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Abstract

The rising popularity of multi-source, multi-sensor networks supporting real-life applications calls for an efficient and intelligent
approach to information fusion. Traditional optimization techniques often fail to meet the demands. The evolutionary approach pro-
vides a valuable alternative due to its inherent parallel nature and its ability to deal with difficult problems. We present a new evolution-
ary approach based on the coordination generalized particle model (C-GPM) which is founded on the laws of physics. C-GPM treats
sensors in the network as distributed intelligent agents with various degrees of autonomy. Existing approaches based on intelligent agents
cannot completely answer the question of how their agents could coordinate their decisions in a complex environment. The proposed
C-GPM approach can model the autonomy of as well as the social coordinations and interactive behaviors among sensors in a decen-
tralized paradigm. Although the other existing evolutionary algorithms have their respective advantages, they may not be able to capture
the entire dynamics inherent in the problem, especially those that are high-dimensional, highly nonlinear, and random. The C-GPM
approach can overcome such limitations. We develop the C-GPM approach as a physics-based evolutionary approach that can describe
such complex behaviors and dynamics of multiple sensors.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Sensor fusion is a method of integrating signals from
multiple sources into a single signal or piece of informa-
tion. These sources are sensors or devices that allow for
perception or measurement of the changing environment.
The method uses ‘‘sensor fusion’’ or ‘‘data fusion’’ algo-
rithms which can be classified into different groups, includ-
ing (1) fusion based on probabilistic models, (2) fusion
based on least-squares techniques, and (3) intelligent
fusion. This paper presents an evolutionary approach to
intelligent information fusion.
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Many applications in multi-sensor information fusion
can be stated as optimization problems. Among the many
different optimization techniques, evolutionary algorithms
(EA) are a heuristic-based global search and optimization
methods that have found their way into almost every area
of real world optimization problems. EA provide a valu-
able alternative to traditional methods because of their
inherent parallelism and their ability to deal with difficult
problems that feature non-homogeneous, noisy, incom-
plete and/or obscured information, constrained resources,
and massive processing of large amounts of data. Tradi-
tional methods based on correlation, mutual information,
local optimization, and sequential processing may perform
poorly. EA are inspired by the principles of natural evolu-
tion and genetics. Popular EA include genetic algorithm
(GA) [1], simulated annealing algorithm (SA) [2], ant
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colony optimization (ACO) [3], particle swarm optimiza-
tion (PSO) [4], etc., which have all been featured in either
Nature or Science.

In this paper, we propose the C-GPM approach as a
new branch of EA, which is based on the laws of physics.
Just like other EA drawing from observations of physical
processes that occur in nature, the C-GPM approach is
inspired by physical models of particle dynamics. Although
the other existing EA have their respective advantages, they
may not be able to capture the entire dynamics inherent in
the problem, especially those that are high-dimensional,
highly nonlinear, and random. The C-GPM approach
can overcome such limitations. We develop the C-GPM
approach as a physics-based evolutionary approach that
can describe the complex behaviors and dynamics arising
from interactions among multiple sensors.

Our C-GPM algorithm, just like the other popular EA
mentioned above, belongs to the class of meta-heuristics
in artificial intelligence, which are approximate algorithms
for obtaining good enough solutions to hard combinatorial
optimization problems in a reasonable amount of compu-
tation time.

Similar to the other EA, the C-GPM algorithm is inher-
ently parallel and can perform well in providing approxi-
mating solutions to all types of problems. EA applied to
the modeling of biological evolution are generally limited
to explorations of micro-evolutionary processes. Some
computer simulations, such as Tierra and Avida, however,
attempt to model macro-evolutionary dynamics. C-GPM
algorithm is an exploration of micro-evolutionary
processes.

In the physical world, mutual attraction between parti-
cles causes motion. The reaction of a particle to the field
of potential would change the particle’s coordinates and
energies. The change in the state of the particle is a result
of the influence of the potential. In C-GPM, each particle
is described by some differential dynamic equations, and
the results of their calculations govern the movement (to
a new state in the field) of the particle. Specifically, each
particle computes the combined effect of its own autono-
mous self-driving force, the field potential and the interac-
tion potential. If the particles cannot eventually reach an
Table 1
The C-GPM algorithm vs. other popular EA

C-GPM GA

Inspired by Physical models of particle
dynamics

Nat
evol

Key components Energy function; differential
dynamic equations

Chr

Exploration Both macro-evolutionary and
micro-evolutionary processes

Mac
evol
proc

Dynamics Can capture the entire dynamics
inherent in the problem

Can

High-dimensional, highly nonlinear,
random behaviors and dynamics

Can describe Can
equilibrium, they will proceed to execute a goal-satisfaction
process.

In summary, the relative differences between our
C-GPM algorithm and other popular EA can be seen in
Table 1. The common features of these different
approaches are listed as follows:

• They draw from observations of physical processes that
occur in nature.

• They belong to the class of meta-heuristics, which are
approximate algorithms used to obtain good enough
solutions to hard combinatorial optimization problems
in a reasonable amount of computation time.

• They have inherent parallelism and the ability to deal
with difficult problems.

• They consistently perform well in finding approximating
solutions to all types of problems.

• They are mainly used in the fields of artificial
intelligence.

In this paper, we study some theoretical foundations
of the C-GPM approach including the convergence of
C-GPM. The structure of the paper is as follows. In Section
2, we discuss and formalize the problem model for the typ-
ical multi-sensor system. In Section 3, we present the evo-
lutionary C-GPM approach to intelligent multi-sensor
information fusion. In Section 4, we describe an experiment
to verify the claimed properties of the approach. We draw
conclusion in Section 5.

2. Dynamic sensor resource allocation

In a sensor-based application with command and con-
trol, a major prerequisite to the success of the command
and control process is the effective use of the scarce and
costly sensing resources. These resources represent an
important source of information on which the command
and control process bases most of its reasoning. Whenever
there are insufficient resources to perform all the desired
tasks, the sensor management must allocate the available
sensors to those tasks that could maximize the effectiveness
of the sensing process.
SA ACO PSO

ural
ution

Thermodynamics Behaviors of
real ants

Biological swarm
(e.g., swarm of bees)

omosomes Energy function Pheromone laid Velocity-coordinate
model

ro-
utionary
esses

Micro-
evolutionary
processes

Macro-
evolutionary
processes

Macro-evolutionary

not capture Can capture
partly

Cannot capture Cannot capture

not describe Can describe
partly

Cannot describe Cannot describe



Table 2
The matrix SðtÞ
Sensors Objects

T1 . . . Tk . . . Tm

A1 r11; c11; x11; f11 . . . r1k ; c1k ; x1k ; f1k . . . r1m; c1m; x1m; f1m
..
. ..

. ..
. ..

.

Ai ri1; ci1; xi1; fi1 . . . rik ; cik ; xik ; fik . . . rim; cim; xim; fim
..
. ..

. ..
. ..

.

An rn1; cn1; xn1; fn1 . . . rnk ; cnk ; xnk ; fnk . . . rnm; cnm; xnm; fnm

Fig. 1. The force field and the particles.
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The dynamic sensor allocation problem consists of
selecting sensors of a multi-sensor system to be applied to
various objects of interest using feedback strategies. Con-
sider the problem of n sensors, A ¼ fA1; . . . ;Ang, and m

objects, T ¼ fT 1; . . . ; T mg. In order to obtain useful infor-
mation about the state of each object, appropriate sensors
should be assigned to various objects at the time intervals
t 2 f0; 1; . . . ; T � 1g. The collection of sensors applied to
object k during interval t is represented by a vector
X kðtÞ ¼ fx1k; . . . ; xik; . . . ; xnkg, where

xikðtÞ ¼
1 if sensor i is used on object k at interval t

0 otherwise

�

Because of the limited resources sustaining the whole
system, the planned sensor distributions must satisfy the
following constraint for every t 2 f0; 1; . . . ; T � 1g:
Xm

k¼1

rikðtÞxikðtÞ ¼ 1 ð1Þ

where rik denotes that quantity of resources consumed by
sensor i on object k and 0 6 rik 6 1.

The goal of sensor allocation is to try to achieve an opti-
mal allocation of all sensors to all the objects after T stages.
Let C ¼ ðcikÞn�m be a two-dimensional weight vector.
Sensor allocation can be defined as a problem to find a
two-dimensional allocation vector R ¼ ðrikÞn�m, which max-
imizes the objective in (2), subject to the constraint (1)

zðRÞ ¼ ðCÞTRX ¼
Xn

i¼1

Xm

k¼1

cikrikxik ð2Þ

Let fikðtÞ represent the intention strength of social
coordination. Thus we obtain an allocation-related
matrix SðtÞ ¼ ½sikðtÞ�n�m, as shown in Table 2, where
sikðtÞ ¼ hrikðtÞ; cikðtÞ; xikðtÞ; fikðtÞi: For convenience, both
rikðtÞ and cikðtÞ are normalized such that 0 6 rikðtÞ 6 1
and 0 6 cikðtÞ 6 1.

3. The C-GPM approach to sensor fusion

3.1. Physical model of C-GPM

This subsection discusses the physical meanings of the
coordination generalized particle model (C-GPM) for sensor
fusion in multi-sensor systems which involve social coordi-
nations among the sensors. C-GPM treats every entry of
the allocation-related matrix Sik as a particle, sik, in a force
field. The problem solving process is hence transformed
into one dealing with the kinematics and dynamics of par-
ticles in the force field. The sik’s form the matrix Sik. For
convenience, we let sik represent both an entry of the matrix
as well as its corresponding particle in the force field.

Particle and force-field are two concepts of physics. Par-
ticles in our C-GPM move not only under outside forces,
but also under internal force; hence in this sense, they are
somewhat different from particles in physics.

As shown in Fig. 1, the vertical coordinate of a particle
sik in force field F represents the utility obtained by sensor
Ai from being used on object Tk. A particle experiences
several kinds of forces simultaneously, which include the
gravitational force of the force field, the pulling or pushing
forces due to social coordinations among the sensors, and
the particle’s own autonomous driving force. The forces
on a particle are handled only along the vertical direction.
Thus a particle will be driven by the resultant force of all
the forces that act on it upwards or downwards along the
vertical direction. The larger the upward/downward resul-
tant force on a particle, the faster the upward/downward
motion of the particle. When the resultant force on a par-
ticle is equal to zero, the particle will stop moving, being in
an equilibrium state.

The upward gravitational force of the force field con-
tributes an upward component of a particle’s motion,
which represents the tendency that the particle pursues
the collective benefit of the whole multi-sensor system.
The other upward or downward components of the parti-
cle’s motion, which are related to the social coordinations
among the sensors, depend on the strengths and kinds of
these coordinations. The pulling or pushing forces among
particles make particles move to satisfy resource restric-
tions, as well as reflect the social coordinations and behav-
iors among the sensors. A particle’s own autonomous
driving force is directly proportional to the degree the par-
ticle tries to maximize its own profit (utility). This autono-
mous driving force of a particle actually sets the C-GPM
approach apart from the classical physical model. All the
generalized particles simultaneously move in the force field,
and once they have all reached their respective equilibrium
positions, we have a feasible solution to the optimization
problem in question.



Table 3
Social coordinations among sensors

bijk Type Name fijk

I Aijk Adaptive avoidance coordination �1
Bijk Adaptive exploitation coordination
Cijk Collaboration coordination

II Dijk Tempting avoidance coordination 1
Eijk Tempting exploitation coordination
F ijk Deception coordination

III Gijk Competition coordination 1
Hijk Coalition coordination
I ijk Habituation/preference coordination

IV J ijk Antagonism coordination �1
Kijk Reciprocation coordination
Lijk Compromise coordination
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Because the problem in this paper is a one objective
problem, we limit the particles movements to one dimen-
sion. The design of C-GPM in fact allows forces of all
directions to exist. These forces can be decomposed into
their horizontal and vertical components. In this present
work, only the vertical component may affect a particle’s
motion. In a forthcoming paper, we will introduce the mul-
tiple objectives problem where we will handle particles’
movements along multiple dimensions.

3.2. Mathematical model of C-GPM

We define in this subsection the mathematical model of
C-GPM for the sensor allocation problem that involves n
sensors and m objects.

Let uikðtÞ be the distance from the current position of
particle sik to the bottom boundary of force field F at time
t, and let JðtÞ be the utility sum of all particles, which we
define as follows:

uikðtÞ ¼ a½1� expð�cikðtÞrikðtÞxikðtÞÞ�

JðtÞ ¼
Xn

i¼1

Xm

k¼1

uikðtÞ
ð3Þ

where 0 < a < 1. 1� e�x is chosen as the definition of uik be-
cause 1� e�x is a monotone increasing function and be-
tween 0 and 1 (Fig. 2).

At time t, the potential energy functions, P ðtÞ, which is
caused by the upward gravitational force of force field F,
is defined by

P ðtÞ ¼ �2 ln
Xn

i¼1

Xm

k¼1

exp½�u2
ikðtÞ=2�2� � �2 ln mn ð4Þ

where 0 < � < 1. The smaller P ðtÞ is, the better. With Eq.
(4), we attempt to construct a potential energy function,
P ðtÞ, such that the decrease of its value would imply the in-
crease of the minimal utility of all the sensors. We prove it
in Proposition 3. This way we can optimize the multi-sen-
sor fusion problem in the sense that we consider not only
the aggregate utility, but also the individual personal utili-
ties, especially the minimum one. In addition, � represents
the strength of upward gravitational force of the force field.
The bigger � is, the better. If we did not get a sufficiently
satisfactory result by C-GPM, we can let � smaller.
Fig. 2. Graphical presentation of uikðtÞ.
The gravitational force of the force field causes the par-
ticles to move to increase the corresponding sensors’ mini-
mal personal utility, and hence to realize max–min fair
allocation and increase the whole utility of the multi-sensor
system.

Following the literature [5–8], we divide typical social
coordinations between sensor Ai and sensor Aj into 12 pos-
sible types, as in Table 3.

Aijk: To avoid the harmful consequence possibly caused
by Aj, Ai wants to change its own current intention. Bijk: To
exploit the beneficial consequence possibly caused by Aj, Ai

wants to change its own current intention. Cijk: To benefit
Aj, Ai wants to change its own current intention regardless
of self-benefit. Dijk: Ai tries to allure Aj to modify Aj’s cur-
rent intention so that Ai could avoid the harmful conse-
quence possibly caused by Aj. Eijk: Ai tries to entice Aj to
modify Aj’s current intention so that Ai could exploit the
beneficial consequence possibly caused by Aj. F ijk: Ai tries
to tempt Aj to modify Aj’s current intention so that Ai

might benefit from this, while Aj’s interests might be
infringed. Gijk: To compete with each other, neither Ai

nor Aj will modify their own intention, but both Ai and
Aj might enhance their intention strengths with respect to
the Kth goal (or object). Hijk: Neither Ai nor Aj will modify
their own current intention, but both Ai and Aj might
decrease their intention strengths with respect to the Kth
goal. I ijk: Due to disregard of the other side, neither Ai

nor Aj will modify their own current intention. J ijk: To
harm the other side, both Ai and Aj try to modify their
own current intentions. Kijk: Both Ai and Aj try to modify
their own current intentions so that they could implement
the intention of the other side. Lijk: Both Ai and Aj try to
modify their current intentions so that they can do some-
thing else.

Of the 12 types of social coordination, types A, B, C, D,
E and F and F are via unilateral communication, and types
G, H, I, J, K and L by bilateral communication. Based on
which sensor(s) will modify their current intention, the 12
types can be conveniently grouped into the four categories.
For Aijk; Bijk; Cijk, it is Ai; for Dijk; Eijk; F ijk, it is Aj; for



Fig. 3. Graphical presentation of oQ
ouik

.
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Gijk; Hijk; I ijk, none will; and for J ijk; Kijk; Lijk, both Ai

and Aj will, and so we have

LðIÞ ¼Lð10Þ ¼ fAijk;Bijk;Cijkj8i; j; kg;
LðIIÞ ¼Lð01Þ ¼ fDijk;Eijk; F ijkj8i; j; kg;
LðIIIÞ ¼Lð00Þ ¼ fGijk;H ijk; I ijkj8i; j; kg;
LðIVÞ ¼Lð11Þ ¼ fJ ijk;Kijk; Lijkj8i; j; kg;
L ¼ ðLð01Þ [Lð10Þ [Lð10Þ [Lð11ÞÞ:

The intention strength fikðtÞ of sensor Ai with respect to
object Tk is defined by

fikðtÞ ¼
Xn

j¼1

fijkðtÞ þ
Xn

j¼1

fjikðtÞ ð5Þ

fijkðtÞ ¼
1 if bijk 2LðIIÞ [LðIIIÞ

�1 if bijk 2LðIÞ [LðIVÞ

(

fjikðtÞ ¼
1 if bjik 2LðIÞ [LðIIIÞ

�1 if bjik 2LðIIÞ [LðIVÞ

(
ð6Þ

bijk is the social coordination of sensor Ai with respect to
sensor Aj for object Tk, which gives rise to the change
fijkðtÞ of intention strength fikðtÞ.

fikðtÞ of sikðtÞ represents the aggregate intention strength
when more than one social coordination happen simulta-
neously at time t. The greater fikðtÞ is, the more necessary
would sensor Ai have to modify its rikðtÞ for object Tk.

At time t, the potential energy function, QðtÞ, is defined
by

QðtÞ ¼
Xn

i¼1

Xm

k¼1

rikðtÞxikðtÞ � 1

�����
�����
2

�
X

i;k

Z uik

0

f½1þ expð�fikxÞ��1 � 0:5gdx ð7Þ

The first term of QðtÞ is related to the constraints on the
sensors’ capability; the second term involves social coordi-
nations among the sensors, with fik coming from Eqs. (5)
and (6). The first term of QðtÞ corresponds to a penalty
function with respect to the constraint on the utilization
of resources. Therefore, the sensors’ resource utilization
can be explicitly included as optimization objectives in
the multi-sensor fusion problem. The second term of QðtÞ
is chosen as shown because we want oQ

ouik
to be a monotone

decreasing sigmoid function, as shown in Fig. 3.
�f½1þ expð�fikuikÞ��1 � 0:5g is such a function. Therefore
we let oQ

ouik
equal to �f½1þ expð�fikuikÞ��1 � 0:5g. Then oQ

ouik
is

integrated to be Q.
A particle in the force field can move upward along a

vertical line under a composite force making up of

• the upward gravitational force of the force field,
• the upward or downward component of particle motion

that is related to social coordinations among the sensors,
• the pulling or pushing forces among the particles in

order to satisfy resource restrictions, and
• the particle’s own autonomous driving force.
The four kinds of forces can all contribute to the parti-
cles’ upward movements. What is more, these forces pro-
duce hybrid potential energy of the force field. The
general hybrid potential energy function for particle sik,
EikðtÞ, can be defined by

EikðtÞ ¼ k1uikðtÞ þ k2JðtÞ � k3P ðtÞ � k4QðtÞ ð8Þ

where 0 < k1; k2; k3; k4 < 1:
Dynamic equations for particle sik is defined by

duikðtÞ=dt ¼ W1ðtÞ þW2ðtÞ
W1ðtÞ ¼ �uikðtÞ þ cvikðtÞ
W2ðtÞ ¼ k1 þ k2

oJðtÞ
ouikðtÞ � k3

oPðtÞ
ouikðtÞ � k4

oQðtÞ
ouikðtÞ

h i
ouikðtÞ
orikðtÞ

h i2

þ ouikðtÞ
ocikðtÞ

h i2
� �

8>>>>>><
>>>>>>:

ð9Þ

where c > 1. And vikðtÞ is a piecewise linear function of
uikðtÞ defined by

vikðtÞ ¼
0 if uikðtÞ < 0

uikðtÞ if 0 6 uikðtÞ 6 1

1 if uikðtÞ > 1

8><
>: ð10Þ

In order to dynamically optimize sensor allocation, the
particle sik may alternately modify rik and cik, respectively,
as follows:

dcikðtÞ=dt ¼ k1

ouikðtÞ
ocikðtÞ

þ k2

oJðtÞ
ocikðtÞ

� k3

oPðtÞ
ocikðtÞ

� k4

oQðtÞ
ocikðtÞ

ð11Þ

drikðtÞ=dt ¼ k1

ouikðtÞ
orikðtÞ

þ k2

oJðtÞ
orikðtÞ

� k3

oP ðtÞ
orikðtÞ

� k4

oQðtÞ
orikðtÞ

ð12Þ

where oQðtÞ
ouikðtÞ ¼ �f½1þ expð�fikðtÞuikðtÞÞ��1 � 0:5g is a sig-

moid function of the aggregate intention strength fikðtÞ.
The graphical presentation of oQ

ouik
is shown in Fig. 3.

Note that fikðtÞ is related to social coordinations among

the sensors at time t. oQ
ouik

is a monotone decreasing function.

By Eq. (9) the greater the value of fikðtÞ, the more there are
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values of W2ðtÞ and hence uikðtÞ will increase, which implies
that the social coordinations will strengthen the current
allocation rikðtÞ.

Because oQ
ouik

is a monotone decreasing function, the greater

the value of fikðtÞ, the smaller oQ
ouik

, the greater � oQ
ouik

, the
greater W2ðtÞ by Eq. (9) and the greater Drikðt þ 1Þ by Eq.
(12). Since rikðt þ 1Þ ¼ rikðtÞ þ Drikðt þ 1Þ, the greater the
value of fikðtÞ, the greater rikðt þ 1Þ. Since uik is a monotone
increasing function, the greater rikðt þ 1Þ, the greater uik

fikðtÞ ")
oQ
ouik
#) � oQ

ouik
" )
ð9Þ

W2 " �
oQ
ouik
" )
ð11Þ

Drikðt þ 1Þ

" )
a

rikðt þ 1Þ " )
ð3Þ

b
uik "
(a) rikðt þ 1Þ ¼ rikðtÞ þ Drikðt þ 1Þ;

(b) uik is monotone increasing function.

In the following, we derive some formal properties of the
mathematical model presented above.

Proposition 1. Updating the weights cik and allotted resource

rik by Eqs. (11) and (12) respectively amounts to changing the

speed of particle sik by W2ðtÞ of Eq. (9).

Denote the jth terms of Eqs. (11) and (12) by dcikðtÞ
dt

D E
j

and drikðtÞ
dt

D E
j
; respectively. When allotted resource rik is

updated according to (12), the first and second terms of
(12) will cause the following speed increments of the parti-
cle sik, respectively:

hduikðtÞ=dtir1 ¼
ouikðtÞ
orikðtÞ

drikðtÞ
dt

� �
1

¼ k1

ouikðtÞ
orikðtÞ

� �2

ð13Þ

hduikðtÞ=dtir2 ¼
ouikðtÞ
orikðtÞ

drikðtÞ
dt

� �
2

¼ k2

ouikðtÞ
orikðtÞ

oJðtÞ
orikðtÞ

¼ k2

ouikðtÞ
orikðtÞ

oJðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

¼ k2

oJðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

� �2

ð14Þ

Similarly, the third and the fourth term of Eq. (12) will
cause the following speed increments of the particle sik:

hduikðtÞ=dtir3 ¼ �k3

oP ðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

� �2

hduikðtÞ=dtir4

¼ �k4

oQðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

� �2

Similarly, for Eq. (11), we have hduikðtÞ=dticj ; j ¼ 1; 2; 3; 4.
We thus obtain

X4

j¼1

½hduikðtÞ=dticj þ hduikðtÞ=dtirj�

¼ k1 þ k2

oJðtÞ
ouikðtÞ

� k3

oP ðtÞ
ouikðtÞ

� k4

oQðtÞ
ouikðtÞ

� �
ouikðtÞ
orikðtÞ

� �2
(

þ ouikðtÞ
ocikðtÞ

� �2
)
¼ W2ðtÞ:
Therefore, updating cðjÞik and rðjÞik by (11) and (12), respec-
tively, gives rise to the speed increment of particle sik that is
exactly equal to W2ðtÞ of Eq. (9).

Proposition 2. The first and second terms of Eqs. (11) and

(12) will enable the particle sik to move upwards, that is, the

personal utility of sensor Ai from object Tk increases, in

direct proportion to the value of ðk1 þ k2Þ.
According to Eqs. (13) and (14), the sum of the first and

second terms of Eqs. (11) and (12) will be

hduikðtÞ=dtir1 þ hduikðtÞ=dtir2 þ hduikðtÞ=dtic1 þ hduikðtÞ=dtic2

¼ k1 þ k2

oJðtÞ
ouikðtÞ

� �
ouikðtÞ
orikðtÞ

� �2

þ ouikðtÞ
ocikðtÞ

� �2
( )

¼ ðk1 þ k2Þx2
ikðtÞ½r2

ikðtÞ þ c2
ikðtÞ�½�uikðtÞ�2 P 0:

Therefore, the first and second terms of (11) and (12) will
cause uikðtÞ to monotonically increase.

Proposition 3. For C-GPM, if � is very small, then decreas-

ing the potential energy P ðtÞ of Eq. (4) amounts to increasing

the minimal utility of an sensor with respect to an object, min-
imized over SðtÞ.

Supposing that HðtÞ ¼ maxi;kf�u2
ikðtÞg, we have

½expðHðtÞ=2�2Þ�2�
2

6

Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�2Þ

" #2�2

6 ½mn expðHðtÞ=2�2Þ�2�
2

:

Taking the logarithm of both sides of the above inequalities
gives

HðtÞ 6 2�2 ln
Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�2Þ 6 HðtÞ þ 2�2 ln mn:

Since mn is constant and � is very small, we have

HðtÞ � 2�2 ln
Xn

i¼1

Xm

k¼1

expð�u2
ikðtÞ=2�2Þ � 2�2 ln mn ¼ 2P ðtÞ:

It turns out that the potential energy PðtÞ at the time t rep-
resents the maximum of �u2

ikðtÞ among all the particles sik,
which is the minimal personal utility of a sensor with respect
to an object at time t. Hence the decrease of potential energy
P ðtÞ will result in the increase of the minimum of uikðtÞ.

Proposition 4. Updating cik and rik according to Eqs. (11)

and (12) amounts to increasing the minimal utility of a sensor

with respect to an object in direct proportion to the value of

k3.

The speed increment of particle sik , which is related to
potential energy P ðtÞ, is given by

duikðtÞ
dt

� �
3

¼ hduikðtÞ=dtir3 þ hduikðtÞ=dtic3

¼ �k3

oPðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

� �2

þ ouikðtÞ
ocikðtÞ

� �2
( )

:



Fig. 4. When c > 1, the reachable equilibrium points of the dynamic
status vikðtÞ of a particle sik . The point where �W2ðtÞ equals W1ðtÞ is an
equilibrium point. d, n and � denote a stable equilibrium point, saddle
point and unstable equilibrium point, respectively.
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Denote by dPðtÞ
dt

D E
the differentiation of the potential

energy function P ðtÞ with respect to time t arising from
using (11) and (12). We have

dP ðtÞ
dt

� �
¼ oP ðtÞ

ouikðtÞ
duikðtÞ

dt

� �
3

¼ �k3

oP ðtÞ
ouikðtÞ

� �2
ouikðtÞ
orikðtÞ

� �2

þ ouikðtÞ
ocikðtÞ

� �2
( )

¼ �k3x
2
ikðtÞu2

ikðtÞx2
ikðtÞ½r2

ikðtÞ þ c2
ikðtÞ�½uikðtÞ�2 6 0:

where,

xikðtÞ ¼ exp½�u2
ikðtÞ=2�2�

Xn

i¼1

Xm

k¼1

exp½�u2
ikðtÞ=2�2�:

,

It can be seen that using Eqs. (11) and (12) gives rise to
monotonic increase of P ðtÞ. Then by Proposition 3, the de-
crease of PðtÞ will result in the increase of the minimal util-
ity, in direct proportion to the value of k3.

Proposition 5. Updating cik and rik by Eqs. (11) and (12)

gives rise to monotonic increase of the whole utility of all

the sensors, in direct proportion to the value of k2.

Similar to Proposition 2, it follows that when a particle
sik modifies its cik and rik by Eqs. (11) and (12), differen-
tiation of JðtÞ with respect to time t will not be negative—

i.e., dJRðtÞ
dt

D E
P 0, and it is directly proportional to the value

of k2.

Proposition 6. Updating cik and rik by Eqs. (11) and (12)

gives rise to monotonic decrease of the potential energy

QðtÞ, in direct proportion to the value of k4.

As in the above, we have

duikðtÞ
dt

� �
4

¼ �k4

oQðtÞ
ouikðtÞ

ouikðtÞ
orikðtÞ

� �2

þ ouikðtÞ
ocikðtÞ

� �2
( )

; and

dQðtÞ
dt

� �
¼ oQðtÞ

ouikðtÞ
duikðtÞ

dt

� �
4

¼ �k4

oQðtÞ
ouikðtÞ

� �2

� ouikðtÞ
orikðtÞ

� �2

þ ouikðtÞ
ocikðtÞ

� �2
( )

6 0:

Proposition 7. C-GPM can dynamically optimize in parallel

sensor resource allocation for a collection of sensors exhibit-

ing different autonomous strengths of pursuing personal util-

ity and executing social coordinations.

In summary, by Propositions 1–6, ðk1 þ k2Þ represents
the autonomous strength for Ai to pursue its own personal
utility; k2 represents the autonomous strength for Ai to take
into account the collective utility of all the sensors; k3 rep-
resents the autonomous strength for Ai to increase the min-
imal personal utility among all the sensors; and k4

represents the autonomous strength for constraint satisfac-
tion and social coordinations.

Propositions 1, 2, 3, 4 7 show that different sensors may
have different degrees of autonomy and their own rational-
ity in pursuing individual and system-wide benefits. More-
over, different sensors may engage in different social
coordinations with other sensors for a specific object. A
large variety of social coordinations may be taken into
account, including possibly unilateral and unaware social
coordinations.

3.3. Convergence analysis

In this subsection, we show that all the particles can con-
verge to their stable equilibrium states through algorithm
C-GPM.

Lemma 1. If c� 1 > �W2ðtÞ > 0,
oW2ðtÞ
ouikðtÞ < 1 for uikðtÞ > 1,

and
oW2ðtÞ
ouikðtÞ > 1� c for 0 < uikðtÞ < 1, then the particle sik will

converge to a stable equilibrium point with

uikðtÞ > 1; vikðtÞ ¼ 1.
Proof. For c > 1, W1ðtÞ of particle sik is a piecewise linear
function of the stimulus uikðtÞ, as shown in Fig. 4: Segment
I, Segment II, and Segment III. By Eq. (9), a point is an
equilibrium point, i.e., duikðtÞ=dt ¼ 0, iff �W2ðtÞ ¼ W1ðtÞ
at the point. We see that for the case of c� 1 > �
W2ðtÞ > 0, an equilibrium point may be on Segment I, II
or III. Note from Eq. (3), uikðtÞP 0. Thus we need not con-
sider the equilibrium point on Segment I.

Suppose that the particle sik is at an equilibrium point
on Segment III at time t0, and an arbitrarily small
perturbation Duik to the equilibrium point occurs at time

t1. Since oW2ðtÞ
ouikðtÞ < 1, and oW1ðtÞ

ouikðtÞ ¼ �1 for uikðtÞ > 1, we have

c ¼ oW1ðtÞ
ouikðtÞ þ

oW2ðtÞ
ouikðtÞ

h i
< 0, and

D
duik

dt
¼ duik

dt

����
t1

� duik

dt

����
t0

¼ duik

dt

����
t1

¼ D½W1ðtÞ þW2ðtÞ�

� oW1ðtÞ
ouikðtÞ

þ oW2ðtÞ
ouikðtÞ

� �
Duik ¼ �jcjDuik:

That means duik
dt

��
t1

is always against Duik, or in other words,
the perturbation will be suppressed and hence the particle
sik will return to the original equilibrium point.
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Whereas, for an equilibrium point on Segment II,
because oW2ðtÞ

ouikðtÞ > 1� c and oW1ðtÞ
ouikðtÞ ¼ c� 1 > 0, we have

c ¼ oW2ðtÞ
ouikðtÞ

þ oW1ðtÞ
ouikðtÞ

� �
> 0; and

duik

dt

����
t1

� oW1ðtÞ
ouikðtÞ

þ oW2ðtÞ
ouikðtÞ

� �
Duik ¼ jcjDuik

such that the perturbation is intensified and the particle sik

departs from the original equilibrium point on Segment II.
Therefore, an equilibrium point on Segment II is unstable,
and only an equilibrium point on Segment III, e.g., p4 in
Fig. 4, is stable with uikðtÞ > 1; vikðtÞ ¼ 1. h

Lemma 2. If c > 1; �W2ðtÞ < 0, and oW2ðtÞ
ouikðtÞ < 1 for

uikðtÞ > 1, then the particle sik will converge to a stable equi-

librium point with uikðtÞ > 1; vikðtÞ ¼ 1.

Proof. Due to c > 1 and �W2ðtÞ < 0, an equilibrium point
must be on Segment III, e.g., p6 in Fig. 4. Moreover, as sta-

ted in the proof of Lemma 1, oW2ðtÞ
ouikðtÞ < 1 for uikðtÞ > 1 guar-

antees any equilibrium point on Segment III to be stable,
with uikðtÞ > 1; vikðtÞ ¼ 1. h

Lemma 3. If c > 1, oW2ðtÞ
ouikðtÞ < 1 for uikðtÞ ¼ 1þ; and

oW2ðtÞ
ouikðtÞ > 1� c for uikðtÞ ¼ 0þ and uikðtÞ ¼ 1�, then the equilib-

rium points s1 and s3 in Fig. 4 are unstable and a saddle point,

respectively.

Proof. It is straightforward from the proof of Lemma
1. h

Theorem 1. If c > 1, oW2ðtÞ
ouikðtÞ < 1 for uikðtÞP 1þ, and

oW2ðtÞ
ouikðtÞ > 1� c for 0þ 6 uikðtÞ 6 1�, the dynamical equation

(9) has a stable equilibrium point on Segment III iff the right
side of the equation is larger than 0 for uikðtÞ ¼ 1 and

vikðtÞ ¼ 1:

Proof. By Lemmas 1–3, the equilibrium points on Segment
II and Segment III, except for the saddle point s3 in Fig. 4,
are unstable and stable, respectively. We denote the right
side of Eq. (9) by RHS.

Sufficiency. Assume that RHS ¼ duijðtÞ
dt ¼ W1ðtÞþ

W2ðtÞ > 0 holds for uikðtÞ ¼ 1; vikðtÞ ¼ 1. It follows that
W1ðtÞ 6¼ �W2ðtÞ for uikðtÞ ¼ 1; vikðtÞ ¼ 1, namely, it is
impossible that the equilibrium point is the intersection
point s3 where W1ðtÞ ¼ �W2ðtÞ. Since RHS ¼ duik

dt > 0 at
point uikðtÞ ¼ 1, vikðtÞ ¼ 1, the increase of uikðtÞ from value
1 leads to that the particle sik converges to a stable
equilibrium point on Segment III.

Necessity. Suppose that Eq. (9) has a stable equilibrium
point. We need to prove that RHS > 0 holds for uikðtÞ ¼ 1
and vikðtÞ ¼ 1. By contrary, if there is RHS 6 0 for
uikðtÞ ¼ 1 and vikðtÞ ¼ 1, then the equilibrium point must
be either at the point s3 where RHS ¼ 0, or on Segment II
because RHS ¼ duik

dt < 0 would give rise to the decrease of
uikðtÞ from value 1. Since the point s3 and any equilibrium
point on Segment II are all non-stable, we have a
contradiction. h
Theorem 2. If c > 1, oW2ðtÞ
ouikðtÞ < 1 for uikðtÞP 1þ; and

oW2ðtÞ
ouikðtÞ > 1� c for 0þ 6 uikðtÞ 6 1�, then the dynamical equa-

tion (8) has a stable equilibrium point iff

c > 1þ 2½k3 þ 0:25k4�: ð15Þ

Proof. By Eqs. (3), (4), (7), (8) we have

W2ðtÞ ¼ fk1 þ k2 � k3x
2
ikðtÞu2

ikðtÞ
� k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2g½r2

ikðtÞ
þ c2

ikðtÞ�½uikðtÞ�2 ð16Þ

Note that x2
i ðtÞ; r2

ikðtÞ; c2
ikðtÞ 6 1. By Theorem 1, for

uikðtÞ ¼ 1; vikðtÞ ¼ 1, we have

c > 1�W2ðtÞ
¼ 1þ f�k1 � k2 þ k3x

2
ikðtÞu2

ikðtÞ
þ k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2g½r2

ikðtÞ þ c2
ikðtÞ�½uikðtÞ�2

6 1þ 2½k3 þ 0:25k4�: �

Lemma 4. If c > 1; fikðtÞP 0, and the following conditions

are valid:

k1 þ k2 < ð1þ 1=32Þk3 þ 0:25k4: ð17Þ
c > maxf1þ 4½k1 þ k2 þ 0:25k3 þ fikðtÞk4�; 1þ 2½k3 þ 0:25k4�g:

ð18Þ

then the dynamical equation (9) has a stable equilibrium point

with uik ¼ 1; vik ¼ 1.

Proof. Using Eq. (16) and noting dxikðtÞ
duikðtÞ ¼ 2xikðtÞ

uikðtÞðxikðtÞ � 1Þ, we obtain

oW2ðtÞ
ouikðtÞ

¼ f2½�k1 � k2 þ k3x
2
ikðtÞu2

ikðtÞ

þ k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2�

þ �2k3xikðtÞ
dxikðtÞ
duikðtÞ

u2
ikðtÞ

�
�2k3x

2
ikðtÞuikðtÞ

� 2k4fikðtÞ expð�fikðtÞuikðtÞÞ
� ½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�

� ½1þ expð�fikðtÞuikðtÞÞ��2
i
ð�uikðtÞÞgx2

ikðtÞ½r2
ikðtÞ

þ c2
ikðtÞ�½�uikðtÞ� ¼ f2½�k1 � k2 þ k3x

2
ikðtÞu2

ikðtÞ
þ k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2�
þ ½�4k3x

2
ikðtÞu3

ikðtÞðxikðtÞ � 1Þ � 2k3x
2
ikðtÞuikðtÞ

� 2k4fikðtÞ expð�fikðtÞuikðtÞÞ
� ½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�
� ½1þ expð�fikðtÞuikðtÞÞ��2�ð�uikðtÞÞgx2

ikðtÞ
� ½r2

ikðtÞ þ c2
ikðtÞ�½�uikðtÞ�
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Then from oW2ðtÞ
ouikðtÞ < 1 for uikðtÞP 1þ; and uikðtÞ 6 xikðtÞ;

rikðtÞ; cikðtÞ 6 1, we derive

oW2ðtÞ
ouikðtÞ

< 2½2ð�k1 � k2 þ k3 þ 0:25k4Þ

þ 4k3ð2=3Þ2ð3=4Þ3=12� < 1;

which leads to Eq. (17).

Similarly, from oW2ðtÞ
ouikðtÞ > 1� c for 0þ 6 uikðtÞ 6 1�, we

have
oW2ðtÞ
ouikðtÞ

> 4ð�k1 � k2 � k3=4� fikðtÞk4Þ > 1� c;

which leads to Eq. (18). By Theorem 2, therefore the con-
clusion is valid. h

Lemma 5. If c > 1; fikðtÞ 6 0, and the following conditions

are valid:

k1 þ k2 < ð1þ 1=32Þk3 þ k4ðjfikðtÞj þ 0:25Þ ð19Þ
c > maxf1þ 4½k1 þ k2 þ 0:25k3�; 1þ 2k3 þ 0:25k4g ð20Þ

then the dynamical equation (8) has a stable equilibrium point

with uik ¼ 1; vik ¼ 1:

Proof. Similar to the proof of Lemma 4, from oW2ðtÞ
ouikðtÞ < 1

for uikðtÞP 1þ, and uikðtÞ 6; xikðtÞ; rikðtÞ; cikðtÞ 6 1, we
derive

oW2ðtÞ
ouikðtÞ

< 2½2ð�k1 � k2 þ k3 þ 0:25k4Þ

þ 4k3ð2=3Þ2ð3=4Þ31=12þ jfikðtÞjk4� < 1;

which leads to Eq. (19).

And from oW2ðtÞ
ouikðtÞ > 1� c for 0þ 6 uikðtÞ 6 1�, we have
oW2ðtÞ
ouikðtÞ

> 4ð�k1 � k2 � k3=4Þ > 1� c;

which leads to Eq. (20). By Theorem 2, therefore the con-
clusion is valid. h

Theorem 3. If c > 1, and the conditions (18), (19) are valid,

then the dynamical equation (9) has a stable equilibrium point

with uik ¼ 1; vik ¼ 1.

Proof. Straightforward, by Lemmas 4 and 5. h

Theorem 4. If the conditions (17), (18) remain valid, then

C-GPM will converge to a stable equilibrium state.

Proof. Using Eq. (16) and noting dxikðtÞ
duikðtÞ ¼ 2xikðtÞuikðtÞ

ðxikðtÞ � 1Þ, we obtain
oW2ðtÞ
ouikðtÞ

¼ 2½�k1 � k2 þ k3x
2
ikðtÞu2

ikðtÞ
	
þk4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2�

þ½�2k3xikðtÞ
dxikðtÞ
duikðtÞ

u2
ikðtÞ � 2k3x

2
ikðtÞuikðtÞ

�2k4fikðtÞ expð�fikðtÞuikðtÞÞ
�½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�
� 1þ expð�fikðtÞuikðtÞÞ��2
h i

ð�uikðtÞÞ
o

x2
ikðtÞ½r2

ikðtÞ

þ c2
ikðtÞ�½�uikðtÞ� ¼ f2½�k1 � k2 þ k3x

2
ikðtÞu2

ikðtÞ
þ k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�2�
þ ½�4k3x

2
ikðtÞu3

ikðtÞðxikðtÞ � 1Þ � 2k3x
2
ikðtÞuikðtÞ

� 2k4fikðtÞ expð�fikðtÞuikðtÞÞ
� ½ð1þ expð�fikðtÞuikðtÞÞÞ�1 � 0:5�
� ½1þ expð�fikðtÞuikðtÞÞ��2�ð�uikðtÞÞgx2

ikðtÞ½r2
ikðtÞ

þ c2
ikðtÞ�½�uikðtÞ�

For the force field F, we define a Lyapunov function LðtÞ
by

LðtÞ ¼ � 1

2

X
i;k

ðc� 1ÞvikðtÞ2 þ
X

i;k

Z t

0

dvikðxÞ
dx

f�k1 � k2

þ k3x
2
ikðxÞu2

ikðxÞ þ k4½ð1þ expð�fikðxÞuikðxÞÞÞ�1

� 0:5�2g½r2
ikðxÞ þ c2

ikðxÞ�½�uikðxÞ�2 dx:

We hence have

jLðtÞj 6
X

i;k

ðc� 1ÞjvikðtÞ2j þ
X

i;k

Z t

0

dvikðxÞ
dx

����
���� � jf�k1 � k2

þ k3x
2
ikðxÞu2

ikðxÞ þ k4½ð1þ expð�fikðxÞuikðxÞÞÞ�1

� 0:5�2gj½r2
ikðxÞ þ c2

ikðxÞ�½�uikðxÞ�2 dx:

Since condition (18) is valid, vikðtÞ 6 1 and uiðtÞ 6 1, it fol-
lows that

jLðtÞj 6
X

i;k

ðc� 1Þ þ
X

i;k

c < mnc

which implies that LðtÞ is bounded.
In addition, we have
dLðtÞ
dt
¼ �

X
i;k

ðc� 1ÞvikðtÞ
dvikðtÞ

dt
þ
X

i;k

dvikðtÞ
dt
f�k1 � k2

þ k3x
2
ikðtÞu2

ikðtÞ þ k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1

� 0:5�2g½r2
ikðtÞ þ c2

ikðtÞ�½�uikðtÞ�2

¼ �
X

i;k

dvikðtÞ
duiðtÞ

duikðtÞ
dt
f�uikðtÞ þ cvikðtÞ þ fk1 þ k2

� k3x
2
ikðtÞu2

ikðtÞ � k4½ð1þ expð�fikðtÞuikðtÞÞÞ�1

� 0:5�2g½r2
ikðtÞ þ c2

ikðtÞ�½�uikðtÞ�2g

¼ �
X

i;k

dvikðtÞ
duikðtÞ

duikðtÞ
dt


 �2

6 0:
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Thus LðtÞ will monotonically decrease with the elapsing
time. h
xik T1 T2 T3

open a door take dictation find food and
3.4. The parallel C-GPM algorithm

Algorithm C-GPM
Input: cik; xik; fik

Output:
1. Initialization:

t 0
rikðtÞ —Initialize in parallel

2. While ðduik=dt 6¼ 0Þ do
t t þ 1
uikðtÞ —Compute in parallel according to Eq. (3)
duik=dt —Compute in parallel according to Eq. (8)
drikðtÞ=dt —Compute in parallel according to Eq.
(11)
rikðtÞ  rikðt � 1Þ þ drikðtÞ=dt
dcikðtÞ=dt —Compute inparallelaccordingto Eq. (10)

take back

A1: eye 1 1 1
A2: nose 0 0 1
A3: ear 0 1 0
A4: arm 1 1 1
A5: hand 1 1 1
A6: leg 1 0 1
A7: foot 1 0 1

cik T1 T2 T3

open a door take dictation find food and
take back

A1: eye 0.5 0.25 0.25
A2: nose 0 0 1
A3: ear 0 1 0
A4: arm 0.4 0.3 0.4
A5: hand 0.33 0.34 0.33
A6: leg 0.35 0 0.65
A7: foot 0.35 0 0.65
As indicated by Theorems 1–4, as long as we properly
select the parameters k1; k2; k3; k4 for the dynamical equa-
tions of C-GPM according to Eqs. (17), (19), the conver-
gence and stability of the particle dynamics can be
guaranteed.

Given the results above, we can construct an algorithm
to solve the sensor fusion (resource allocation) problem, as
given below.

The algorithm C-GPM has in general a complexity of
X(nm), where (nm) is the number of particles (the sum of
the number of elements of matrix S). The more realistic
time complexity of the algorithm is OðIÞ, where I is the
number of iterations for Step 2 (the while loop), as much
of the inner steps can be carried out in parallel.

4. Simulations

Here we give an example of a robot which represents a
multi-sensor fusion problem, and then use our C-GPM
method to find the optimum solution.

The robot has seven sensors: eye, nose, ear, arm, hand,
leg and foot. The robot has a reportoire of three actions:
open a door, take dictation, find food and take back.
Now we describe in detail how to solve the multi-sensor
fusion problem, namely, how to allocate sensors to objects.

Let sensors Ai; i ¼ 1; 2; . . . ; 7 represent the eye, nose,
ear, arm, hand, leg and foot of the robot, respectively.
Let objects T k; k ¼ 1; 2; 3 represent the robot’s actions of
opening a door, taking dictation, and finding food and tak-
ing them back, respectively.

Step 1.

1. xik:
First, we establish the relations between sensors and

objects (actions). If sensor Ai is related to object Tk,
xik ¼ 1; otherwise, xik ¼ 0. For example, the eye, arm,

cikðtÞ  cikðt � 1Þ þ dcikðtÞ=dt
hand, leg and foot are related to the object of opening a
door; the eye, ear, arm and hand are related to the object
of taking dictation. We can form the matrix X, as follows:
2. cik:
Based on the different effects of the sensors A1–A7 on the

objects T1–T3, we can choose different weights cik. If sensor
Ai is more important to object Tk than to T l (k; l 2 1; 2; 3),
then cik will be larger than cil. The following must be
observed when choosing the weights:

• If xik ¼ 0, then cik ¼ 0, to ensure that object Tk which is
not related to sensor Ai is not allocated any sensor
resource.

• 0 6 cik 6 1.
• In order that the sensor resources are fully allocated,P3

k¼1cik ¼ 1; i ¼ 1; 2; . . . ; 7:

The weight matrix C we decide on for this particular
problem is as follows:
3. fik:
(1) bijk:
C-GPM has a clear advantage over other approaches in

being able to deal with a variety of coordinations occurring
in multi-sensor systems. In Section 3, we divide typical
coordinations into four categories (I, II, III, IV) of 12
types.

Since the nose A2 is not related with the object T1 of
opening a door, the coordination of the eye A1 with respect
to the nose A2 is unilateral coordination, whereby A2

would modify its intention, and A1 would not. Therefore,
b121 ¼ II and b211 ¼ I. Since the eye A1 and the arm A4



fij1 A1 A2 A3 A4 A5 A6 A7

A1 0 1 1 1 1 1 1
A2 �1 0 0 �1 �1 �1 �1
A3 �1 0 0 �1 �1 �1 �1
A4 1 1 1 0 �1 1 1
A5 1 1 1 �1 0 1 1
A6 1 1 1 1 1 0 �1
A7 1 1 1 1 1 �1 0

fij2 A1 A2 A3 A4 A5 A6 A7

A1 0 1 1 1 1 1 1
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are both related to the object T1 of opening a door, but
they themselves are unrelated, the coordination between
the eye A1 and the arm A4 is bilateral coordination, and
neither A1 nor A4 would modify their intention. So
b141 ¼ III and b411 ¼ III. Since the arm A4 and the hand
A5 are both related to the object T1 of opening a
door and they influence each other, the coordination
between A4 and A5 is bilateral coordination, and A4 and
A5 must both modify their intention. So b451 ¼ IV and
b541 ¼ IV.

As such, we can obtain all the bijk values, as shown in
the following, where for object Tk, if there is no coordina-
tion between sensor Ai and Aj, bijk is set to ‘‘–’’.
bij1 A1 A2 A3 A4 A5 A6 A7

A1 – II II III III III III
A2 I – – I I I I
A3 I – – I I I I
A4 III II II – IV III III
A5 III II II IV – III III
A6 III II II III III – IV
A7 III II II III III IV –

bij2 A1 A2 A3 A4 A5 A6 A7

A1 – II III III III II II
A2 I – I I I – –
A3 III II – III III II II
A4 III II III – IV II II
A5 III II III IV – II II
A6 I – I I I – –
A7 I – I I I – –

bij3 A1 A2 A3 A4 A5 A6 A7

A1 – III II III III III III
A2 III – II III III III III
A3 I I – I I I I
A4 III III II – IV III III
A5 III III II IV – III III
A6 III III II III III – IV
A7 III III II III III IV –

A2 �1 0 �1 �1 �1 0 0
A3 1 1 0 1 1 1 1
A4 1 1 1 0 �1 1 1
A5 1 1 1 �1 0 1 1
A6 �1 0 �1 �1 �1 0 0
A7 �1 0 �1 �1 �1 0 0

fij3 A1 A2 A3 A4 A5 A6 A7

A1 0 1 1 1 1 1 1
A2 1 0 1 1 1 1 1
A3 �1 �1 0 �1 �1 �1 �1
A4 1 1 1 0 �1 1 1
A5 1 1 1 �1 0 1 1
A6 1 1 1 1 1 0 �1
A 1 1 1 1 1 �1 0

fik T1 T2 T3

A1 8 6 10
A2 0 0 10
A3 0 6 0
A4 4 2 6
A5 4 2 6
A6 4 0 6
A7 4 0 6

rik T1 T2 T3

A1 1/3 1/3 1/3
A2 0 0 1
A3 0 1 0
A4 1/3 1/3 1/3
A5 1/3 1/3 1/3
A6 1/2 0 1/2
A7 1/2 0 1/2
(2) fijk:
According to Eq. (6),

fijkðtÞ ¼
1 if bijk 2LðIIÞ [LðIIIÞ

�1 if bijk 2LðIÞ [LðIVÞ

(

fjikðtÞ ¼
1 if bjik 2LðIÞ [LðIIIÞ

�1 if bjik 2LðIIÞ [LðIVÞ

(

and so we obtain fijk as follows:
(3) fik:
According to Eq. (5), fikðtÞ ¼

Pn
j¼1fijkðtÞ þ

Pn
j¼1fjikðtÞ,

we get fik as follows:

7

fik is equal to the sum of the ith row and the ith column
of the matrix ðfijkÞ7�7.

4. rik:
Initialization: ðt ¼ 0Þ
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Here rik is initialized by the average values. Alterna-
tively, rik can also be initialized as random numbers
between 0 and 1. In fact, based on the experiments we have
done, we found that the results are not affected by the ini-
tialization of R. Whatever rik is initialized to be, the matrix
R is dealt with using the following three steps:

• rik ¼ 0j8xik ¼ 0. If xik ¼ 0, then rik ¼ 0, to ensure that an
object Tk which is not related to the sensor Ai is not allo-
cated any sensor resource.

• Non-negativity: 0 6 rik 6 1. If mini;krik < 0, then let
rik ¼ rik �mini;krik.

• Normalization. Let rik ¼ rik=
P3

k¼1rik, in order that the
sensor resources are fully allocated; that is,P3

k¼1rik ¼ 1; i ¼ 1; 2; . . . ; 7.

5. zðRÞ:
According to Eq. (1), zðRÞ ¼

Pn
i¼1

Pm
k¼1cikrikxik ¼ 4:023.

Step 2. Compute in parallel (showing only the first evo-
lutionary iteration; t = 1).

1. Drik:
According to Eq. (11), we have

Drik � drik=dt ¼ k1
ouik

orik
þ k2

oJ
orik
� k3

oP
orik
� k4

oQ
orik

where,

ouik

orik
¼ cikxik expð�cikrikxikÞ

oJ
orik
¼ cikxik expð�cikrikxikÞ

oP
orik
¼ oP

ouik
� ouik

orik

¼ �uik �
expð�u2

ik=2�2ÞPn
i¼1

Pm
k¼1 expð�u2

ik=2�2Þ �
ouik

orik

oQ
orik
¼ 2

Xm

k¼1

xik �
Xn

i¼1

Xm

k¼1

rikxik � 1

 !

� 1

1þ expð�fikuikÞ
� 1

2

� �
� ouik

orik

2. Dcik:
According to Eq. (10), we have

Dcik � dcik=dt ¼ k1
ouik

ocik
þ k2

oJ
ocik
� k3

oP
ocik
� k4

oQ
ocik

where,

ouik

ocik
¼ rikxik expð�cikrikxikÞ

oJ
ocik
¼ rikxik expð�cikrikxikÞ

oP
ocik
¼ oP

ouik
� ouik

ocik

¼ �uik �
expð�u2

ik=2�2ÞPn
i¼1

Pm
k¼1 expð�u2

ik=2�2Þ �
ouik

ocik

oQ
ocik
¼ � 1

1þ expð�fikuikÞ
� 1

2

� �
� ouik

ocik
3. rikðt ¼ 1Þ and cikðt ¼ 1Þ:

rikðt ¼ 1Þ ¼ rikðt ¼ 0Þ þ Drikðt ¼ 1Þ
cikðt ¼ 1Þ ¼ cikðt ¼ 0Þ þ Dcikðt ¼ 1Þ
k1 ¼ 0:05 k2 ¼ 0:05 k3 ¼ 0:9 k4 ¼ 0:9 � ¼ 0:8

After we get rikðt ¼ 1Þ, matrix R should be dealt with
using the three steps just mentioned again.

In addition, after we get cikðt ¼ 1Þ, matrix C should be
dealt with similarly, i.e.,

• cik ¼ 0j8xik ¼ 0.
• Non-negativity: Let cik ¼ cik �mini;kcik.
• Normalization. Let cik ¼ cik=

P3
k¼1cik.

Regarding the coefficients k1, k2, k3, k4 and �, we can
draw the following conclusions from the theoretical proofs
and the experiments we have done:

• When � is larger, the convergence speed of C-GPM algo-
rithm is faster.

• If the values of k1, k2, k3, and k4 change in direct propor-
tion, the experimental results will hardly be influenced.

• In order for the C-GPM algorithm to converge, k3 and
k4 should be much larger than k1 and k2, based on
Eqs. (17) and (19).

At the end of the first iteration we get

Rðt ¼ 1Þ ¼

0:3692 0:3111 0:3197

0 0 1:0000

0 1:0000 0

0:3368 0:3158 0:3474

0:3331 0:3260 0:3409

0:4582 0 0:5418

0:4582 0 0:5418

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

Cðt ¼ 1Þ ¼

0:4869 0:2483 0:2648

0 0 1:0000

0 1:0000 0

0:3603 0:2661 0:3735

0:3304 0:3269 0:3427

0:3554 0 0:6446

0:3554 0 0:6446

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

zðt ¼ 1Þ ¼ 4:0690

Obviously, zðt ¼ 1Þ > zðt ¼ 0Þ, the robot multi-sensor
fusion problem is being optimized. The evolutionary exper-
imental results for z from t = 1 to t = 120 are as follows,
and depicted in Fig. 5.

As shown in Fig. 5, the convergence speed is faster at
the beginning (from t = 0 to t = 20) of the evolution. The



Fig. 5. Optimization from t = 0 to t = 120.

sik T1 T2 T3

A1 • • •
A2 •
A3 •
A4 • • •
A5 • • •
A6 • •
A7 • •
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optimization trend of z reflects exactly the optimization of
the problem. At about t = 60, z approaches the maximum
of 4.53. At t = 96, z reaches its maximum, and stays
unchanged in the remainder of the iterations. From
t = 104 to 120, R is always equal to

1:0000 0:0000 0:0000

0 0 1:0000

0 1:0000 0

0:0000 0:0000 1:0000

0:0000 0:0000 1:0000

0:0000 0 1:0000

0:0000 0 1:0000

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

Since rik(t = 104) = rik(t = 105) and cik(t = 104) =
cik(t = 105), drik/dt(t = 105) = 0 and dcik/dt(t = 105) = 0.
Thus, duik

dt (t = 105) = ouik
orik

(t = 105)drik
dt (t = 105) + ouik

ocik
(t =

105)dcik
dt (t = 105) = 0. Therefore, the C-GPM algorithm

ends appropriately. This shows that sensor resources are
allocated to the objects whose weights are the maximum.
Undoubtedly this solution of R obtained by C-GPM is
the optimum solution as it maximizes z, which verifies
the approach’s convergence and its ability to arrive at the
optimum for a complex problem. The solution at t = 120
however is not a practical solution because in order to
achieve the objective, it does not give the ‘‘less important’’
sensors any resource. A more practical solution is probably
at around t = 20 where z is very near its maximum value
and every sensor is allocated some resource:
0:8852 0:0277 0:0871

0 0 1:0000

0 1:0000 0

0:1041 0:0426 0:8533

0:1037 0:0565 0:8398

0:0723 0 0:9277

0:0723 0 0:9277

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA

It should be possible to re-formulate the problem model,
perhaps with the addition of more constraints, such that
the iterative algorithm will settle at an optimum yet practi-
cal solution.

Besides the C-GPM algorithm’s good performance in
the mathematical sense, the particles’ evolution and motion
during the process of resolving the problem are also very
interesting. If xik ¼ 1, then sik is a particle. For our robot
problem, there are 15 particles.
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According to Eq. (3), uik ¼ 1� expð�cikrikxikÞ, we get
uikðt ¼ 0Þ, as follows:
uikðt ¼ 0Þ T1 T2 T3

A1 0.1521 0.0792 0.0792
A2 0 0 0.6321
A3 0 0.6321 0
A4 0.1237 0.0943 0.1237
A5 0.1032 0.1061 0.1032
A6 0.1605 0 0.2775
A7 0.1605 0 0.2775

Fig. 8. When t = 10.
uik is the y-coordinate of particle sik. The x-coordinate of
particle sik represents the ordinal number of the particle.

The initial states of the 15 particles in the force field are
shown in Fig. 6.

When t = 5, 10, 15, 120, the states of the 15 particles in
the force field are shown in Figs. 7–10, respectively.
Fig. 6. The initial state of 15 particles in the force field.

Fig. 7. When t = 5.

Fig. 9. When t = 15.

Fig. 10. When t = 120.
5. Conclusion

In this paper, we describe a new evolutionary approach
to multi-sensor fusion based on the coordination general-
ized particle model (C-GPM). We study some theoretical
foundations of the approach including its convergence.
The validity of C-GPM is verified via several formal proofs
and by simulations.
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We present the C-GPM approach as a new branch of
evolutionary algorithms, which can overcome the limita-
tions of other existing evolutionary algorithms in capturing
the entire dynamics inherent in the problem, especially
those that are high-dimensional, highly nonlinear, and
random.

Hence, the C-GPM approach can describe the complex
behaviors and dynamics of multiple sensors.

The model treats each possible allocation of resources as
a configuration of particles with ‘‘physical’’ attributes and
then finds the equilibrium of the system iteratively. A novel
aspect of the approach is that it takes into account ‘‘uncon-
scious’’ social coordinations between the sensors.

The C-GPM algorithm can work out the theoretical
optimum solution, which is important and exciting. To
summarize, the C-GPM approach has the following attrac-
tive features:

• Very high parallelism and real-time computational
performance.

• A sensor in a multi-sensor system is regarded as being
neither fully selfish nor fully unselfish, and so different
sensors can exhibit different degrees of autonomy.

• A variety of complicated social coordinations among the
sensors can be taken into account in the process of prob-
lem-solving.

• The C-GPM algorithm can work out the optimum solu-
tion of any multi-sensor fusion problem.

• C-GPM is a physics-based evolutionary algorithm that
can overcome the limitations of other traditional evolu-
tionary algorithms in describing the high-dimensional,
highly nonlinear, and random behaviors and dynamics
of objects.
• There are only five coefficients in the C-GPM algorithm,
whose values are all easy to choose.
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