tuned in the imple-
mentation, which affects directly the convergence speed.

The smaller the value of PðtÞ the better. The decrease of
this value implies the increase of the minimal utility
among all the links (see Proposition 1). By this equation,
we consider not only the aggregate, but also the individual
personal utilities, in particular the minimum one, when
trying to optimize the network bandwidth allocation. e
represents the strength of the upward gravitational force
in the force-field. The larger the value of e the faster the
particles would move up; hence, e influences the conver-
gence speed of the allocation process. Too fast a speed
however might result in some of the possible solutions
being skipped over, and so e needs to be carefully adjusted
in order to maximize the users’ satisfaction.

Definition 8. At time t, the potential interaction energy
function, QðtÞ, is defined by

QðtÞ ¼ b1

Xm

i¼1

XJ

j¼1

Xnj

k¼1

aðjÞk ðtÞ � riðtÞ
�����

�����
2

þ b2

XJ

j¼1

Xnj

k¼1

aðjÞk ðtÞ � dðjÞðtÞ
�����

�����
2

; ð4Þ

where 0 < b1; b2 < 1.

The smaller the value of QðtÞ the better. b1 and b2 are
the weights assigned to the amount of available link band-
width and the degree of satisfaction of the path demands,
respectively.

Eq. (4) quantifies the effect of interactions among the
links during bandwidth allocation. The first and the second
term of QðtÞ can be seen as penalty functions due to the
constraints on the utilization of resources (i.e., link band-
width) and the satisfaction of the users (i.e., the channels),
respectively. Therefore, resource utilization and users’ sat-
isfaction can be explicitly included as part of optimization
objectives through some appropriate choices of the coeffi-
cients b1 and b2. There exist specific interactive forces
among the particles, and these forces may cause the poten-
tial energy components represented by the first and second
terms of QðtÞ to decrease.

Definition 9. The dynamics of particle Ai are defined by

DaðjÞik ðtÞ ¼ �k1
@uiðtÞ
@aðjÞik ðtÞ

� k2
@JðtÞ
@aðjÞik ðtÞ

� k3
@PðtÞ
@aðjÞik ðtÞ

� k4
@QðtÞ
@aðjÞik ðtÞ

;

ð5Þ

where k1; k2; k3 are one-dimensional coefficient vectors,
and k4 is a two-dimensional coefficient vector. k1 ¼
ðkð1Þi Þm�1, where kð1Þi represents the strength of Ai to pursue
personal profit, 0 6 kð1Þi 6 1. k2 ¼ ðkð2Þi Þm�1, where kð2Þi repre-
sents the strength of Ai to consider the aggregate profit of
all the links, 0 6 kð2Þi 6 1. k3 ¼ ðkð3Þi Þm�1, where kð3Þi repre-
sents the strength of Ai to increase the minimal personal
profit among all the link particles, 0 6 kð3Þi 6 1.
k4 ¼ ðkð4Þiu Þm�m, where kð4Þiu represents the strength of Ai to

interact with Au; 0 6 kð4Þiu 6 1.

Ai updates aðjÞik according to Eq. (5)—that is, aðjÞik ðtþ
1Þ ¼ aðjÞik ðtÞ þ DaðjÞik ðtÞ. We can therefore obtain the radial
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velocity of link particle Ai along the vertical direction to-
wards the upper boundary of gravitational field by the
equation

v i ¼ dui=dt ¼
XJ

j¼1

Xnj

k¼1

@ui

@aðjÞik

daðjÞik

dt
: ð6Þ

Proposition 1. The decrease of the potential energy PðtÞ of
the gravitational field will result in the increase of the profit of
the link whose profit is the minimum among all the links.

Proof. Let UðtÞ ¼maxiu2
i ðtÞ. Because UðtÞ ¼ maxiu2

i ðtÞ 6Pm
i¼1u2

i ðtÞ 6 m �maxiu2
i ðtÞ ¼ m � UðtÞ, we have e

UðtÞ
2e2

h i2e2

6

Pm
i¼1e

u2
i
ðtÞ

2e2

" #2e2

6 me
UðtÞ
2e2

h i2e2

.

Simultaneously taking the logarithm of each side of the
above equation leads to

UðtÞ 6 2e2 ln
Xm

i¼1

e
u2

i
ðtÞ

2e2 6 UðtÞ þ 2e2 ln m;

2e2 ln
Xm

i¼1

e
u2

i
ðtÞ

2e2 P UðtÞP 2e2 ln
Xm

i¼1

e
u2

i
ðtÞ

2e2 � 2e2 ln m;

2PðtÞP max
i

uiðtÞP 2PðtÞ � 2e2 ln m:

Since m is the number of links, 2e2 ln m is a constant. PðtÞ
therefore represents the maximum among all the uiðtÞ’s
associated with Ai, namely, the minimum of the personal
profits obtained by a link at time t. Hence, decreasing
PðtÞ implies the increase of the profit of the link whose
profit is the minimum among all the links. h

Definition 10. Max–min Fairness [27]. A feasible alloca-
tion of bandwidth a is max–min fair if and only if an
increase of any bandwidth within the domain of feasible
allocations will be at the cost of a decrease of some already
smaller bandwidth allocation. Formally, for any other fea-
sible distribution Y, if yðjÞik > aðjÞik then there must exist some
ði0; k0; j0Þ such that aðj

0 Þ
i0k0
6 aðjÞik and yðj

0 Þ
i0k0
< aðj

0 Þ
i0k0

.

Proposition 2. The behavior of Ai, by the third term of DaðjÞik

(Eq. (5) ), will always bring about an increase of the minimum
profit obtained by a link, and this increase is directly propor-
tional to the coefficient vector k3.

Proposition 3. The behavior of Ai caused by the first and
third terms of DaðjÞik (Eq. (5) ) will always result in an increase
of the personal profit of Ai, and this increase is proportional to
the coefficient vectors k1 and k3.

Proposition 4. The behavior of Ai caused by the second term
of DaðjÞik (Eq. (5) ) will increase the global utility of the network,
which is directly proportional to the coefficient vector k2.

Proposition 5. The behavior of Ai caused by the fourth term
of DaðjÞik (Eq. (5) ) will narrow the gap between bandwidth
resources and the demand, and the strength is proportional
to the coefficient vector k4.

Proposition 6 (Max–min fair allocation). Max–min fair
allocation can be obtained by updating the allotted a by Eq.
(5).

5. Evolution of the pricing policy

In this section, we present the evolutionary model that
describes mathematically the dynamic modulation of
prices and demands of network bandwidth. We introduce
an important function, the excess demand function, which
is a key element of the price modulation process.

5.1. Excess demand function

Definition 11. The price vector p� ¼ p�ð1Þ1 ; . . . ; p�ðjÞk ; . . . ; p�ðJÞnJ
,

a solution of the bandwidth allocation problem
a ¼ að1Þ1 ; . . . ; aðjÞk ; . . . ; aðJÞnJ

is in equilibrium if and only if a is
a feasible solution, and

zjðp�Þ ¼
Xnj

k¼1

aðjÞk � dðjÞ ¼ 0: ð7Þ

The mapping z is called the excess demand function and
it has the following properties:

P1: z is single valued and continuous for all p > 0.
P2: z satisfies Walras’ law: p � zðpÞ ¼ 0 for all p > 0.
P3: z is homogeneous of degree zero: zðapÞ ¼ zðpÞ for all
a > 0.
P4: There is a scalar m < 0 such that zjðpÞ > m for all j and
p > 0.
P5: limpðtÞ!p maxj;k2JKp

zjðpðtÞÞ
h i

¼ 1, when pðtÞ > 0; p –
0 and JKp ¼ fj; k : pðjÞk ¼ 0g– Ø.

Homogeneity is an elementary property of the excess
demand function because the channels’ price vector stays
the same when the budget constraints are multiplied by
a positive constant. Walras’ law and the continuity prop-
erty result from the channels’ minimization problems
when the preferences are strictly concave and locally
non-satiated. P4 means that all the component functions
of z are bounded from below on Rn

þ; this is because the
net supply of bandwidth to the channels cannot exceed
the channels’ total demand. By P5, all the bandwidths of
the paths are desirable in the sense that when some of
these bandwidths become free of charge, there will exist
at least some channels whose excess demand functions be-
come infinitely large. When z has the properties P1–P5, the
economy has at least a ray of equilibrium prices.3

The absolute value of the excess demand function is in-
versely proportional to the demand satisfaction level (Def-
inition 2). EGPM’s pricing policy aims at maximizing the
demand satisfaction levels of the channels, and therefore
the iterative price modulation processes in EGPM have to
satisfy the conditions that (1) the absolute value of the ex-
cess demand function will be minimized, and (2) the mod-
ulation processes will converge.

3 See for example Chapter 17 of [28] for more about the properties of
excess demand functions.

512 X. Feng, F.C.M. Lau / Computer Networks 54 (2010) 506–524



Author's personal copy

5.2. Iterative price modulation processes

The dynamic modulation of price in the EGPM algo-
rithm is based on the following. The price will rise when
the supply of bandwidth is less than the demands of band-
width ðzj < 0Þ, whereas the price will fall when the supply
of bandwidth is more than the demands of bandwidth
ðzj > 0Þ. The tendency to increase or decrease in price is di-
rectly proportional to jzjj. In economics, such a dynamic
modulation of price is known as the tatonnement process.
The continuous time tatonnement process, introduced by
Samuelson [29], is described by the differential equation

_pðtÞ ¼ zðpðtÞÞ; ð8Þ

where _pðtÞ is the time derivative of pðtÞ. This process is
usually interpreted as an ‘‘auction” run by a fictitious
agent, which sets the prices until an equilibrium is
reached. It can be shown that under the following stability
condition C1, the process of Eq. (8) is globally stable, i.e., it
converges to an equilibrium for any positive initial prices.

C1: There exists p� > 0 that solves Eq. (7) and satisfies
p� � zðpÞ > 0 for all p > 0 for which zðpÞ – 0.

The convergence condition C1 can be interpreted as the
weak axiom of revealed preferences between the equilib-
rium p� and any disequilibrium price vector. The simplest
discrete time alternative for the process of Eq. (8) is the
fixed-point iteration

pðt þ 1Þ ¼ pðtÞ þ zðpðtÞÞ; ð9Þ

where t is the iteration index corresponding to the time in-
stants at which the prices are modulated. Analyzing Eq. (9)
instead of Eq. (8) suits the bandwidth allocation problem
better, for which the price modulation process proceeds
over discrete time instants. Unfortunately, Eq. (9) is not
suitable for solving Eq. (7), because some of the prices
may become negative during the iteration, for which z is
usually not defined. One way to obtain non-negative prices
is to update pðjÞk ðtÞ as follows:

pðjÞk ðt þ 1Þ ¼max 0;pðjÞk ðtÞ þ h � zjðpðjÞk ðtÞÞ
n o

; ð10Þ

where h is called the price modulation rate which is a po-
sitive constant. The convergence of this process restricts
the choice of h and pðt ¼ 0Þ. The drawback of the process
of Eq. (10) is that due to P5 the excess demand function
is not finite if some prices become zero. It can be easily
seen that the discrete time process of Eq. (10) does not
converge under the same assumptions as the continuous
time process of Eq. (8). For example, the convergence of
process of Eq. (10) depends on the choice of the parameter
h. Moreover, normalized discrete time processes tend to
exhibit chaotic behavior. We give an alternative discrete
time process which converges under assumptions that
are very close to those required for the process of Eq. (8)
to converge. This process can be seen as a variation of
the fixed-point iteration of Eq. (9) and it is defined by the
following formula:

pðt þ 1Þ ¼ pðtÞ þ lt � zðpðtÞÞ; ð11Þ

where the parameter lt is updated as follows:

Step 1: A scalar ct > 0 is chosen such that pðtÞ þ ct �
zðpðtÞÞ > 0, and ct ¼ ct�1 for t P 1 if
pðtÞ þ ct�1 � zðpðtÞÞ > 0.

Step 2: lt ¼minfct ;M=kzðpðtÞÞkg, where M > 0.

The first step above is to guarantee that the new prices
are positive. When pðtÞ > 0, there is a positive number ct

such that pðtÞ þ ct � zðpðtÞÞ > 0. It follows that when the ini-
tial prices are positive, i.e., pð0Þ > 0, all the prices obtained
during the process are positive as well. The second step
guarantees that lt � zðpðtÞÞ is bounded in the Euclidean
norm k � k. As a result, the magnitude of the change of
the price vector is bounded, namely kpðt þ 1Þ�
pðtÞk ¼ klt � zðpðtÞÞk 6 M, where M is an arbitrarily chosen
positive number. This property is needed in the conver-
gence analysis of the process. Note that by these two steps,
lt is updated only when it is necessary, to obtain positive
prices or to bound the changes by M.

The process of Eq. (11) satisfies the law of demand in
the sense that the price of bandwidth would rise with ex-
cess demands (of the channels), and the price would fall
with excess supply. Moreover, the prices are adjusted in
proportion to the excess demands in a fashion similar to
that in the process of Eq. (8).

6. Convergence analysis of EGPM

6.1. Convergence analysis

We prove in this section that the process of Eq. (11)
converges when z has the properties P1–P5 and satisfies
C1 as well as C2 which is stated below. In the condition
C2, vector p� is the same equilibrium vector for which C1
holds, for E1 ¼ fp 2 Rn

þ : kzðpÞk < 1g.
C2: There are positive scalars 1 and r such that

p� � zðpÞP rkzðpÞk2 for all p 2 E1.
Let us examine the geometrical interpretation of the

conditions C1 and C2. The condition C1 means that the
hyperplane fa 2 Rn : p� � a ¼ 0g supports the set fa 2 Rn :

a ¼ zðpÞ; p > 0g (see Fig. 2). The condition C2 means that
this set is at least located locally around the origin, inside
a ball which has its center at the ray of solutions
fp : p ¼ kp�; k > 0g. Hence we can write p� � z P rkzk2

equivalently as kp�=ð2rÞ � zk 6 kp�=ð2rÞk.
The way in which the parameter lt is updated guaran-

tees that the norm of the scaled excess demand, ltz, is
bounded by the constant M. As a result, the scaled excess
demand is for all p > 0 inside a ball centered at the ray
of solutions, as illustrated in Fig. 2, where r ¼ 1=2 and
k ¼ 1.

Theorem 1. Let z have the properties P1–P5 and satisfy the
conditions C1–C2. Then the process of Eq. (11) converges to
an equilibrium for any pð0Þ > 0. If there is a unique ray of
equilibria, then there exists an N P 0 such that the conver-
gence is monotonical when t P N.

The monotonical convergence of the sequence fpðtÞgt toep means that kpðtÞ � epk ! 0, when t !1, and if pðtÞ–ep,
then kpðt þ 1Þ � epk < kpðtÞ � epk. The following lemmas
are used in the proof of Theorem 1 which can be found
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in Appendix A. Here we let Bðp�; 1Þ denote the closed ball
with radius 1 > 0 and centered at p�, i.e., Bðp�; 1Þ ¼
fa 2 Rn : ka� p�k 6 1g. The proofs of Lemmas 1–3 are in
Appendix A.

Lemma 1. Let the continuous mapping z : Bðp�; rÞ ! Rn

satisfy Walras’ law for all p 2 Bðp�; rÞ, and let the inequality
p� � zðpÞP kzðpÞk2 hold for all p 2 Bðp�; rÞ. If pð0Þ 2 Bðp�; rÞ
and lt 6 1 for all t, then the iterative process pðt þ 1Þ ¼
pðtÞ þ lt � zðpðtÞÞ converges. When 0 < lL 6 lt , the process
converges to the solution of zðpÞ ¼ 0.

Note that Lemma 1 does not assume that p� solves
zðpÞ ¼ 0. It can be shown, however, that under the condi-
tions of Lemma 1 vector p� is a solution. The following lem-
ma shows that convergence is monotonical when there is a
unique ray of equilibria.

Lemma 2. Let z satisfy the same conditions as in Lemma 1
and let the iteration pðt þ 1Þ ¼ pðtÞ þ lzðpðtÞÞ; l > 0, con-
verge to a solution ep for which there exists a > 0 such that

kzðpÞk2
6 2azðpÞ � ep ð12Þ

for all p 2 Bðp�; rÞ. Then the convergence is monotonical.

Lemma 3. If z has the properties P1, P3–P5, and satisfies
C1–C2, then there exists r > 0 such that p� � ẑðpÞP
rkẑðpÞk2 for all p > 0, where

ẑðpÞ ¼
MzðpÞ=kzðpÞk if kzðpÞkP M;

zðpÞ otherwise:

�

Theorem 2. When there is a unique equilibrium for the
model of bandwidth allocation, the equilibrium prices solve
the bandwidth optimization problem, i.e., the solution is glob-
ally Pareto optimal.

Proof. Assume that each path uses the process of Eq. (11)
to update its price. The best price for a path is calculated
from

Pnj

k¼1aðjÞk ¼ dðjÞ. At equilibrium, this is the condition
that is satisfied. Furthermore, the links use Eq. (5) to calcu-

late aðjÞik , which guarantees local optimality of the solution
and the feasibility of the condition

PJ
j¼1

Pnj

k¼1aðjÞik ðtÞ 6
riðtÞ; i ¼ 1;m. Uniqueness of the equilibrium guarantees
that the locally feasible optimum solution is also the global
optimum. Under these conditions, the outcome of the pro-
posed approach is a solution to the bandwidth optimiza-
tion problem. h

Pareto optimality is a relevant criterion in a multi-
objective problem setting. At Pareto optimum, we can find
no other feasible solution that can improve some objec-
tives without depriving other objectives. Theorem 2 states
that, if the equilibrium is unique, then the outcome of the
proposed approach is the optimal solution to the problem
of maximizing individual revenues. If there are multiple
equilibria, however, the resulting bandwidth allocation a
is only locally optimal.

From Theorem 2, if a solution a is in equilibrium when
the price vector is p, a is an optimal solution, which implies
that every link can obtain as large a profit as possible and
so can the network for the total profit. As a result, individ-
ual optimization (which implies fairness) is consistent
with global optimization and contributes to the efficiency
of the latter.

Generally speaking, the utility function should satisfy
the two conditions that (1) ui is a concave function, and
(2) ui is monotonic.

In this paper, the utility function is defined by

uiðtÞ ¼ exp �
XJ

j¼1

Xnj

k¼1

pðjÞk ðtÞ � a
ðjÞ
k ðtÞ � x

ðjÞ
ik ðtÞ

" #
;

u0iðtÞ ¼ �pðjÞk ðtÞ � exp �
XJ

j¼1

Xnj

k¼1

pðjÞk ðtÞ � a
ðjÞ
k ðtÞ � x

ðjÞ
ik ðtÞ

" #
6 0;

u00i ðtÞ ¼ pðjÞk ðtÞ
h i2

� exp �
XJ

j¼1

Xnj

k¼1

pðjÞk ðtÞ � a
ðjÞ
k ðtÞ � x

ðjÞ
ik ðtÞ

" #
P 0:

When pðjÞk ðtÞ – 0; u0iðtÞ < 0 and u00i ðtÞ > 0. When pðjÞk ðtÞ –
0; ui is monotonic and concave.

The properties mentioned above have a deeper mean-
ing. ui being a concave function implies that the improve-
ment of the satisfaction level for bandwidth between two
end nodes should be realized by means of balancing the
bandwidth among several links. ui being monotonic im-
plies that the more links there are and the more bandwidth
each link has, the better.

6.2. Convergence rate analysis

Theorem 3. The iteration process of Eq. (11) converges to a
solution p� in 2-rank.

Proof. Let xt denote pðtÞ; then xtþ1 denotes pðt þ 1Þ, and x�

denotes p�. Supposing that xtþ1 ¼ f ðxtÞ, the iteration pro-
cess pðt þ 1Þ ¼ pðtÞ þ lt � zðpðtÞÞ becomes

f ðxÞ ¼ xþ lt � zðxÞ: ð13Þ

And we also have f ðx�Þ ¼ x� þ lt � zðx�Þ. Because zðx�Þ ¼ 0,
we have f ðx�Þ ¼ x�.

Since zjðpðtÞÞ ¼
Pnj

k¼1aðjÞk ðtÞ � dðjÞðtÞ, we have

Fig. 2. Illustration of the convergence conditions.
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aðjÞik ðt þ 1Þ ¼ aðjÞik ðtÞ þ DaðjÞik ðtÞ;

DaðjÞik ðtÞ ¼ uiðk1pðjÞk þ k3wiÞ � k2 � 2k4b1

Xp

j¼1

Xnj

k¼1

aðjÞk � ri

�����
�����

� 2k4b2

Xnj

k¼1

min
i

aðjÞik � dðjÞ
�����

�����:
We can obtain z0ðx�Þ ¼ A – 1 and A – 0. zðxÞ is continuously
differentiable for two times. From the Taylor’s equation,
when x sufficiently approaches x�, we get

zðxÞ ¼ zðx�Þ þ Aðx� x�Þ þ 0:5z00ðnÞðx� x�Þ2:

Let x� ¼ 0, we obtain

zðxÞ ¼ Axþ Oðx2Þ:

From Eq. (13) and A – 1, we get

f ðxÞ ¼ xþ lt � ½Axþ Oðx2Þ� ¼ xþ Alt � xþ Oðx2Þ:

Therefore

lim
t!1

xtþ1 � x�

ðxt � x�Þn
¼ c) lim

t!1

xþ Alt � xþOðx2Þ � x�

ðx� x�Þn
¼ c) n ¼ 2:

So the iteration process of Eq. (11) converges to a solution
p� in 2-rank. h

7. The EGPM algorithm

Here we present the EGPM algorithm which consists of
a component for distributed parallel bandwidth allocation
and a component for distributed asynchronous price–de-
mands modulation.

0. Input:

ri; 1j; d
ðjÞ
; xðjÞik

1. Initialization:
t  0

Dt; h; e; b1; b2; aðjÞik ðtÞ; pðjÞk ðtÞ
2. aðjÞk ðtÞ  minia

ðjÞ
ik ðtÞ

zj  
Pnj

k¼1aðjÞk ðtÞ � dðjÞðtÞ
Compute v iðtÞ according to Eq. (6)

3. while ðjzjj > 1j and v iðtÞ – 0Þ do
(3.1) pðjÞk ðt þ DtÞ  pðjÞk ðtÞ þ zjðtÞ � h

if ðpðjÞk ðt þ DtÞ 6 0Þ
h h=2
pðjÞk ðt þ DtÞ  pðjÞk ðtÞ þ zjðtÞ � h

dðjÞðt þ DtÞ  pðjÞk ðtÞ � d
ðjÞðtÞ=pðjÞk ðt þ DtÞ

t  t þ Dt
(3.2) Compute uiðtÞ according to Eq. (1)

Compute v iðtÞ according to Eq. (6)
Compute daðjÞik ðtÞ=dt according to Eq. (5)
aðjÞik ðtÞ  aðjÞik ðt � DtÞ þ daðjÞik ðtÞ=dt
if

Pl
j¼1

Ph
k¼1aðjÞik ðtÞ 6 ri and

Pl
j¼1

Phþ1
k¼1aðjÞik ðtÞ > ri

� �
aðjÞik ðtÞ ¼ 0

aðjÞk ðtÞ  minia
ðjÞ
ik ðtÞ

zj  
Pnj

k¼1aðjÞk ðtÞ � dðjÞðtÞ
(3.3) if ðjzjðtÞjP jzjðt � DtÞjÞ

h h=2
pðjÞk ðtÞ  pðjÞk ðt � DtÞ
dðjÞðtÞ  dðjÞðt � DtÞ

e is a parameter to be tuned in the implementation,
which affects directly the rate of convergence. h is the price
modulation rate. 1j is the desired threshold of zj, which
should be input as r2 (variance) of dðjÞ, and dðjÞ should be
input as l (mean) of dðjÞ. Substeps 3.1 and 3.3 together
implement the price and demands modulation, and Sub-
step 3.2 implements the bandwidth allocation policy.

The process of network bandwidth allocation comprises
real-time variation of the supply and demands of band-
width. In the network, links are appended to or deleted
from, the bandwidth demands between two end nodes
arise and end, and the bandwidth supply or demands in-
crease or decrease. The time quantum Dt used by the iter-
ative process is adjusted and modulated based on the
speed of change of the supply and demands of bandwidth.
Dt should be made smaller when the supply and demands
vary rapidly, and larger when the supply and demands
vary tardily.

The ðaÞm�n and ðpÞ1�n can be initialized as: (1) some
average values between 0 and 1, or (2) random numbers
between 0 and 1. In fact, based on the experiments we
have done, we found that the final results are not affected
by how these variables are initialized. b1 and b2, the
weights used in Eq. (4), can be initialized as any constants
between 0 and 1.

In Substep 3.1, when pðjÞk ðt þ DtÞ 6 0 and pðjÞk ðtÞ > 0, we
perform ‘‘h h=2” one or more times to make pðjÞk ðtþ
DtÞ > 0. In Substep 3.3, if jzjðtÞjP jzjðt � DtÞj, which means
the result of the tth iteration is not better than the last iter-
ation, we perform ‘‘h h=2”. It is possible to leap over bet-
ter convergence points because h is too big and
convergence speed is too fast. By making h smaller (a half),
we can avoid this. In Substep 3.2, if

Pl
j¼1

Ph
k¼1aðjÞik ðtÞ 6

�
ri and

Pl
j¼1

Phþ1
k¼1aðjÞik ðtÞ > riÞ, we let all aðjÞik ðtÞ ¼ 0 in order

to make all aðjÞik of the ith row of the allocation matrix to
be not larger than ri.

Since the ‘‘actual bandwidth” obtained by a path is the
smallest aðjÞik over all the links that make up the path, we
let aðjÞk ðtÞ  min

i
aðjÞik ðtÞ in Substep 3.2. The individual aðjÞik ’s

are often larger than aðjÞk . The wastage due to over-alloca-
tion however will not be present in the final solution as
the aðjÞik ’s exist only in the computing process.

The EGPM algorithm can be executed to allocate net-
work bandwidth in parallel, by dynamically modulating
price and demands of network bandwidth in an asynchro-
nous fashion. Although the solution at equilibrium as
worked out by this asynchronous modulation of price
and demands is a local equilibrium solution within a small
time frame, it will approach the globally optimal solution
within a large time frame. What is more, the asynchronous
nature of the algorithm makes the algorithm adaptable to
complex and fast changing network environments.

8. Simulations and comparisons

8.1. Bandwidth allocation by EGPM

8.1.1. The parameters
The main parameters of the EGPM algorithm are:

e; b1; b2; h; m; n; J; k1 ¼ ðkð1Þi Þm�1; k2 ¼ ðkð2Þi Þm�1; k3 ¼
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ðkð3Þi Þm�1; k4 ¼ ðkð4Þiu Þm�m influence the convergence speeds
of bandwidth allocation and price modulation, respec-
tively. b1; b2 are the weights assigned to the available
bandwidth and the satisfaction degree of the channels,
respectively. m; n; J are fixed given values reflecting the
dimension of the problem.

Fig. 3 shows the evolutionary trajectories of 4 of 38 link
particles in the force-field during problem solving. The
simulation uses the following parameter values: e ¼
0:8; b1 ¼ 0:1; b2 ¼ 0:1; h ¼ 0:5; m ¼ 38; n ¼ 32; J ¼ 10;
k1 ¼ ðkð1Þi Þm�1; k2 ¼ ðkð2Þi Þm�1; k3 ¼ ðkð3Þi Þm�1; k4 ¼ ðkð4Þiu Þm�m,

and kð1Þi ; kð2Þi ; kð3Þi ; kð4Þiu are chosen at random from [0,1].
The relatively fast speed of convergence can be observed
in Fig. 3. The y-axis is the dynamic state, ui, of a particle,
as defined by Eq. (1).

In Fig. 3, there is a huge dive in the trajectory of Particle
25. Modulated prices and demands may make bandwidth
allocation of several links huge change at next iteration.
When allocated bandwidth aðjÞk and prices pðjÞk are updated,
dynamic state ui of link particles will change according to
Eq. (1).

In addition, in Fig. 3, there is a decrease trend in the tra-
jectory of Particle 33. That is, the dynamic state (represent-
ing link’s revenue) of most link particles increases while
that of a few of link particles decreases. Every link’s reve-
nue and network’s revenue are two artificial objectives in
our EGPM algorithm, which are means to optimizing the
real objectives (SI, DSL, BUL, f) of the problem. Every link’s
revenue and network’s revenue are all given attention to
by EGPM. The dynamic state ui represents every link’s rev-
enue. When a link’s revenue conflicts with network’s reve-
nue, the link will give in and the link’s revenue will
decrease.

k1; k2; k3, and k4 can be adjusted to suit the problem’s
objectives. k1 and k3 control the links’ autonomy and self-
interest; k2 reflects the links’ interest to improve the global
state. k4 reflects the strength of the interaction among the

links. For instance, when k1 ¼ 0; k3 ¼ 0 and k2 ¼ 1, the
links care for global profits only; when k1 ¼ 1; k3 ¼ 1 and
k2 ¼ 0, they care only for their own profits; and when
0 6 k1; k3; k2 6 1, they opt for a balance.

Table 3 shows how different choices of k values influ-
ence the performance of EGPM. The numbers in the table
are the average of two indices—bandwidth utilization
(BUL) and the channels’ satisfaction level (DSL). The simu-
lation comprises more than 100 problems. We can see that
when the link particles care for both global profits and
their own profits, the performance of EGPM is the best.

8.1.2. Effectiveness
To see how EGPM reacts to the varying level of available

bandwidth, we tested it using the bandwidth allocation
problem instance in [14]. The network has 7 nodes, 11
links, 42 source–destination pairs (channels) and 84 virtual
paths (two paths per channel), whose topology is shown in
Fig. 4. In this problem, we set nj ¼ 2 (for j ¼ 1;42), the
same as in [14]. Table 4 shows the channels and their
bandwidth demands.

For the links’ capacity ðriÞ, two types of cases are consid-
ered: limited capacity (ri = 240 Mbits/s and ri = 480 Mbits/
s), and abundant capacity (ri = 720 Mbits/s and ri = 960 M-
bits/s). We also include a ‘‘heterogeneous” case where link

Fig. 3. The kinematics and dynamic trajectories of four selected particles in the force-field during bandwidth allocation.

Table 3
Allocation performance from different degrees of link selfishness.

The links’ disposition Supply >
demand

Supply �
demand

Supply <
demand

Initial allocation 0.2 0.5 0.4
Global profits only 0.3 0.5 0.6
Own profits only 0.67 0.66 0.62
Global profits as

well as own profits
0.76 0.72 0.8
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capacity differs from link to link. The results are summa-
rized in Table 5. From the table, we observe the following.

� The demands of all source–destination pairs (channels)
are satisfied (according to SI, the satisfaction indicator)
in all cases except the case of extreme scarce capacity
(240 Mbits/s) of which 75% of the demands are satisfied.

� The average BUL, average DSL, and fairness are reason-
ably high in all five cases, especially in the cases of
scarce capacity.

� When the link capacity is plentiful, the satisfaction level
(DSL) of all source–destination pairs (channels) can
reach 100%.

� When network capacity decreases rapidly, such as from
960 to 480 Mbits/s, the performance indices do not seem
to follow suit.

� Whether the network is homogeneous or heterogeneous
in terms of link capacities is not a key factor for SI, BUL,
DSL and fairness.

8.1.3. Efficiency and parallelism
In this section, we show the actual times used to com-

pute the solutions, on a cluster. The machines of the cluster
each has a Pentium 4 2.0 GHz CPU with 512 Kbytes of L2
cache and 512 Mbytes of DDR SDRAM, and they are inter-
connected via Fast Ethernet.

The network of the problem is such that if there are N
nodes in the network, the number of source–destination
pairs (channels) is N � ðN � 1Þ. We use the number of
nodes and channels to represent the ‘‘scale” of the prob-
lem. Convergence times and iterations for different scales
using EGPM are shown in Table 6. The data come from
using 1, 4, and 8 computing nodes of the cluster. ‘‘Increase”
represents the percent of increase of the current scale from
the previous scale.

As shown in Fig. 5, the convergence time of the sequen-
tial version increases exponentially with the scale, which is
similar to all other exact methods. When parallelized, the
convergence time drops significantly across the larger
scale problems. The times for the smaller scale problems
are dominated by the message exchange times, and the
sequential version appears to be more efficient in that
range. The number of iterations for all the cases, however,
is more or less the same for either the sequential or the
parallel versions.

The EGPM algorithm has the ability to carry out the
allocation in a distributed manner with little communica-
tion overheads. The bandwidth allocation variables, aðjÞik

(see Table 1), can be computed and updated in parallel
without any information exchange, which is the founda- Ta
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tion of EGPM’s parallelism. There is some information ex-
change between entries in a column (in Table 1) to com-

pute and update the actual bandwidth allocation to the
paths ðaðjÞk Þ, the price ðpðjÞk Þ and the demand variable

Table 5
Allocation results for different link capacities.

(SI=Yes)/J Average BUL Fairness f Average DSL

ri ¼ 240 Mbits=s (extremely scarce) 32/42 0.9134 0.4304 0.3619
ri ¼ 480 Mbits=s (scarce) 42/42 0.9646 0.7385 0.7449
ri ¼ 720 Mbits=s (plentiful) 42/42 0.9084 0.8601 1.0000
ri ¼ 960 Mbits=s (extremely plentiful) 42/42 0.7340 0.8972 1.0000
ri ¼ ½560;480;320;480;560;480;400;480;560;480;480� (Mbits/s)
(Heterogeneous) 42/42 0.8036 0.7555 0.5233

Table 6
Convergence times and iterations of EGPM.

Scale Sequential 4 parallel nodes 8 parallel nodes

Nodes Channels Iterations Increase
(%)

Time
(s)

Increase
(%)

Iterations Increase
(%)

Time
(s)

Increase
(%)

Iterations Increase
(%)

Time Increase

4 12 103 0.008 134 0.175 112 0.301
5 20 112 8.7 0.018 125.0 150 11.9 0.2 14.3 135 20.5 0.429 42.5
6 30 130 16.1 0.029 61.1 171 14.0 0.245 22.5 164 21.5 0.5 16.6
7 42 172 32.3 0.076 162.1 221 29.2 0.363 48.2 205 25.0 0.69 38.0
8 56 230 33.7 0.141 85.5 297 34.4 0.386 6.3 304 48.3 0.87 26.1
9 72 363 57.8 0.317 124.8 446 50.2 0.551 42.7 397 30.6 1.043 19.9
10 90 544 49.9 0.69 117.7 563 26.2 0.843 53.0 622 56.7 1.564 50.0
11 110 734 34.9 1.235 79.0 797 41.6 1.324 57.1 796 28.0 2.374 51.8
12 132 979 33.4 2.101 70.1 968 21.5 1.611 21.7 1029 29.3 2.571 8.3
13 156 1358 38.7 3.782 80.0 1360 40.5 2.51 55.8 1370 33.1 3.847 49.6
14 182 1618 19.1 5.616 48.5 1934 42.2 4.21 67.7 1857 35.5 5.327 38.5
15 210 2260 39.7 9.821 74.9 2213 14.4 5.11 21.4 2724 46.7 7.708 44.7
16 240 2865 26.8 15.12 54.0 3221 45.5 8.58 67.9 2806 3.0 6.567 -14.8
17 272 3627 26.6 23.578 55.9 4159 29.1 13.85 61.4 3928 40.0 12.801 94.9
18 306 4941 36.2 37.534 59.2 4885 17.5 17.37 25.4 4298 9.4 13.898 8.6
19 342 5442 10.1 50.188 33.7 5342 9.4 21.17 21.9 5328 24.0 18.618 34.0
20 380 7528 38.3 78.089 55.6 7547 41.3 31.913 50.7 6897 29.4 25.627 37.6

Fig. 5. Convergence times of EGPM using one or more processors.
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ðdðjÞðt > 0ÞÞ; as well as some information exchange be-
tween entries in a row in order to satisfy the links’ capacity
restrictions. These exchanges of information in a row or
column are responsible for the less than ideal speedup that
can be achieved using parallel implementation.

8.2. Comparison with GPM

Fig. 6 shows an example highlighting the difference be-
tween demand and allocation in a dynamic environment
where the bandwidth demands may change with time. In
Fig. 6a, the curved line corresponds to the demand and
the rectangles the supply (allocated bandwidth) over a per-
iod of time. T in the figure denotes the length of a run of the
GPM algorithm to calculate the equilibrium allocation. Be-
cause the allocation will not change until the equilibrium
is reached in a run of the GPM algorithm, the allocation
stays unchanged between any two consecutive runs in
the figure.

The EGPM algorithm allows links to trade resources to
settle excess demand at every iteration. In Fig. 6b, the
two curved lines represent the change of the demand
and the allocated bandwidth, respectively. For both GPM
and EGPM, the shaded regions represent the ‘‘excess de-

mand function” (i.e., over- or under-allocation). The
shaded regions of both GPM and EGPM shrink in size when
the interval of environmental changes becomes longer.
When that interval is small (i.e., the changes are frequent)
the excess demand function of EGPM is smaller and EGPM
is preferable. However, because EGPM needs to renew the
allocation at every iteration step in a run before reaching
equilibrium, it takes a longer time than GPM. Hence, when
the interval of change is excessively long, GPM might have
an advantage.

Next, we compare the satisfaction level. There is a direct
relationship between the satisfaction level and the excess
demand function: when the level is low, the excess de-
mand function is large and the allocation is not preferable,
and if the level is high, the excess demand function is small
and the allocation is well done. The level reaches 1 if and
when the allocation matches exactly the demand.

In a static environment where the demands of the paths
do not change, the satisfaction level changes in a fashion
which is as shown in Fig. 7a. The figure shows that the
GPM algorithm takes shorter time ðTÞ to complete its run
than the iterative EGPM algorithm. It can be easily seen
that, for a static environment, if T is small, GPM is prefera-
ble, and if T is large, EGPM is preferable.

Fig. 6. Excess demands in a dynamic environment.

Fig. 7. Satisfaction level of demand in static environment and in dynamic environment.
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Fig. 7b shows an example of a changing satisfaction le-
vel in a dynamic environment. As can be seen in the figure,
because the environment changes soon after or even be-
fore GPM reaches equilibrium, the allocation by GPM is
effective only for a short pinch of time. On the other hand,
the allocation by EGPM adapts to the changing environ-
ment more responsively.

8.3. Comparison with genetic algorithm

Here we compare the experimental results of EGPM
with that of a genetic algorithm for the same problem of
bandwidth allocation which can be found in [14]. Table 7
shows the results for the 7-node network with links run-
ning at 480 Mbits/s. The experimental results of GA come
from [14] and those of EGPM come from our own
experiments.

As shown in Table 7, 10 (out of 42) channels failed to be
satisfied using GA, whereas the EGPM algorithm satisfies
all the channel demands. The average demand satisfaction
levels of EGPM and GA are 0.7449 and 0.7890, respectively;
EGPM is slightly below because it gives preference to the SI
index. In fact, EGPM tries to maximize all three objectives:
DSL, BUL and fairness.

As shown in Table 8, EGPM is several orders of magni-
tude faster than GA in computing the solutions. And the
convergence time of EGPM increases more steadily with
the problem scale than GA.

Other than genetic algorithm, the comparison Lagrang-
ian multiplier approach, the max–min algorithm, and the
ant colony algorithm are also popular choices for solving

the bandwidth allocation problem. We give a succinct
comparison of these different approaches with EGPM/
GPM in Table 9.

9. Conclusion

In this paper, an approach based on the economic gen-
eralized particle model (EGPM) for intelligent allocation of
network bandwidth is proposed. The approach transforms
the complicated network bandwidth allocation problem
into efficient, parallel allocation of network bandwidth.
The mechanism is based on asynchronous modulation of
prices of network bandwidth. The special features of the
proposed model and its algorithm include: (1) high paral-
lelism and real-time computational performance; (2) a
market-oriented mechanism between the demands and
service; (3) the microscopic characterization of an individ-
ual link and the macroscopic properties of the whole net-
work being combined to achieve both fairness and
efficiency; and (4) better adaptation to the real-time dy-
namic network environment.

The EGPM method can be applied to other optimization
problems, such as resource allocation in grid, cache optimi-
zation in CDN, etc. When solving grid computing problems
by the EGPM algorithm, because the problem model of grid
will be simpler than that of bandwidth allocation, only two
of the ordinal numbers i; j; k in the of bandwidth alloca-
tion model will be needed for the model of grid; moreover,
the logic variable xðjÞik will always be equal to 1, and can be
left out.

Table 8
Convergence times and iterations of EGPM vs. GA.

Scale EGPM: 4 parallel Nodes EGPM: sequential GA

Nodes Channels Iterations Increase
(%)

Time Increase
(%)

Iterations Increase
(%)

Time Increase
(%)

Iterations Increase
(%)

Time Increase
(%)

4 12 134 0.175 103 0.008 2000 1353
5 20 150 11.9 0.2 14.3 112 8.7 0.018 125.0 2000 0.0 3024 123.5
6 30 171 14.0 0.245 22.5 130 16.1 0.029 61.1 2000 0.0 4761 57.4
7 42 221 29.2 0.363 48.2 172 32.3 0.076 162.1 10,000 400.00 36971 676.5

Table 9
EGPM vs. GPM and other well-known algorithms.

EGPM GPM Lagrangrian
multiplier

Ant colony Max–min GA

Flow control Decentralized/
adaptive

Decentralized/
adaptive

Centralized/static Decentralized/
adaptive

Centralized/static Decentralized/
adaptive

Adaptive to
topology
changes

Fast Middle Slow Middle Fast Middle

Routing
overhead

Low Low High Low Low Low

Routing
preference

By Excess demand
function

By hybrid energy
functions

By utility function By pheromone laid By transmission
time/delay

By chromosomes

Information
exchange

Can by
piggybacked in
data packets

Can by
piggybacked in
data packets

Separate routing
entries
transmission

Can by
piggybacked in
data packets

Separate routing
entries
transmission

Can by
piggybacked in
data packets
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In the future, we plan to improve EGPM so that it will
become a generic algorithm for NP-hard combinatorial
optimization problems, such as the traveling salesman
problem (TSP), the quadratic assignment problem (QAP),
etc., as well as for multi-objective optimization problems.
We hope to develop the EGPM algorithm by a new ap-
proach, giving it the ability to deal with difficult problems
that feature non-homogeneous, noisy, incomplete or ob-
scured information, constrained resources, and massive
processing of large amounts of data.

Here are some specific suggestions on future work.

1. The choices of coefficients in the EGPM algorithm and
their impact should be further studied.

2. Communication times among computing entities
should be reduced to improve the parallel execution
of EGPM.

3. The present approach treats all demands to be equally
important and tries to maximize the overall satisfac-
tion. To support true QoS, priority classes with prefer-
ential treatment by the allocation mechanism need to
be introduced. How to prove that the guarantee of a cer-
tain QoS can be met if certain conditions are satisfied
‘‘in theory” will be a key issue.

4. Our work in this paper is predominantly theoretical and
based on a number of simplifying assumptions.
Between this and a practical solution for real-life
deployment, much work needs to be done.

5. Capacity planning including priority classes and reser-
vation is not addressed in the current design of EGPM,
which however is very important in practical band-
width allocation.

Acknowledgements

This work was Supported by the National Science Foun-
dation of China under Grant No. 60905043, the General Re-
search Fund of Hong Kong Research Grant Council under
Grant No. 7137/08E.

Appendix A. Convergence proofs

A.1. Proof of Lemma 1

Observe that when lt 6 1,

lt � p� � zðpÞP klt � zðpÞk
2
: ð14Þ

This can be seen by multiplying both sides of p� � zðpÞP
kzðpÞk2 with l2

t and noticing that l2
t � p� � zðpÞ 6 lt � p��

zðpÞ because lt 6 1. From Eq. (14) and Walras’ law we
have

kpðt þ 1Þ � p�k2 ¼ kpðtÞ þ ltzðpðtÞÞ � p�k2

¼ kltzðpðtÞÞk
2 � 2ltzðpðtÞÞ � p� þ kpðtÞ

� p�k2

6 kpðtÞ � p�k2
:

Note that pðtÞ belongs to Bðp�; rÞ for all t ¼ 0;1; . . ., when
pð0Þ 2 Bðp�; rÞ. Therefore, the sequence fkpðtÞ � p�kgt con-

verges, and as a result, the sequence fkpðtÞkgt is bounded.
From Walras’ law it follows that

kpðtÞk2 ¼ kpð0Þk2 þ
Xt�1

i¼0

l2
i kzðpðiÞÞk

2
;

so that fkpðtÞkgt is a growing and bounded sequence and
hence convergent. The iteration formula yields

pðtÞ ¼ pð0Þ þ
Xt�1

i¼0

lizðpðiÞÞ:

Hence, kpð0Þ þ
Pt�1

i¼0lizðpðiÞÞk converges, too. From the tri-
angular inequality we get

pð0Þ þ
Xtþl

i¼0

lizðpðiÞÞ
�����

�����
P pð0Þ þ

Xt

i¼0

lizðpðiÞÞ
�����

������ Xtþl

i¼tþ1

lizðpðiÞÞ
�����

�����
�����

�����
and

kpðt þ lÞ � pðtÞk ¼
Xtþl

i¼tþ1

lizðpðiÞÞ
�����

�����! 0; ð15Þ

when t !1 and l P 1. Thus, fpðtÞgt is a Cauchy sequence
and hence convergent. Let ep denote the limit point of this
Cauchy sequence.

We now show that when 0 < lL 6 lt the sequence
fpðtÞgt converges to the solution of zðpÞ ¼ 0. By setting
l ¼ 1 it follows from Eq. (15) that ltkzðpðtÞÞk ! 0. Because
lLkzðpðtÞÞk 6 ltkzðpðtÞÞk holds and z is continuous, ep is a
solution of zðpÞ ¼ 0.

A.2. Proof of Lemma 2

If Eq. (12) holds for a > 0 then it holds for any ea > a.
Specifically, we can choose ea > 0 such that Eq. (12) holds
for p� ¼ eaep � 2ep instead of aep. Moreover we can take a
such that kzðpÞk2

< 2azðpÞep if p is not a solution. We can
deduce that kpðt þ 1Þ � p�k2

< kpðtÞ � p�k2, and kpðt þ 1Þ�
aepk2 < kpðtÞ � aepk2 when pðtÞ is not a solution. By the par-
allelogram law we get

kpðtÞ � aepk2 þ kpðtÞ � p�k2 ¼ 2kpðtÞ � epk2 þ 2ða� 1Þkepk2
:

By rearranging the terms we have

2kpðtÞ � epk2 ¼ 2ða� 1Þkepk2 � kpðtÞ � aepk2 � kpðtÞ � p�k2

> 2ða� 1Þkepk2 � kpðt þ 1Þ � aepk2

� kpðt þ 1Þ � p�k2 ¼ 2kpðt þ 1Þ � p�k

and hence fpðtÞgt converges monotonically to ep.

A.3. Proof of Lemma 3

Let z satisfy C2 on E�1 ¼ fp 2 Rn
þ : kzðpÞk < �1g with con-

stant �r. By the homogeneity of excess demand we know
that ẑ obtains all its values on the unit simplex D ¼

p 2 Rn
þ :
PJ

j¼1

Pnj

k¼1PðjÞk ¼ 1
n o

. Because of P4 and P5 it can
be seen that p� � zðpðtÞÞ ! 1 when pðtÞ ! p and JKp–;. As
a result, we have
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lim
pðtÞ!p

p� � ẑðpÞ > 0

when JKp – ;. From this property, the continuity property,
and C1, it follows that there exists d > 0 such that
p� � ẑðpÞP d for all p 2 D n S, where S ¼ fp 2 D : pðjÞk >

10;8j ¼ 1; J; k ¼ 1;np; 10 > 0 is chosen such that E�1 \ D 	 S.
Clearly, the infimum of p� � ẑðpÞ over S n E�1 is positive,

since otherwise ẑ would violate C1. Let a > 0 denote this
infimum. We have p�ẑðpÞP minfd;ag for all p 2 D n E�1. Be-
cause kẑðpÞk 6 M we get p� � ẑðpÞP r̂kẑðpÞk2 for all
p 2 D n E�1 by choosing r̂ < minfd;ag nM2. The result fol-
lows by setting r ¼minf�r; r̂g.

A.4. Proof of Theorem 1

The process of Eq. (11) can be expressed as

pðt þ 1Þ ¼ pðtÞ þ kt ẑðpðtÞÞ

where kt ¼minfct ;1g, and ẑ is as defined in Lemma 3.
When z has the properties P1–P4, so does ẑ, and P5 implies
that ẑ has the following property

P50 : lim
pðtÞ!p

max
j;k2JKp

ẑjðpðtÞÞ
	 


> 0; when p – 0; and

JKp ¼ fj; k : pðjÞk ¼ 0g – ;:

Moreover, we know from Lemma 3 that p� � ẑðpÞP
rkẑðpÞk2 holds for all p > 0 when z satisfies C1–C2. Due
to homogeneity p� can be replaced by p�=r in C1 and C2;
hence, without loss of generality we may suppose that
r ¼ 1. It follows then from Lemma 1 that the iteration
converges.

Let us show that due to P50 the parameter kt is updated
only finitely many times, from which it follows that kt has
a positive lower bound that is required by Lemma 1 to ob-
tain convergence to a solution of Eq. (7). On the contrary,
suppose that kt ! 0. It then follows that pt ! p, where
some components of p are zero, i.e., JKp – ;. Namely, if
the sequence fpðtÞgt ; pðtÞ > 0 for all t, converges to some
point in Rn

þ, then the parameters ct and kt would be up-
dated only finitely many times and kt could not converge
to zero. Hence, we have pðjÞk ðtÞ ! 0 for all j; k 2 JKp, i.e., for
all 1 > 0 we find N1 P 0 such that pðjÞk ðtÞ < 1, when
t P N1 and j; k 2 JKp. Thus, by the continuity property
and P50 there are l;h 2 JKp and N P 0 such that pðlÞh ! 0,
and zlðpðtÞÞ > 0 for all t P N. Now we get from the iteration
formula that pðlÞh ðt þ 1Þ > pðlÞh ðtÞ for all t P N, which contra-
dicts pðlÞh ! 0. Hence, kt is updated finitely many times, i.e.,
there exists N such that kt ¼ kN for all t P N. Convergence
to a solution of Eq. (7) follows from Lemma 1.

Let us assume that there is a unique ray of solutions for
Eq. (7). Then the process of Eq. (11) converges to a point
~p ¼ bp�, where b > 0. From Lemma 3 we see that there ex-
ists a > 0 such that for a~p we have 2a~p � ẑðpÞP kẑðpÞk2 for
all p > 0. Lemma 2 then implies monotonical convergence.
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