
Scheduling over Dissimilar Paths using CMT-SCTP
Imtiaz A. Halepoto, Francis C.M. Lau, Zhixiong Niu

Department of Computer Science, The University of Hong Kong, Hong Kong
{halepoto,fcmlau,zxniu}@cs.hku.hk

Abstract—Concurrent Multipath Transfer (CMT-SCTP) using
the Stream Control Transmission Protocol (SCTP) over multiple
paths can achieve an aggregated transmission throughput much
greater than a single path. A problem arises when the fair round
robin scheduling (RRS) in CMT-SCTP allows the slow paths
to affect the overall throughput due to out-of-sequence data
at the receiver. Data along the slow and fast paths occupy the
shared receiver buffer while waiting for the out-of-sequence data,
which can easily lead to performance degradation. Therefore,
intelligent scheduling of data transmissions is necessary for
efficient data transfer, particularly in realistic situations where
the paths are dissimilar and the buffer size is limited. We propose
an algorithm for scheduling data transmissions based mainly on
the outstanding bytes (CMT-OUT). The algorithm updates the
path quality after a successful transmission, which is a measure of
how preferable the current destination would be when selection
happens in the next round. The experiments on a realistic testbed
show that CMT-OUT improved the throughput of CMT-SCTP on
average by 21% when the maximum bandwidth dissimilarity is
applied over a two-path network. The mechanism in CMT-SCTP
to handle the delay dissimilarity in a simple two-path scenario is
very efficient due to the rare timer based retransmissions. In the
experiments for the more complex four-path scenario, CMT-OUT
improved the throughput by 54%.

Index Terms—SCTP; CMT-SCTP; RRS; out-of-sequence data;
outstanding data; dissimilar paths.

I. INTRODUCTION

Many communication devices such as smart phones are
equipped with multiple interfaces that can provide connection
to more than one network using different access technologies
such as 4G and Wi-Fi. Using multiple interfaces can reduce
the risk of connection failure between end-to-end hosts. If a
connection is down along one interface, the device can access
the Internet by using the next connected network along another
interface. One common communication mode that uses multi-
ple connections is multihoming. It is a challenge for transport
layer protocols [1] to support multihoming. One notable at-
tempt is SCTP. SCTP is an innovative protocol standardized
by the Internet Engineering Task Force, which provides a
number of services equivalent to TCP and UDP; additionally,
it supports multihoming and multistreaming. Multihoming
allows end-to-end hosts to establish an association to more
than one network at the same time. Multistreaming service
provides an independent data flow through several streams
within an association. This avoids the head-of-line blocking
problem of TCP. SCTP uses one path for data transmission
and the remaining paths for retransmissions or fault tolerance.
So data reordering at the receiver mostly implies a packet
loss. Then came the CMT-SCTP extension, which allows load-
sharing by simultaneous data transfers over multiple paths

[2], in order to maximize the aggregated throughput. In this
case, data reordering implies either a packet loss or a out-
of-sequence packet reception. As a result, data reordering in
CMT-SCTP is very frequent compared to SCTP. The out-of-
sequence packets coming from the slow and fast paths occupy
the receiver buffer (rbuf). The receiver has to wait for the
missing data to arrive before it can deliver the arrived packets
to the upper layers. This may cause rbuf blocking, specially
when rbuf size is small. Most of these outstanding data which
cause the rbuf blocking are sent by the slow paths [3] [4].
So, the fast paths cannot contribute up to the expectation
in the overall aggregated throughput [5]. One simple reason
behind the rbuf blocking is as follows. CMT-SCTP applies
RRS to packet transmission over multiple paths. RRS is fair,
i.e., it allows transmission only if the destination’s congestion
window (cwnd) is open and there is space in rbuf. If multiple
destinations have available cwnd and rbuf, then RRS follows
the sequential order for choosing the destination but without
observing the path quality. Therefore, a proper scheduling for
packet transmission is necessary when using CMT-SCTP over
dissimilar paths.

This paper proposes a scheduling algorithm called CMT-
OUT. CMT-OUT considers in particular the dissimilarity
among the paths in question, which is caused by variations in
bandwidth and propagation delays. We propose a function to
update the path quality (PQU) immediately after a successful
transmission and by the knowledge of the outstanding data. For
the computation of PQU, the scheduler also uses the amount of
data the sender has sent during the latest transmission oppor-
tunity. To further minimize the resource dominance of the rbuf
by the slow paths, CMT-OUT determines the outstanding bytes
ratio (OBR) for each of the destinations. OBR maintains the
distribution of outstanding data among the paths. We evaluate
CMT-OUT on paths that differ in bandwidth and delay. For
comparison purpose, the same experiments are also performed
on the basic CMT-SCTP and CMT-RBS (CMT-SCTP with
buffer splitting [4]). The results show that CMT-OUT improves
the overall throughput in most of the scenarios.

Sec. II presents briefly the related work. Details of the
proposed CMT-OUT are explained in Sec. III. Sec. IV presents
the testbed setup. Sec. V and VI present and discuss the results.
Sec. VII concludes the paper.

II. RELATED WORK

Iyenger et al. in [3] and [6] came up with an idea to reduce
the effect of out-of-sequence data by immediate retransmis-
sions of the missing or out-of-sequence data. They proposed



five retransmission policies. A sender follows a policy to
immediately retransmit the missing or unordered data to either
the original destination address where the data was sent or
to another destination address based on information such as
cwnd, slow start threshold, or loss rate. The same authors
suggested that utilizing only the better of two paths can outper-
form concurrent use when the difference between path delays
is large [5]. Sarwar et al. [7] developed a method to estimate
the forward delay of a path, which they used with cwnd to
schedule the data packets. Wallace [8] developed a scheduling
algorithm, with which a sender ranks the available destination
addresses for transmission according to an estimated time
of acknowledgment of the packet. Due to the estimation of
acknowledgement time, which is based on a series of delays,
the algorithm works well mainly when two paths differ in
terms of delay. Dreibholz et al. [4] proposed a technique for
buffer splitting, which is based on the outstanding bytes. In
short, for each path, the approach maintains a fair amount
of outstanding bytes. The approach is dynamic and prevents
a path’s monopoly over the buffer resource, which in turn
prevents the buffer blocking problem. In our research, we
realize that the amount of outstanding data is not only useful
for splitting a buffer but it can also be utilized in estimating
a path’s quality. Thus, we assess the path quality and assign
it a score.

III. CMT-OUT SCHEDULER

A. Path Quality Update (PQU)

A path’s quality can be measured by the total amount of
outstanding data to be sent along the path, and the portion-
of-data it is carrying during an opportunity of transmission.
This portion-of-data is called RoundData. RoundData is
the amount of data a sender takes from the send buffer for
transmission during the current transmission opportunity to
the destination di. A transmission opportunity for a sender
means that the data is available at the send buffer, cwnd is
open and space in rbuf is available. A path Ph that is allowed
to carry a large RoundData has the ability to enhance the
overall throughput. On the other hand, the large RoundData
may also consume a large portion of rbuf. In order to be
fair (over rbuf resource) to the paths of small RoundData,
the scheduler should make an intelligent decision in selecting
Ph when the next transmission opportunity comes. In other
words, a sender transmits a large RoundData(di) either if
the unacknowledged data along di is small, or when there is
a large cwnd that is open. The update of cwnd depends on
SACK chunk (selective acknowledgement). A SACK chunk
reports the successful reception of packets as well as the
missing packets. So, cwnd on a path of more bandwidth or
shorter delay (high quality path) will open faster. The max-
imum amount of RoundData is constrained by a parameter,
Max.Burst (maximum burst). The value for Max.Burst used is
4, following RFC4960. When a sender transmits continuous
data packets along a path, it reflects that the destination has a
large available cwnd and rbuf space. On the contrary, based on
our understanding of the transmissions, if the sender transmits

few data packets during an opportunity of transmission, it is
because of the limited rbuf space available or low transmission
speed. In the design of CMT-OUT, each time after a successful
transmission the scheduler would update the path quality. PQU
after a successful transmission to a destination di is defined
by Eq. 1 and Eq. 2:

PQU(di) =

{
QUpdate(di), ifRoundData(di) > 0

LPQU(di), Otherwise.
(1)

QUpdate(di) =
Outstanding(di)

Outstanding(di) +RoundData(di)
(2)

Outstanding(di) are the total unacknowledged bytes that
have been sent to di, and LPQU(di) is the last updated
PQU value. For any two competing destinations, CMT-OUT
is devised to adjust their PQU while considering the following
points.
1. Two destinations with equal Outstanding: the quality of
the path along which the scheduler has sent a large amount
of RoundData should be lowered and be assigned less priority
in the next round. Otherwise, this destination may possibly
occupy most of the rbuf space.
2. Two destinations with equal Outstanding and equal
RoundData: the destination appearing first in list will be
preferred for the data transmission.
3. Two destinations with equal RoundData last sent to: the
path along which the destination has smaller Outstanding
should be given less priority because it is supposed to be a
slow path.
4. Two destinations each with different Outstanding and
RoundData sent by them: the destination whose ratio of
Outstanding to RoundData is lower will be less desirable
in the coming round.

CMT-SCTP iterates in a loop with respect to the path IDs
for transmissions over multiple paths. It transmits to a path if
cwnd is open and buffer is available. It also stores a loop
start path and a loop end path. When CMT-SCTP checks
for transmission opportunity from the loop start path to the
loop end path, it is called a round. Note that PQU is not
the only parameter for the destination selection criteria; it is a
measure of preference used for the scheduling. The large value
of PQU(di) may represent that a successful transmission
of one or more packets were made to di, or possibly there
is just a small amount of the outstanding bytes along di.
Whereas, a small value of PQU(di) shows possibly that data
transmission was made to di, or the amount of outstanding
data is larger. Then no change in PQU(di) means there is no
data transmission made to di. CMT-OUT considers a path with
higher PQU value the better choice for transmission than the
rest of the paths. The paths that are not sending data during
the current round will not update their respective PQU values.
So, the higher the frequency (longer waiting time) of a path
not being used for the transmission opportunity, the higher
will be the probability that the path is a slow path (longer
delay path). There may be more than one slow path. These
paths begin to transmit again as soon as the sender receives an



acknowledgement. Hence, such slow paths would take breaks
to participate in transmitting data and this intentional feature
of PQU pushes the scheduling towards the unwanted situation
of unfairness over the buffer resource.

B. Outstanding Bytes Ratio (OBR)

The main objective of OBR is fairness over the use of the
buffer among the low quality paths. OBR strives to assist the
scheduling to be not completely dominated by the paths with
higher path performance characteristics (PPC) such as lower
delay paths. OBR is simply a ratio of the outstanding bytes
along a path to the total size of the receiver buffer (Trbuf).

OBR(di) =
Outstanding(di)

Trbuf
(3)

The idea of Eq. 3 is taken from buffer splitting as in CMT-
RBS [9]. In CMT-RBS, buffer splitting only checks whether a
path is allowed to carry the data (of 1*MTU) by looking at the
allotted buffer share. There, OBR does not divide a buffer;
it simply monitors the amount of outstanding data along a
path, so that when required (for slow paths, Section III-C), the
scheduler transmits data to the destinations of low outstanding
data. There may be several destinations whose PQU value is
low; for these destinations, the scheduler adds OBR in the
scheduling process to filter the destinations in the selection
order. There is no role for OBR to play for the destinations
of higher PQU value. This orientation of OBR attempts to
insert in CMT-OUT the fairness feature, somewhat like CMT-
SCTP.

C. Destination Selection Value (DSV)

DSV categorizes the destinations into two groups, PQUH

and PQUL, based on path quality. DSV first determines which
of the destinations have the least PQU value and set it as
a threshold. One or more destinations may fall below this
threshold and will be labeled as PQUL. The reason behind is
that, when more than one destination have equal outstanding
bytes, they might have sent out an equal amount of round
data. The rest of the destinations will be given to PQUH

and are considered along the higher quality paths. CMT-
OUT nominates PQUL for the dominance check by OBR.
Meanwhile, first priority will be given to the destinations
in PQUH . If PQUH contains more than one destination,
then scheduling for them will be by first-come-first-serve.
CMT-OUT starts sending packets to PQUH first, followed
by the transmissions to PQUL. If we recall, the problem
with RRS is the transmission of a fair amount of outstanding
data to the paths. Such transmissions over dissimilar paths
may lead to resource dominance, which results in the overall
performance being limited by the tendency of the slow paths.
So, to further optimize the performance and to restrict the slow
paths from sending more outstanding bytes, the destinations
in PQUL are ranked according to the OBR value. There are
two advantages of adding OBR. First, the slow paths will
send less outstanding bytes. Second, the scheduling decision

is based on OBR, which improves the fairness over the buffer
resource. DSV (di) of a destination di is defined as:

DSV (di) =

{
0, if di ∈ PQUH(di)

OBR(di), Otherwise.
(4)

The destination with the smaller value of DSV will be
selected for the transmission only if congestion and flow
control allow it. Unfortunately, by using many parameters the
scheduler is not much inclined towards the desired fairness
over rbuf. From one perspective, fairness is good, but on the
other hand, it affects the efficiency, and it is especially chal-
lenging when the dissimilarity among the paths is significant.
The chances of destinations in PQUL(di) (whose OBR is
smaller) to get an opportunity will be higher, no matter if
they are labeled as low quality by PQU or not.

D. Destination Selection Procedure (DSP)

Suppose a sender has buffered data at time t; CMT-OUT
assigns the data to di according to the following steps.
1. The CMT-OUT implementation maintains a list of desti-
nations. The scheduler determines, for each given PQU(di)
estimation, the low quality paths (i.e., PQUL) and the high
quality paths (i.e., PQUH ). Each of PQUL and PQUH

groups may contain one or more destinations.
2. The scheduler computes OBR(di) of the destinations; this
value only will be used for the destinations in PQUL(di).
3. Both the PQU and OBR values will be assigned to DSV .
A value of DSV (di) will be calculated for all the destinations.
4. The scheduler ranks the destinations in ascending order of
DSV (di).
5. Starting from the head of the ranked list, a given packet will
be sent to the first destination in the list, if the corresponding
cwnd is open and free space in available in the rbuf.
6. Lastly, the scheduler updates the value of PQU(di) by
using Eq. 1 if transmission to di is successful. The rest of the
destinations will preserve the last updated PQU(di) value.

IV. THE TESTBED SETUP AND CONFIGURATION

Following the guidelines in [10] for real implementation
on physical machines, two HP Compaq PCs are used as a
sender and a receiver respectively. The sender is equipped
with an Intel Core i7 CPU and 16GB DDR3 memory, and
the receiver with an Intel Core i5 processor and 8GB DDR3
memory. Intel I350-T4 quad-port NICs are used. The NICs can
create two topologies: a two-path and a four-path network.
For visualization purpose, only the four-path one is shown
in Fig. 1. The hardware differences of the two machines are
small; the CPUs’ usage is less than 10%. To connect the
PCs, an advanced HP V1910-24G smart switch is installed.
The switch provides 24-Gb ports and a capacity of 56 Gbps
switching throughput. We have implemented CMT-OUT in
FreeBSD amd64. DUMMYNET [11] is used to adjust the
PPCs. NetPerfMeter [12] version 1.3.0 is used for performance
measurement, which is an open-source tool developed for the
analysis of transport layer protocols. In order to measure in-
depth statistics of each path for analysis purpose, we made



(a) Buffer=64KiB. (b) Buffer=128KiB. (c) Buffer=192KiB. (d) Buffer=256KiB.

Fig. 2: Experiment 1 (Two-path Network): Paths with different Bandwidths, Un=0 and NR-SACK=0.

(a) Buffer=64KiB. (b) Buffer=128KiB (c) Buffer=192KiB (d) Buffer=256KiB

Fig. 3: Experiment 1 (Two-path Network): Paths with different Bandwidths, Un=1 and NR-SACK=1.

Fig. 1: Four path testbed setup

slight modifications in the source code of NetPerfMeter. These
modifications do not affect the operation of NetPerfMeter, but
only collect the results path-wise, as by default NetPerfMeter
provides the accumulative results. For the validation of the
testbed setup, we performed extensive testing before the ex-
periments as described in this paper. The testing includes the
comparison of results with NS2.

The size of a data chunk used is 1452 bytes and the MTU
(maximum transmission unit) is set to 1500 bytes. The queue
size at the receiver is fixed at 50 packets. The buffer size varies
from 32KiB to 256KiB (1KiB = 1024bytes). However, the
figures show only results from 64KiB to 256KiB. In all of
the experiments, the buffer size of the sender is equal to the
buffer size of the receiver. The bandwidth and delay values
for the experiments are presented in Table I. The experiments
are performed on both the unordered (Un=1) and ordered
(Un=0) delivery modes. In ordered delivery the transport
layer is responsible for in-sequence data delivery to the upper
layers. However, in unordered mode it is not. When using the
unordered mode, the NR-SACK (Non-Renegable SACK [13])
is set to on for the best performance. Each experiment runs
for 100 seconds. The rest of the parameters are left to their
default values.

V. BANDWIDTH DISSIMILARITY

A. Two-path Experiments

CMT-SCTP/RBS outperformed CMT-OUT in the case
where the paths are similar (Path #2 bandwidth is 2Mbps) and
the buffer is small (Fig. 2a, 2b, 3a and 3b). For similar paths,
CMT-RBS is best because of the fair distribution by RRS.
But over dissimilar paths CMT-RBS is not better than CMT-
OUT. In reality, it is very unlikely that two-paths are similar,
and CMT-OUT is beneficial in such scenarios. When paths
are dissimilar and the buffer is small, CMT-OUT occupies all
of the buffer space immediately by sending more data using
Path #2 (the fast path). The scheduler has to wait for the
outstanding data, which are sent along the slow path. This will
trigger retransmissions very frequently, which degrades the
performance of CMT-OUT (Fig. 2a, when bandwidth on Path
#2 is 2Mbps). In such a situation, retransmissions in CMT-
RBS are fewer due to limited buffer space (after splitting) for
the fast path. When the buffer is small, there is a need for
a scheduler that can combine the features of CMT-RBS and
CMT-OUT in order to handle similar and dissimilar paths.

When the buffer is large (Fig. 2c, 2d, 3c, 3d), CMT-
OUT assigns the transmission opportunity to Path #2 most
of the times, and later to Path #1. CMT-OUT improves the
throughput of CMT-SCTP and CMT-RBS on average by 21%
and 17% approximately when the ordered mode is applied
(Fig. 2). In unordered delivery mode, CMT-OUT improves the
throughput of CMT-SCTP and CMT-RBS on average by 23%
and 26% approximately (Fig. 3). The average improvement is
calculated from the six experiments (32, 64, 96, 128, 192 and
256KiB), when the maximum bandwidth dissimilarity (i.e.,
18Mbps) is applied. CMT-RBS suffers from the RRS, due
to the smaller buffer portion alloted to Path #2, as compared
with the buffer space given to Path #2 when using CMT-SCTP.
With RRS scheduling the CMT-SCTP improves the throughput
because of the larger buffer space for the out-of-sequence



data, where a fast path (Path #2) contributes more (Fig. 3c
and 3d). With a small buffer size, the performance of CMT-
SCTP is limited because of transmissions over the slow path
(Fig.3). When Un=1, the performance is mainly dependent on
the scheduling of transmissions. The improvement of 26% by
CMT-OUT is due to more transmissions over the fast path
(higher bandwidth path), which is required for the scenario
where the receiver is not responsible for the sequenced data to
the upper layers. However, in both CMT-SCTP and CMT-RBS,
lower throughput is due to the equal distribution of the data
over the slow and fast paths. Further, such equal distribution
of data is good for CMT-SCTP compared to CMT-RBS. CMT-
SCTP uses a shared buffer, by which a fast path could occupy
more buffer space than the slow path. On the other hand,
in CMT-RBS the fast path contributes less in improving the
throughput because of buffer splitting.

B. Four-path Experiments

The four-path experiments are done with the delivery option
of unordered data and NR-SACK=1. The performance of
CMT-SCTP is always better when Un=1 than the performance
when using Un=0. But still, with good performance, CMT-
SCTP cannot prevent the rbuf blocking problem. CMT-RBS
performs well in this case, as according to the findings in [4]
buffer splitting with NR-SACK=1 mitigates the sender buffer
blocking problem. When the buffer is small (Fig. 4, when
buffer < 192KiB), CMT-OUT performs the worst because
the scheduler tries to speed up the transmission by giving the
transmission opportunity to Path #4 (higher bandwidth path);
as a result the sender and rbuf get dominated by Path #4.
Therefore, buffer blocking is quickly observed in CMT-OUT
compared to buffer blocking in CMT-SCTP. On the positive
side, buffer blocking in CMT-OUT can be eliminated by the
usage of large buffers.

When buffer is large (Fig. 4, when buffer ≥ 192KiB),
Path #4 can continue to occupy a major portion of the buffer
while giving enough time to the slow paths to deliver out-of-
sequence or missing data to the receiver. By enough time we
mean the receiver can store the out-of-sequence data, which
were received along the fast paths, and can wait for a long time
(of one RTO) for the missing data which were sent along the
slow paths. The retransmissions triggered by RTO are very
rare compared to the fast-retransmissions. Fig. 4, when buffer
≥ 192KiB, proves our argument, where it can be seen that the
throughput of CMT-OUT is greater than CMT-SCTP/RBS.

In the two-path network with a large buffer of 256KiB,
CMT-OUT improves the throughput of CMT-SCTP and CMT-
RBS by 33% and 53% approximately, respectively (Fig. 3d).
A similar experiment on the four-path scenario validates
the two-path unordered scenario results, where CMT-OUT
increases the throughput of CMT-SCTP and CMT-RBS by
approximately 47% and 9%, respectively, when the buffer size
used is 256KiB (Fig. 4).

Fig. 4: Experiment 2 (Four-path Network): Paths with different
bandwidths, Un=1 and NR-SACK=1

TABLE I: Bandwidth (Mbps) and Delay (ms) Values

Experiment 1: Path{#1, #2}={2, 2–20}Mbps, {60}ms
Experiment 2: Path{#1, #2, #3, #4}={2, 5, 10, 20}Mbps, {60}ms
Experiment 3: Path{#1, #2}={20}Mbps, {10, 10–100}ms
Experiment 4: Path{#1, #2, #3, #4}={10}Mbps, {60, 120, 180, 240}ms

VI. DELAY DISSIMILARITY

A. Two-Path Experiments

The results obtained from the two-path network in ordered
mode show that there is not much difference between the
throughputs of CMT-SCTP, CMT-RBS and CMT-OUT (Fig.5a
and 5b). During the experiments, the packets along Path #1
reach the receiver buffer earlier. The CMT-SCTP receiver
replies with a SACK chunk reporting the missing chunks along
Path #2 (slow path). After three SACKs from the receiver,
the sender is required to perform the retransmissions of the
missing data. Due to the simple two-path scenario, CMT-SCTP
maintains the efficiency by intelligent retransmissions (Sec-
tion II). All of the algorithms (CMT-SCTP/RBS/OUT) follow
the same retransmission mechanism. In case of a packet loss,
the RTO based retransmission is the only possibility where
the performance of CMT-SCTP could be further improved by
CMT-RBS/OUT. However, RTO based retransmissions occur
significantly less often than fast-retransmissions. Even after
RTO expiring, CMT-SCTP retransmits on the better of two
paths by using the retransmission policy. To support our
argument, for the similar two-path scenarios with ordered
as well as unordered delivery, the researchers in [10] also
observed a small difference in the throughput of CMT-SCTP
and CMT-RBS. CMT-OUT is not improving the throughput
because the proposed scheduler always directs the sender to
transmit data first on Path #1 (shorter delay path), and then
to Path #2. The sender can transmit on Path #2 if there is
no cwnd or buffer space available for the destination address
along Path #1. So, the outstanding data long Path #1 occupies
most the buffer space. In our observations, the throughput
in CMT-OUT in such situations, where the delay difference
among the paths is large (i.e., 100ms on Path #2) over a limited
buffer, will not be more than the capabilities of the faster
path. It is also noted that, the performance of CMT-OUT is
relatively low when the dissimilarity between Path #1 and Path
#2 is small. Because when the delay dissimilarity is small, the
amount of out-of-sequence data received along Path #2 will
be smaller. Ultimately, the chances of buffer blocking will be
relatively small, which is the main problem with CMT-SCTP.



(a) Buffer=192KiB (b) Buffer=256KiB (c) Buffer=192KiB (d) Buffer=256KiB

Fig. 5: Experiment 3 (Two-path Network): Paths with different Delays. (a,b) Un=0, NR-SACK=0, (c,d) Un=1, NR-SACK=1

(a) Buffer=64KiB (b) Buffer=128KiB. (c) Buffer=192KiB. (d) Buffer=256KiB.

Fig. 6: Experiment 4 (Four-path Network): Paths with different Delays, Un=1 and NR-SACK=1.

The experiments are performed with buffer sizes of 32KiB to
256KiB; all of the results are similar but in Fig. 5 only the
plots of 192KiB and 256KiB are shown.

B. Four-path Experiments
The four-path experiments are performed with Un=1 and

NR-SACK=1. For ordered delivery, the two-path experiments
already proved that CMT-SCTP handles the delay dissimilarity
quite well (Fig.5a and 5b). The scheduling of CMT-OUT over
four-paths has been proved to be able to select the right
path, and the throughput of CMT-OUT is higher than the
CMT-SCTP and CMT-RBS (Fig. 6). On average CMT-OUT
improved the throughput of both CMT-SCTP and CMT-RBS
by 54% approximately. Although Fig. 6 shows only results of
four experiments, the calculation of an average improvement
is done by six experiments of buffer size 32, 64, 96, 128, 192
and 256KiB, respectively. As with the two-path scenario, the
retransmission mechanism was very simple due to the number
of paths. With four paths, CMT-OUT has the right selection of
path for the retransmission, compared to the CMT-SCTP/RBS.
On the other hand, with CMT-OUT when using the unordered
data, Path #1 (fast path) uses most of the buffer resource.

VII. CONCLUSION

CMT-SCTP, due to its features such as multihoming, multi-
streaming and unordered delivery, is a promising protocol for
handling multipath transport. To optimize the performance of
CMT-SCTP over multiple paths of dissimilar characteristics
is challenging, and it is necessary that the issue a proper
scheduling of transmissions for the distribution of data over
the paths be addressed. In this paper, we introduce a new
scheduler for CMT-SCTP, based on the assumption that the
outstanding data is a significant indicator of the path quality.
The OBR technique is used to minimize unfairness over the
use of the buffer resource. Through experiments we showed
that CMT-OUT improved the performance of the state-of-the-
art techniques in most of the given scenarios, particularly

when the dissimilarity between the paths is relatively large.
Currently, we are modifying the flow control of CMT-OUT
by using buffer splitting. Future work should evaluate CMT-
OUT over multiple paths where the packet losses are very
frequent.

REFERENCES

[1] R. Stewart, “Stream control transmission protocol,” IETF, Standards
Track RFC 4960, 2007.

[2] J. R. Iyengar, P. D. Amer, and R. Stewart, “Concurrent multipath transfer
using sctp multihoming over independent end-to-end paths,” Networking,
IEEE/ACM Transactions on, vol. 14, no. 5, pp. 951–964, 2006.

[3] I. J. R, P. D. Amer, and R. Stewart, “Receive buffer blocking in con-
current multipath transfer,” in Global Telecommunications Conference,
2005. GLOBECOM’05. IEEE, vol. 1. IEEE, 2005, pp. 6–pp.

[4] H. Adhari, T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tuxen,
“Evaluation of concurrent multipath transfer over dissimilar paths,” in
WAINA,Workshops of Int. Conf. on. IEEE, 2011, pp. 708–714.

[5] J. R. Iyengar, P. D. Amer, and R. Stewart, “Performance implications
of a bounded receive buffer in concurrent multipath transfer,” Computer
Communications, vol. 30, no. 4, pp. 818–829, 2007.

[6] J. R. Iyengar Janardhan, P. D. Amer, and R. Stewart, “Retransmission
policies for concurrent multipath transfer using sctp multihoming,” in
Networks, 2004.(ICON 2004). Proceedings. 12th IEEE International
Conference on, vol. 2. IEEE, 2004, pp. 713–719.

[7] G. Sarwar, R. Boreli, E. Lochin, A. Mifdaoui, and G. Smith, “Mitigating
receiver’s buffer blocking by delay aware packet scheduling in multipath
data transfer,” in WAINA, Int. Conf. on. IEEE, 2013, pp. 1119–1124.

[8] T. D. Wallace, “Concurrent multipath transfer: Scheduling, modelling,
and congestion window management,” Ph.D. dissertation, The University
of Western Ontario, 2012.

[9] T. Dreibholz, M. Becke, E. P. Rathgeb, and M. Tuxen, “On the use of
concurrent multipath transfer over asymmetric paths,” in GLOBECOM,
IEEE. IEEE, 2010, pp. 1–6.

[10] T. Dreibholz, “Evaluation and optimisation of multi-path transport using
the stream control transmission protocol,” Ph.D. dissertation, Institute
for Computer Science and Business Information Systems, University of
Duisburg-Essen, 2012.

[11] M. Carbone and L. Rizzo, “Dummynet revisited,” ACM SIGCOMM
Computer Communication Review, vol. 40, no. 2, pp. 12–20, 2010.

[12] T. Dreibholz, M. Becke, H. Adhari, and E. P. Rathgeb, “Evaluation of
A New Multipath Congestion Control Scheme using the NetPerfMeter
Tool-Chain,” in 19th IEEE SoftCOM, Hvar/Croatia, Sep. 2011, pp. 1–6.

[13] P. Natarajan, N. Ekiz, E. Yilmaz, P. D. Amer, J. Iyengar, and R. Stewart,
“Non-renegable selective acknowledgments (nr-sacks) for sctp,” in ICNP,
Int. Conf. on. IEEE, 2008, pp. 187–196.


