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Abstract—In a cognitive radio system, licensed primary users
can lease idle spectrum to secondary users for monetary remuner-
ation. Secondary users acquire available spectrum for their data
delivery needs, with the goal of achieving high throughput and
low spectrum charges. Maximizing such a net utility (throughput
utility minus spectrum cost) is a central problem faced by a multi-
hop secondary network. Optimal decision making is challenging,
since it involves multiple data flows, cross-layer coordination,
and economic constraints (budgets of sources). The picture is
further complicated by the inter-play between secondary data
communication and primary spectrum leasing mechanisms. This
work is the first to investigate the full spectrum of socially
optimal secondary user communication. We design a social
welfare maximization framework for multi-session multi-hop
secondary data dissemination based on Lyapunov optimization
techniques. A salient feature of the framework is that it takes
any given primary user mechanism as input, and produces
correspondingly a dynamic, distributed rate control, routing, and
spectrum allocation and pricing protocol that can achieve long-
term maximization of the overall system utility. Through rigorous
theoretical analysis, we prove that our online protocol can achieve
a social welfare that is arbitrarily close to the offline optimum,
with only finite buffer space requirement at each secondary
user, and guarantee of no buffer overflow. Empirical studies are
conducted to examine the performance of the protocol.

I. INTRODUCTION

Cognitive radio techniques have emerged as a promising

approach to more effectively exploit the under-utilized wireless

spectrum, and hence to mitigate the spectrum scarcity problem.

Licensed primary users can periodically pool fallow channel

spectrum for sale to unlicensed secondary users [2], [3], [10].

Monetary payments from secondary users can serve as an

important motivation for primary users to relinquish their

spectrum. A number of market mechanisms, usually in the

form of an auction, have been designed to assist such spectrum

transactions [6], [8], [11], [22], [23], [24]. Secondary users

purchase spectrums for their data delivery needs, with a natural

goal of minimizing spectrum charges while maximizing end-

to-end throughput utility.

When a secondary user network hosts multiple multi-hop

communication sessions, a fundamental problem arises: how

should the secondary users share the available spectrums,

jointly route the traffic from different sessions, and adjust

the end-to-end rates of the sessions, in order to maximize

the overall net utility (end-to-end throughput utility minus

spectrum cost)? The problem is challenging, given that we

aim at a dynamic algorithm with social welfare maximization

guarantee over a long run of the system and under volatile

spectrum occupancy patterns of the primary users as well as

dynamic network connectivity and capacity.

The challenge is further aggravated when we target a

flexible algorithm that can work with any spectrum selling

mechanism at the primary users, and is always able to

produce maximum social welfare for the entire secondary

user community. Current literature [5], [14], [20], [21] on

throughput/utility maximizing cross-layer design in secondary

user networks mostly assume free spectrum-sharing through

opportunistic sensing, but without monetary payments. These

studies are not intended for any specific spectrum selling

mechanism at the primary users, let alone the applicability to

general spectrum selling mechanisms. On the other hand, there

have been studies on primary user mechanism design, e.g.,

spectrum auction mechanisms [6], [8], [11], [22], [23], which

usually assume static routes and data rates among secondary

users, and hence avoid the routing and rate control problems.

The picture becomes even more complicated, but at the same

time more practical if we also consider the budget constraints

at the secondary users. Existing work on spectrum auctions

in cognitive radio networks commonly assume unlimited bud-

gets at the participating secondary users [6], [8], [11], [22],

[23], [24]. In this work, each secondary sender is practically

furnished with a limited average budget, to pay for spectrums

along its data delivery paths towards the destination. A new

dimension of the challenge thus arises on how to dynamically

manage the spectrum sharing and pricing such that the average

costs do not exceed the average budgets, while social welfare

maximization is still guaranteed.

In this work, we design a social welfare optimization frame-

work for multiple-unicast data communication in a multi-hop

secondary user network, which explores the full spectrum of

secondary user communication under any given primary user

mechanism. The framework produces a dynamic, joint rate

control, routing, and spectrum sharing and pricing protocol

for the secondary users to execute in either a centralized or a

distributed fashion. Given any spectrum selling mechanism at

the primary users (e.g., a spectrum auction), which dictates

the costs of the spectrums, the online protocol guarantees

overall net utility maximization over a long running span of

the system. Rooted in Lyapunov optimization theory [16], such

social welfare maximization and the stability of the network

are achieved by dynamic scheduling of transmissions among

packet queues at the secondary users. The contributions of this

work are as follows:

1 We propose a social welfare maximization framework for

multi-hop multi-session unicast communication in secondary

user networks with practical budget constraints, and design a

dynamic, cross-layer optimization protocol that caters to any



spectrum selling mechanism at the primary users.1

2 We rigorously prove that the social welfare achieved by

our dynamic algorithm can be arbitrarily close to the offline

optimum which is derived with complete knowledge of the

system over its long course of running. Our algorithm permits

flexible tradeoffs between (i) optimality and (ii) the required

buffer spaces and the allowed worst-case budget deficits at

the secondary users (i.e., the amount of budget a node bor-

rows from its future income for spectrum purchases). The

optimality can still be guaranteed when dynamic decisions

at each relay node along the unicast paths are made using

delayed information of budget deficits from the source nodes.

Empirical studies are conducted under practical settings to

further examine the algorithm performance and the tradeoffs of

social welfare optimality versus buffer usages and worst-case

budget deficits.

3 For the first time in the literature of Lyapunov optimization,

our dynamic protocol ensures not only finite buffer sizes for

all packet queues, with no-buffer-overflow guarantee, but also

finite sizes of virtual queues, e.g., finite budget deficits, for all

unicast sessions in the worst cases.

The rest of the paper is organized as follows. We discuss

related work in Sec. II, introduce the optimization framework

in Sec. III, give details of the dynamic protocol design in

Sec. IV, evaluate the protocol performance with theoretical

analysis and empirical studies in Sec. V and Sec. VI, respec-

tively, and finally conclude the paper in Sec. VII.

II. RELATED WORK

Spectrum auction [4] is the most commonly adopted spec-

trum selling mechanism by primary users in cognitive radio

networks, because of its fairness and efficiency in spectrum

allocation and pricing. A rich body of work exists on designing

spectrum auction mechanisms with one or multiple of the

following objectives ( [6], [8], [11], [22], [23], [24] and refer-

ences therein): truthfulness, fairness, high revenue for primary

users, high spectrum utilization, and (approximate) optimal

social welfare. Besides auctions, other market mechanisms,

e.g., game-based [18] and contract-based [7] ones, are also

explored for efficient spectrum selling at the primary users.

Most spectrum selling mechanisms assume unlimited budgets,

given data rates and fixed routes of the secondary users. A

recent work of Zhu et al. [24] jointly considers spectrum

auction and routing in multi-hop secondary networks, which

however is only applicable to a specific truthful auction for

spectrum selling without budget concerns.

Shi et al. [20] propose a distributed throughput optimization

algorithm, which iteratively increases date rates for user com-

munication sessions in multi-hop cognitive radio networks.

Feng et al. [5] introduce a two-phase distributed protocol

with primal-dual decomposition. Xue et al. [21] propose a

throughput maximization protocol, under the constraints of

bounded collision rates between secondary and primary users.

1To the best of our knowledge, this is the first work investigating the impact
of spectrum selling mechanisms on protocol design for throughput/utility
maximization in secondary networks.

Li et al. [14] present a cross-layer algorithm maximizing the

throughput utility in a socially selfish secondary network.

These work focus on opportunistic spectrum access without

monetary payments to the primary users, and do not adapt to

the spectrum selling mechanisms at the primary users.

Classic protocol designs based on Lyapunov theory often

employ buffers with infinite sizes [16]. The challenge of using

finite buffers is only being considered recently. Le et al. [13]

investigate the optimal control of a wireless network with a

finite buffer for each by-passing session per relay node; but

an infinite buffer is still necessary at each source node in the

worst cases. Neely [17] presents an opportunistic scheduling

protocol with a bounded-size buffer at each node for each data

session, by simply dropping the packets when a buffer is full.

We propose in our previous work [14] a utility-maximizing

algorithm with finite packet queues but infinite virtual queues.

This work advances the state-of-the-art by providing bounded

sizes for not only each packet queue on each node, but also

for all virtual queues (e.g., budget deficits), while guaranteeing

close-to-optimum social welfare and no buffer-overflow.

III. SYSTEM MODEL AND PRELIMINARIES

We first describe our network model (III-A), the layers of

the network stack under investigation (III-B), and a generic

primary user mechanism (III-C). The budget model at sec-

ondary users will also be explained (III-D).

A. Network Model

Consider a cognitive radio system G = (VP , VS , E) with

a set of primary users VP and a set of secondary users VS ,

distributed in a given geographical area. The secondary users

constitute a multi-hop secondary user network. A directed

edge eij ∈ E implies that node i ∈ VS can transmit directly to

node j ∈ VS , over a given channel. Each primary user v ∈ VP

has a distinct licensed channel. The set of channels is C, and

|C| = |VP |.

A set of unicast sessions M is defined over the secondary

user network. A session m is from source sm ∈ VS to

destination dm ∈ VS , and in general requires multi-hop routing

and relaying, assisted by other secondary users.

We consider a generic interference model. Let I denote the

set of interference relations among potential transmissions in

the system. It includes two types of pairs: (1) (eij , ekl) ∈ I
implies that the two transmissions eij and ekl can not occur

concurrently on the same channel; (2) (vp, eij) ∈ I (with

vp ∈ VP and eij ∈ E) implies that when a primary user vp
is actively using its licensed channel, transmission eij cannot

simultaneously happen at the same channel. We also assume

that each secondary user is equipped with a single radio, such

that it may either transmit or receive data on one channel at

each time. Such a generic model I subsumes most interference

models in the literature, including the node-exclusive model

and the k-hop (k ≥ 1) interference model [19].

Important notations are summarized in Table I.



VP Set of primary users VS Set of secondary users

E Set of links G (V p,V s, ǫ)
C Set, orthogonal channels M Set of unicast sessions

eij Directed i→j link I Set, interference relations

E(·) The expectation U(·) Utility function

sm Source of session m dm Destination of session m

Ci Available channel set at secondary node i

z
(c)
ij (t) Price to relay unit data on channel c over eij in time slot t

zmax Maximum price for spectrum leasing

zmin Minimum price for spectrum leasing

Am(t) Data arrival rate of session m in time slot t

A
(m)
max Maximum data arrival rate of session m

bm(t) Budget arrival rate of session m in time slot t

b
(m)
max Maximum budget arrival rate of session m

rm(t) Admissible data rate of session m in time slot t

ηm(t) Auxiliary variable of session m in time slot t

µ
(m)
ij (t) Binary var: data session m is routed over eij in time slot t?

α
(c)
ij (t) Binary var: channel c is assigned to eij in time slot t?

F
(c)
ij (·) Primary user mechanism: spectrum allocation for α

(c)
ij (t)

S
(c)
ij Set of values for price z

(c)
ij (t) leading to α

(c)
ij (t)

F
(c)−1

ij (·) Primary user mechanism: spectrum prices for S
(c)
ij

Q
(m)
i (t) Data queue of session m on user i in time slot t

q
(m)
i Buffer size for data queue Q

(m)
i of session m on user i

Hm(t) Budget deficit of session m in time slot t

Ym(t) Transport virtual queue of session m at time t

V User-defined positive constant in Lyapunov Optimization

B Quantity defined in Lyapunov Optimization in Sec. IV

TABLE I
LIST OF NOTATIONS.

B. The Three Protocol Layers

1) Transport layer at the sources: At the source of each

unicast session, end-to-end rate control is considered at the

transport layer. Suppose the system runs in a time-slotted

fashion [13], [14], [21]. In each time slot t, a random

number Am(t) ∈ [0, A
(m)
max] of data units are generated at

the application layer of source sm, to be admitted to the

transport layer (we ignore header overhead). For rate control,

let rm(t) ∈ [0, Am(t)] be the amount of data admitted to the

network in a time slot, such that congestion will not occur and

network stability (formally defined in III-E) is achieved.

2) Network layer at each secondary user: Each secondary

user i ∈ VS may receive data from multiple sessions (including

one originating from itself), and makes routing decisions to

forward them toward respective destinations. Each relay node

maintains a packet queue Q
(m)
i , which is a network-layer

buffer, for each session m ∈ M where i is not the destination

dm of the session. Destination dm directly delivers data of

session m to its upper layers without buffering. The queueing

law for each Q
(m)
i is:

Q
(m)
i (t+ 1) =max{Q

(m)
i (t)−

∑

eij∈E

µ
(m)
ij (t), 0}+

∑

eji∈E

µ
(m)
ji (t)

+ 1{i=sm}rm(t), ∀m ∈ M, i ∈ VS, i 6= dm. (1)

Here, µ
(m)
ij (t) ∈ {0, 1} is the amount of data routed over link

eij ∈ E for session m ∈ M in time slot t. We assume that

all transmission links are of equal capacity, and the length of

a time slot is just sufficient for a link to transmit one unit

of data [13], [14], [21]. 1{n=sm} is a binary function, where

1{n=sm} = 1 if n = sm and 0 otherwise. Let non-negative

constant q
(m)
i be the buffer size for queue Q

(m)
i (t). We will

show that our algorithm proposed in Sec. IV guarantees finite

buffer sizes without overflow.

3) MAC layer at each secondary user: Based on routing

decisions from the network layer, a channel allocation and

link scheduling scheme operates at the MAC layer, to schedule

transmissions on each available channel in each time slot.

Let α
(c)
ij (t) ∈ {0, 1} indicate whether link eij ∈ E is

scheduled on channel c ∈ C in t, with 0 for ‘no’ and 1 for

‘yes’. The following constraints apply in each time slot:
∑

c∈C

α
(c)
ij (t) =

∑

m∈M

µ
(m)
ij (t),∀eij ∈ E , (2)

∑

c∈C

[
∑

eij∈E

α
(c)
ij (t) +

∑

eji∈E

α
(c)
ji (t)] ≤ 1, ∀i ∈ VS, (3)

α
(c)
ij (t) + α

(c)
kl (t) ≤ 1, ∀eij , ekl ∈ E , (ekl, eij) ∈ I, c ∈ C, (4)

α
(c)
ij (t) ≤ 1

(c)
ij (t),∀eij ∈ E , c ∈ C, (5)

α
(c)
ij (t) ∈ {0, 1}, ∀eij ∈ E , c ∈ C, (6)

Here 1
(c)
ij (t) is a binary function, where 1

(c)
ij (t) = 1 if channel

c is available to eij in time slot t, and 0 otherwise. Constraint

(2) states that the total amount of data transmitted from i to

j on different channels, in one time slot, should be equal to

the total units of data from all sessions to be routed from

i to j in that time slot. Inequality (3) models the primary

interference constraint: a node can either transmit or receive

on at most one channel in each time slot. Constraints (4) and

(5) model the interference relations in I: the former indicates

that interfering links can not be concurrently active over the

same channel; the latter states that a link transmission over a

given channel is possible only if that channel is available. A

channel c is available to link eij in time slot t if the primary

user vp owning c is not transmitting in t, or no interference

exists between the transmissions from vp and along eij , i.e.,

(vp, eij) 6∈ I .

C. A Generic Primary User Mechanism

Let z
(c)
ij (t) denote the price paid to a primary user for using

channel c ∈ C to transmit one unit of data over link eij ∈ E in

time slot t, by the source of a unicast session. The spectrum

selling decisions at the primary users are in general related to

the prices and the current network status, including network

topology G and interference constraints I . Once the prices

are determined, the primary users can decide a collision-free

channel allocation for the secondary data communication.

In order to derive a generic framework for social wel-

fare maximization, we do not assume a specific pri-

mary user mechanism, but employ a set of functions

F
(c)
ij (G, I, C,Z(t)), ∀eij ∈ E , ∀c ∈ C to characterize the chan-

nel allocation decisions of the primary users. Here, the network

status (G, I, C) and the set of prices Z(t) = {z
(c)
ij (t)|eij ∈

E , c ∈ C} are inputs, and channel allocation decisions are

made as α
(c)
ij (t) = F

(c)
ij (G, I, C,Z(t)), ∀eij ∈ E , ∀c ∈ C. We

assume that the spectrum selling mechanism, i.e., functions

F
(c)
ij (G, I, C,Z(t)), are known to the secondary users. We

use F
(c)
ij

−1
(G, I, C,α(t)) to denote a vector-valued inverse



function of F
(c)
ij (·), which outputs a set of possible val-

ues for price z
(c)
ij (t), and setting z

(c)
ij (t) to any value in

F
(c)
ij

−1
(G, I, C,α(t)), ∀eij ∈ E , ∀c ∈ C, can lead to channel

allocation decisions α(t) = {α
(c)
ij (t)|eij ∈ E , c ∈ C}, given

network status (G, I, C).
Let zmin and zmax be the minimum and maximum spectrum

leasing prices, respectively, of a channel successfully leased in

one time slot. A rational spectrum selling mechanism exhibits

the following two properties:

(i) When a price z
(c)
ij (t) is set to 0, channel c is not leased to

any transmission over link eij in time slot t, since a rational

primary user has no motivation to lease its channel for free,

i.e., ∀eij ∈ E , ∀c ∈ C,

F
(c)
ij (G, I, C,Z(t)) = 0, if z

(c)
ij (t) = 0. (7)

(ii) No charge is incurred on link eij for leasing channel c

in t, unless c is allocated to eij in t (α
(c)
ij (t) = 0) by the

corresponding primary user, i.e., ∀eij ∈ E , ∀c ∈ C,

F
(c)
ij

−1
(G, I,C,α(t)) = {0}, if α

(c)
ij (t) = 0. (8)

D. Budget Model

In each time slot, a random amount of budget bm(t) ∈

[0, b
(m)
max] is provided to a source sm, ∀m ∈ M, to pay for the

spectrum lease (in t and/or later time slots) for transmissions

along all paths from sm to dm. Here, b
(m)
max is the maximum

budget provision rate for session m. A practical implication

of this random budget arrival is that a real-world secondary

user may allocate different budgets for data transmission at

different times. We seek to maximize the social welfare of all

unicast sessions while guaranteeing that each session’s time-

averaged expenditure on spectrum leasing is no larger than the

time-averaged budget provision at its source, i.e.,

lim
T→∞

1

T

T−1
∑

t=0

E(
∑

eij∈E

(µ
(m)
ij (t) ·

∑

c∈C

(α
(c)
ij (t) · z

(c)
ij (t))))

≤ lim
T→∞

1

T

T−1
∑

t=0

E(bm(t)), ∀m ∈M. (9)

Here
∑

eij∈E(µ
(m)
ij (t) ·

∑
c∈C(α

(c)
ij (t) · z

(c)
ij (t))) is the overall

cost on spectrum leasing of data session m during t.

E. Some Definitions and Preliminaries

We conclude this section by introducing some useful defi-

nitions and existing results.

Definition 1: The time averaged value of a time-varying

variable x(t) is denoted by

x̄ = lim
t→∞

1

t

t−1
∑

τ=0

E(x(τ )).

Definition 2 (Queue and Network Stability ): A queue Q
is strongly stable (or stable for short) if and only if

limt→∞ sup 1
t

∑t−1
τ=0 E(Q(τ)) < ∞, where Q(τ) is the queue

size in time slot τ . A network is strongly stable (or stable for

short) if and only if all queues in the network are stable.

Theorem 1 (Necessity for Queue Stability): For any queue

Q with the following queuing law,

Q(t+ 1) = max{Q(t)− b(t), 0}+ a(t),

where a(t) and b(t) are the queue incoming rate and outgoing

rate in time slot t, respectively, the following result holds:

If queue Q is strongly stable, then its average incoming rate

ā = limt→∞
1
t

∑t−1
τ=0 E(a(τ)) is no larger than the average

outgoing rate b̄ = limt→∞
1
t

∑t−1
τ=0 E(b(τ)).

IV. THE DYNAMIC ALGORITHM

We next introduce the social welfare maximization problem

(IV-A). We design a dynamic cross-layer control algorithm

to solve the problem (IV-B,IV-C), and discuss its distributed

implementation (IV-D).

A. Social Welfare Maximization

Our objective is to maximize the overall time-averaged

social welfare of all unicast sessions in the secondary user

network, under given budget constraints and any given spec-

trum selling mechanism at the primary users, while guar-

anteeing network stability. The social welfare is defined as

the summation of the time-averaged throughput utility of all

unicast sessions subtracting the overall time-averaged cost for

spectrum leasing:

φ =
∑

m∈M

U(r̄m)−
∑

c∈C

∑

eij∈E

α
(c)
ij · z

(c)
ij .

Here r̄m is the time-averaged end-to-end data rate of session

m; U(·) is a non-decreasing, differentiable and concave utility

function on r̄m; α
(c)
ij · z

(c)
ij is the time-averaged expense of

using channel c at link eij , among all the sessions.

The social welfare maximization problem then is:
max

rm,µ
(m)
ij

,α
(c)
ij

,z
(c)
ij

φ (10)

s.t. r ∈ Λ, (11)

budget constraints in (9).

Λ is the capacity region and r = (r̄1, . . . , r̄M ) ∈ Λ means that

there exists a set of feasible routing, channel allocation and

pricing strategies, µ
(m)
ij (t), α

(c)
ij (t) and z

(c)
ij (t), ∀eij ∈ E , ∀m ∈

M, ∀c ∈ C, satisfying constraints (2)-(8), which decide a set

of feasible admissible data rates in r, such that all queues in

the network are stable.

B. Modeling Virtual Queues

We apply Lyapunov optimization techniques to design a

dynamic algorithm to solve the social welfare maximization

problem, which decides rm(t), µ
(m)
ij (t), α

(c)
ij (t) and z

(c)
ij (t),

∀eij ∈ E ,m ∈ M, c ∈ C, in each time slot t, and guarantees

that time averages of these quantities maximize the social

welfare. We first introduce two types of virtual queues, for end-

to-end rate control and for the budget constraints, respectively.

Virtual queue for rate control. In the Lyapunov optimization

framework [16], it is difficult to directly maximize a non-

linear function U(r̄m) over a time-averaged quantity r̄m, but

a technique of introducing virtual queues can be applied to

establish a lower bound of U(r̄m): a virtual queue Ym(t) and

an auxiliary variable ηm(t) are modeled and maintained at

source sm, ∀m ∈ M, as follows

Ym(t+ 1) = max{Ym(t)− rm(t), 0}+ ηm(t), (12)



under constraints

0 ≤ ηm(t) ≤ A(m)
max, 0 ≤ rm(t) ≤ Am(t). (13)

The rationale is that, our algorithm seeks to maintain the

stability of Ym(t), and then η̄m ≤ r̄m is guaranteed according

to Theorem 1. Hence U(η̄m) is a lower bound of U(r̄m), and

we can maximize U(η̄m) in order to approximately maximize

U(r̄m) in (10).

Virtual queue for satisfying budget constraint. To ensure

the budget constraints in (9) by controlling decision variables

in each time slot, we introduce another virtual queue Hm(t)
at each source sm, with queueing law:

Hm(t+ 1) =max{Hm(t)− bm(t), 0}

+
∑

eij∈E

(µ
(m)
ij (t) ·

∑

c∈C

(α
(c)
ij (t) · z

(c)
ij (t))), ∀m ∈M.

(14)

The queue backlog Hm(t+1) represents the cumulative budget

deficit of session m at the beginning of time slot t+1, i.e., the

total expense incurred by spectrum leasing of session m in t

(
∑

eij∈E µ
(m)
ij (t) ·

∑
c∈C α

(c)
ij (t) · z

(c)
ij (t)) minus the amount of

injected budget at the session’s source in t (bm(t)), plus any

budget deficit carried forward from t (Hm(t)).
If this queue is stable, we can claim that the time-averaged

spectrum charge is no larger than the time-average budget

provision in each session, i.e., constraints in (9) are satisfied,

according to Theorem 1.

C. Dynamic Algorithm Design

In our dynamic algorithm, three types of queues

Θ(t) = {Q(t),H(t),Y(t)} are maintained, with Q(t) =

{Q
(m)
i , ∀m ∈ M, i ∈ VS , i 6= dm}, H(t) = {Hm(t), ∀m ∈

M} and Y(t) = {Ym(t), ∀m ∈ M}. Define the Lyapunov

function [16] as

L(t) =
1

2
[
∑

m∈M

∑

i∈VS ,i6=dm

q
(m)
sm · (Q

(m)
i (t))2

q
(m)
i

+
∑

m∈M

(Hm(t))2

+
∑

m∈M

(Ym(t))2].

The one-slot conditional Lyapunov drift is defined as:

∆(t) = L(t+ 1) − L(t).

Squaring Eqn. (1), (12) and (14), we derive the following

inequality (detailed steps in our technical report [15] ):

∆(t)− V · (
∑

m∈M

U(ηm(t))−
∑

c∈C

∑

eij∈E

α
(c)
ij (t) · z

(c)
ij (t))

≤B −
∑

m∈M

bm(t) ·Hm(t)−Ψ1(t)−Ψ2(t)−Ψ3(t), (15)

where V is a user-defined positive constant that

can be interpreted as the weight of utility, and

B = 1
2

∑

m∈M[
∑

i∈VS ,i6=dm

q
(m)
sm

q
(m)
i

[(1{i=sm}A
(m)
max + 1)2 +

1] + (b
(m)
max)

2 + ( |VS |
2

zmax)
2 + 2(A

(m)
max)

2] is a constant value.

Ψ1(t), Ψ2(t), Ψ3(t) are as follows:

Ψ1(t) =
∑

m∈M

(V · U(ηm(t))− ηm(t) · Ym(t)),

which is only related to auxiliary variables ηm(t), ∀m ∈ M;

Ψ2(t) =
∑

m∈M

rm(t) · (Ym(t)−Q(m)
sm (t)),

which is only related to rate control variables rm(t), ∀m ∈ M;

Ψ3(t) =
∑

eij∈E

[

∑

m∈M

µ
(m)
ij (t) ·W

(m)
ij (t)− V

∑

c∈C

α
(c)
ij (t) · z

(c)
ij (t)

]

,

with

W
(m)
ij (t) =q(m)

sm · [
Q

(m)
i (t)

q
(m)
i

−
Q

(m)
j (t)

q
(m)
j

]−Hm(t) ·
∑

c∈C

α
(c)
ij (t) · z

(c)
ij (t),

(16)

which is related to the routing, channel allocation and pricing

variables µ
(m)
ij (t), α

(c)
ij (t) and z

(c)
ij (t), ∀eij ∈ E ,m ∈ M, c ∈ C.

Based on the drift-plus-penalty framework [16], we de-

rive the following dynamic algorithm that observes queues

Θ(t) = {Q(t),H(t),Y(t)} at each time slot t and makes

control decisions that minimize the RHS of (15), such that a

lower bound for the social welfare in (10) is maximized. Since

B−
∑

m∈M bm(t) ·Hm(t) in the RHS of inequality (15) is a

constant in each time slot, we should maximize Ψ1(t), Ψ2(t)
and Ψ3(t), as follows.

End-to-End Rate Control: At each source sm, the admissible

end-to-end rates rm(t)’s are computed by solving

max
ηm

Ψ1(t) (17)

s.t. 0 ≤ ηm(t) ≤ A(m)
max, ∀m ∈M,

and,
max
rm

Ψ2(t) (18)

s.t. 0 ≤ rm(t) ≤ Am(t), ∀m ∈M.

(17) is a convex optimization problem, and (18) is linear

maximization. We can compute the optimal solutions of ηm(t)
and rm(t) as follows:

ηm(t) = max{min{U ′−1(
Ym(t)

V
), A(m)

max}, 0}, (19)

rm(t) =

{

Am(t) Ym(t)−Q
(m)
sm (t) > 0

0 otherwise.
(20)

Here U ′−1(·) is the inverse function of U ′(·), the first order

derivative of function U(·).

Joint Routing, Channel Allocation and Pricing: In the

secondary user network, routing, channel allocation and pric-

ing decisions, µ
(m)
ij (t), α

(c)
ij (t) and z

(c)
ij (t), ∀eij ∈ E , ∀m ∈

M, c ∈ C, are made by solving

max
µ
(m)
ij

,α
(c)
ij

,zc
ij

Ψ3(t)

s.t. Constraints (2)(3)(4)(5)(6)(7)(8).

This problem can be simplified into a pure channel alloca-

tion problem related only to variables α
(c)
ij (t), as follows:

Constraint (3) implies that at most one channel is assigned

to each link during each time slot, i.e.,
∑

c∈C α
(c)
ij (t) ≤ 1. Con-

straint (2) further leads to
∑

m∈M µ
(m)
ij (t) =

∑

c∈C α
(c)
ij (t) ≤ 1.

To maximize Ψ3(t), if channel c is allocated for transmission

over link eij in t (i.e., α
(c)
ij (t) = 1 and α

(c′)
ij (t) = 0, ∀c′ 6= c),

a transmission of data in session m̂
(c)
ij should be sched-

uled, the session associated with the largest weight W
(m)
ij (t)

(Eqn. (16)):

m̂
(c)
ij =arg max

m∈M,i6=dm
{q(m)

sm [
Q

(m)
i (t)

q
(m)
i

−
Q

(m)
j (t)

q
(m)
j

]−Hm(t) · z
(c)
ij (t)}.

(21)
Hence, m̂

(c)
ij is a function of z

(c)
ij (t).



Then the joint routing, channel allocation and pricing prob-

lem can be reduced to the following joint channel allocation

and pricing problem:

max
α
(c)
ij

,z
(c)
ij

Ψ4(t) =
∑

eij∈E

∑

c∈C

α
(c)
ij (t) ·

[

W
(m̂

(c)
ij

)

ij (t)− V · z
(c)
ij (t)

]

s.t. Constraints (3)(4)(5)(6)(7)(8).

Given any feasible channel allocation decisions α(t) sat-

isfying constraints (3)–(8), to maximize Ψ4(t), the term

W
(m̂

(c)
ij

)

ij (t)−V ·z
(c)
ij (t) should be maximized at each α

(c)
ij (t) =

1. We can decide such a price z
(c)
ij (t) by

z
(c)
ij (t) = arg max

ξ∈S
(c)
ij

{W
(m̂

(c)
ij

)

ij (t)− V · ξ}.

Here S
(c)
ij = F

(c)
ij

−1
(G, I, C,α(t)) denotes the set of possible

values of price z
(c)
ij (t) leading to the same allocation α(t).

Based on the above, the joint channel allocation and pricing

problem can be further reduced to a pure channel allocation

problem, decided by α
(c)
ij (t)’s only:

max
α
(c)
ij

Ψ5(t) =
∑

eij∈E

∑

c∈C

α
(c)
ij (t) · max

ξ∈S
(c)
ij

{

W
(m̂

(c)
ij

)

ij (t)− V · ξ

}

(22)

s.t. Constraints (3)(4)(5)(6).

Given a specific primary user mechanism represented by

F
(c)
ij (·), ∀eij ∈ E , c ∈ C, the channel allocation decisions

α
(c)
ij (t)’s can be derived by solving the above optimization. We

can then make the pricing and routing decisions as follows:

z
(c)
ij (t) =







argmax
ξ∈S

(c)
ij

{W
(m̂

(c)
ij

)

ij (t)− V · ξ} if α
(c)
ij (t) = 1

0 otherwise

,

∀eij ∈ E , c ∈ C, (23)

µ
(m)
ij (t) =

{

∑

c∈C α
(c)
ij (t) if m = m̂

(c)
ij

0 otherwise
, ∀eij ∈ E ,m ∈M.

(24)
The sketch of our dynamic, social welfare maximization

algorithm is summarized in Algorithm 1. The implication of

the joint routing, channel allocation and pricing is to prioritize

transmissions of data in sessions with low budget deficits

(backlog of virtual queue Hm(t)), from a more congested node

(with high buffer occupancy ratio Q
(m)
i (t)/q

(m)
i ) to a less con-

gested node (with low buffer occupancy ratio Q
(m)
j (t)/q

(m)
j ),

using a channel with a low leasing price.

D. Distributed Implementation with Spectrum Auctions at

Primary Users

We next discuss a distributed protocol to solve the social

welfare maximization problem in (10), given a spectrum

auction mechanism at the primary users. Auctions are a typical

category of spectrum selling mechanisms, which has been

extensively studied in recent literature [6], [8], [11], [22], [23].

In a typical spectrum auction, secondary users bid for idle

channels at the primary users, who may greedily allocate the

channels to maximize their revenues based on the bidding

prices, i.e., by solving an optimization problem as follows:

max
α
(c)
ij

Ω(t) =
∑

eij∈E

∑

c∈C

α
(c)
ij (t) · z

(c)
ij (t) (25)

s.t. Constraints (3)(4)(5)(6),

Algorithm 1 Dynamic Social Welfare Maximization Algo-

rithm in Time Slot t

Input: Q
(m)
i (t), Ym(t), Hm(t), Am(t), A

(m)
max, bm(t), b

(m)
max, V ,

q
(m)
i (∀i ∈ VS,∀m ∈ M).

Output: rm(t), ηm(t), α
(c)
ij (t), z

(c)
ij (t), µ

(m)
ij (t) (∀i ∈ VS,∀m ∈

M,∀c ∈ C,∀eij ∈ E).

1: End-to-End Rate Control: For each session m ∈M, the end-
to-end rate rm(t) and auxiliary variable ηm(t) are decided at
source sm with Eqn. (20) and (19), respectively.

2: Joint Routing, Channel Allocation and Pricing: For each link

eij ∈ E and channel c ∈ C, calculate m̂
(c)
ij with Eqn. (21).

Derive channel allocation α
(c)
ij (t) and pricing variables

z
(c)
ij (t),∀eii ∈ E , c ∈ C, by solving problem (22) and Eqn. (23),

respectively, or using our distributed Alg. 2 (in case that primary
users use spectrum auctions).

Decide routing decisions µ
(m)
ij (t), ∀eij ∈ E ,m ∈ M, with

Eqn. (24).

3: Update queues Q
(m)
i (t+ 1), Ym(t+ 1), and Hm(t+ 1) based

on queuing law (1), (12), and (14), respectively.

where the constraints ensure collision-free channel allocation.

z
(c)
ij (t)’s are known values to primary users as the bidding

prices. α
(c)
ij (t) · z

(c)
ij (t) indicates the revenue gained by a

primary user by leasing channel c to link eij . We next show

how the secondary users set the bidding prices, i.e., Z(t) =

{z
(c)
ij (t)|eij ∈ E , c ∈ C}, in order to get their desired channel

allocation decisions, i.e., α(t) = {α
(c)
ij (t)|eij ∈ E , c ∈ C}.

When the primary users apply the above auction mecha-

nism to decide collision-free channel allocation α
(c)
ij (t)’s with

given prices z
(c)
ij (t)’s, the following observations hold: (1)

α
(c)
ij (t) = 0 if z

(c)
ij (t) = 0; (2) if setting α

(c)
ij (t) = 1 when

z
(c)
ij (t) ∈ [zmin, zmax] and 0 otherwise, generates collision-

free channel allocation decisions α(t) that satisfy constraints

(3)-(6), then Ω(t) is maximized at that α(t). The rationale is,

for the collision-free channel allocation α(t), we know that

i) changing any α
(c)
ij (t) from 1 to 0 decreases Ω(t), since we

already have z
(c)
ij (t) ∈ [zmin, zmax] and zmin > 0, and ii)

changing any α
(c)
ij (t) from 0 to 1 does not change Ω(t), since

such an α
(c)
ij (t) corresponds to z

(c)
ij (t) = 0.

Hence, if a set of collision-free channel allocation decisions

α(t) are expected, the secondary users just need to set z
(c)
ij (t)’s

as follows, in order to achieve this α(t) as the result of

spectrum auction in (25): z
(c)
ij (t) can be set to any value in

[zmin, zmax] to achieve α
(c)
ij (t) = 1, and set to 0 to achieve

α
(c)
ij (t) = 0. Therefore, in case of this auction mechanism,

the set of possible values for z
(c)
ij (t) given α

(c)
ij (t) = 1 is

F
(c)
ij

−1
(G, I, C,α(t))= [zmin, zmax].

Now consider the channel pricing equation (23) in the

generic Algorithm 1. When an auction mechanism is used at

the primary users, we have:

z
(c)
ij (t) =

{

zmin if α
(c)
ij (t) is expected as 1

0 otherwise
,∀eij ∈ E , c ∈ C,

(26)

since now we have S
(c)
ij = [zmin, zmax] if α

(c)
ij (t)= 1, and



W
(m̂

(c)
ij

)

ij (t)−V · ξ is decreasing with the increase of ξ. Hence,

the channel allocation problem in (22) to decide the secondary

users’ expected α(t), in case of the spectrum auction mecha-

nism at the primary users, is simplified to:

max
z
(c)
ij

Ψ6(t) =
∑

eij∈E

∑

c∈C

α
(c)
ij (t) · (W

(m̂ij)

ij (t)− V · zmin) (27)

s.t. Constraints (3)(4)(5)(6),

with
m̂ij =arg max

m∈M,i6=dm
{q(m)

sm [
Q

(m)
i (t)

q
(m)
i

−
Q

(m)
j (t)

q
(m)
j

]−Hm(t) · zmin}.

(28)
The resulting channel allocation problem (27) is a 0-1

integer program. A centralized solution with (1−δ)-optimality

can be obtained using the branch-and-bound method [12],

where δ ∈ (0, 1) is a pre-defined solution accuracy. The

bidding prices z
(c)
ij (t), ∀eij ∈ E , c ∈ C are then determined

by Eqn. (26) with the expected α(t), and proposed to primary

users. A nice property produced in case of this specific primary

user auction mechanism is that, the expected channel alloca-

tions α(t) based on the solution to problem (27) is the same

as that to the spectrum auction problem (25) at the primary

users, based on the above discussion and the fact that the

expected α(t) are collision-free. That is, using spectrum prices

by Eqn. (26) and solving problem (27), spectrum auctions at

the primary users lead to exactly the same channel allocation

decisions, as desired by the secondary users to maximize their

social welfare.

We next propose a distributed implementation to solve

the channel allocation problem in (27) and determine the

bidding prices at each secondary user, as given in Algorithm

2. It is worth noting that, for Algorithm 1, i) the end-to-

end rate control is already a distributed solution, since each

auxiliary variable ηm(t) and rate control variable rm(t) of

session m ∈ M can be derived with Eqn. (19) and (20),

respectively, on source node sm based on its local queues

Ym(t) and Q
(m)
sm (t); ii) each channel pricing variable z

(c)
ij (t),

∀eij ∈ E , c ∈ C, can be assigned with Eqn. (26) if the expected

value of α
(c)
ij (t) is given; and iii) for each link eij ∈ E ,

each routing variable µ
(m)
ij (t), ∀m ∈ M can be decided in

a distributed fashion with Eqn. (24) based on packet queue

backlogs on node i and j, and budget deficit of session m,

if the expected channel allocation decisions α
(c)
ij (t) on each

channel c ∈ C are known. Thus, if the channel allocation

problem in (27) is solved in a decentralized fashion, the entire

dynamic algorithm with joint rate control, routing, and channel

allocation and pricing has a distributed implementation.

In the distributed channel allocation and pricing protocol,

we refer to each link eij ∈ E as a “local link” of user i, and

each link ekl as an “interfering link” of link eij if we have

either of (eij , ekl) ∈ I , k = j, l = i or l = j. The sender of

an interfering link of eij is an “interferer” of link eij .

Each node i maintains an available channel set Ci over

time. The weight of each local link eij is calculated as wij =

W
(m̂ij)
ij (t)− V · zmin based on Eqn. (16) and (28).

Each secondary user i greedily bids for one available chan-

nel, randomly selected from the commonly available channel

set of node i and node j, with price zmin for a link eij
satisfying the three conditions in step 2 of Algorithm 2.

After channel c receiving a bid for link eij , each interferer

of link eij is informed, which will exclude the channel from

their available sets and further propagate the information. The

bidding price z
(c)
ij (t) for channel c over link eij is sent to

the primary users for spectrum auction. The algorithm ends

here at node i and j for the current time slot, while each

non-scheduled node will continue with the above until either

scheduled or with empty available channel set for each of its

local links.

We will show in Sec. VI that the social welfare of the

distributed protocol is close to that achieved by the centralized

branch-and-bound channel allocation method.

Algorithm 2 Distributed Channel Allocation and Pricing

Protocol at Secondary User i in Time Slot t

Input: Ci, Q
(m)
i (t), Hm(t), q

(m)
sm , and q

(m)
i (∀m ∈ M)

Output: z
(c)
ij (t) and expected α

(c)
ij (t) (∀eij ∈ E , c ∈ C)

1: Initialization
- Initialize channel pricing and expected channel allocation

variables z
(c)
ij (t)← 0, α

(c)
ij (t)← 0,∀eij ∈ E , c ∈ C;

- Obtain available channel set Cj and queue sizes

Q
(m)
j (t), ∀m ∈ M from receiver j of each local eij ;

- Calculate weight wij = W
(m̂ij)

ij (t) − V · zmin based on
Eqn. (16) and (28); propagate wij and commonly available
channel set Ci

⋂

Cj for each local eij to its interferers;
2: Channel pricing: If local link eij satisfies: (1) Ci

⋂

Cj is not
empty; (2) wij > 0 and is largest among wlk on its interfering
links elk; (3) wij is the largest among weights on all those
local links at node i, which have the largest weights among
their respective interfering links as well.
Randomly select c ∈ Ci

⋂

Cj and bid it for eij by setting

z
(c)
ij (t) = zmin and α

(c)
ij (t) = 1; inform each interferer of

eij about bidding and expected channel allocation, send bidding

price z
(c)
ij (t) to primary users, and end the algorithm here and

that at node j.
3: Information update: Upon receiving a channel bidding decision

and expected channel allocation, update available channel sets
for local links and convey updates to interferers of local links.

4: The algorithm ends if either the available channel set is empty
for each local link or node i is scheduled as a receiver by some
other node; Otherwise, go to step 2.

On Practical implementation. Similar to common practices

[2], [3], [14], a Common Control Channel (CCC) defined

on an unlicensed spectrum available to all secondary users

is utilized to propagate the control messages, e.g., queue

backlogs, common available channel sets and weights for

each link, and bidding decisions. The interference relationship

between link pairs are also derived by sending pilot bits and

detecting collisions over CCC.

Another concern is that Algorithm 1 makes joint routing,

channel allocation and pricing decisions based on the accurate

lengths of virtual queues Hm(t), ∀m ∈ M. In a distributed

implementation of the algorithm, Hm(t) is maintained at

source sm, and may not be immediately available at each relay

node of session m. Therefore, it is likely that relay nodes

have to make decisions in time slot t based on delayed queue



backlog information Hm(t−T ) with T > 0. We will show in

Sec. V that even in this case, our algorithm can still achieve

a social welfare arbitrarily close to the offline optimum when

V → ∞.

V. PERFORMANCE ANALYSIS

We now analyze the algorithm presented in Algorithm 1.

We prove that our algorithm achieves approximately optimal

social welfare, while guaranteeing finitely bounded buffer sizes

at all nodes without overflow.

Theorem 2 (Finite Buffer without Overflow): For each data

session m ∈ M, define

Y (m)
max , V U ′(0) + A(m)

max, q(m)
sm , V U ′(0) + 2A(m)

max + 1,

H(m)
max , (V U ′(0) + 2A(m)

max + 1)/zmin +
|VS |

2
· zmax.

Queue sizes Ym(t), Q
(m)
sm (t), Hm(t), and Q

(m)
i (t) (∀i 6= sm,

i 6= dm) are upper-bounded by buffer sizes Y
(m)
max, q

(m)
sm , H

(m)
max,

and any given non-negative q
(m)
i , respectively, without buffer

overflow, i.e., Ym(t) ≤ Y
(m)
max, Q

(m)
sm (t) ≤ q

(m)
sm , Hm(t) ≤

H
(m)
max, and Q

(m)
i (t) ≤ q

(m)
i in each time slot t.

The theorem can be proven by induction. Detailed proofs

are included in our technical report [15].

Theorem 3 (Social Welfare Optimality): The social welfare

achieved by Algorithm 1 is within a constant gap B
V

from the

optimum social welfare φ∗—the offline optimum derived by

an algorithm with complete information of the system over a

long run, i.e.,
φ ≥ φ∗ −

B

V
,

and all queues in the network are stable as in Theorem 2. Here

B and V are constants defined in Sec. IV.

The detailed proof is given in our technical report [15].

Theorem 4 (Finite Buffer with Delayed Information):

Suppose that the maximum delay for information of virtual

queue length Hm(t) at source sm of session m, ∀m ∈ M, to

propagate to each secondary user, is T time slots. For each

session m ∈ M, define

H(m)′

max , (V U ′(0) + 2A(m)
max + 1)/zmin + (T + 1) ·

|VS|

2
· zmax.

Queue sizes Ym(t), Q
(m)
sm (t), Hm(t), and Q

(m)
i (t) (for all i 6=

sm and i 6= dm) are upper-bounded by buffer sizes Y
(m)
max,

q
(m)
sm , H

(m)′

max , and any given non-negative q
(m)
i , respectively,

without buffer overflow, i.e., Ym(t) ≤ Y
(m)
max, Q

(m)
sm (t) ≤ q

(m)
sm ,

Hm(t) ≤ H
(m)′

max , and Q
(m)
i (t) ≤ q

(m)
i in each time slot t.

The theorem can also be proven by induction, with detailed

proofs in our technical report [15].

Theorem 5 (Optimality with Delayed Information):

Suppose that the maximum delay for information of virtual

queue length Hm(t) at source sm of session m, ∀m ∈ M,

to arrive at each secondary user, is T time slots. The social

welfare achieved by Algorithm 1 is within a constant gap
B+B2·T

V
from the optimum social welfare φ∗, i.e.,

φ ≥ φ∗ −
B +B2 · T

V
,

and all queues in the network are stable as in Theorem 4,

where B2 = maxm∈M{b
(m)
max} ·

|VS|
2 ·zmax+( |VS |

2 )2 · (zmax)
2

is a constant. B and V are constants defined in Sec. IV.

The proof is similar to that of Theorem 3, details can be found

in the technical report [15].

Corollary 1: The social welfare achieved with Algorithm

1 can be arbitrarily close to the offline maximum φ∗, when

V → ∞ and q
(m)
i ∝ V, ∀m ∈ M, i ∈ VS , i 6= dm.

Remarks: Since B/V and (B + B2 · T )/V are inversely

proportional to V while q
(m)
sm , q

(m)
i (with Corollary 1), Y

(m)
max,

H
(m)
max and H

(m)′

max are proportional to V (∀m ∈ M, i 6= dm),

a tradeoff exists between (i) social welfare optimality, i.e.,

constant gap B/V or (B +B2 · T )/V , and (ii) buffer usages,

i.e., Y
(m)
max, q

(m)
sm and q

(m)
i (∀m ∈ M, i 6= dm), and allowed

worst-case budget deficits, i.e., H
(m)
max or H

(m)′

max .

VI. EMPIRICAL STUDIES

We evaluate our proposed algorithms through simulations,

incorporating a spectrum auction as the primary users’ mech-

anism. The social welfare, achieved by the distributed im-

plementation, is compared to that of a centralized algorithm

following Algorithm 1 (proven to be close to the offline

optimum) under various patterns of data arrival and budget

provision. We also examine the tradeoff between (i) social

welfare, and (ii) buffer sizes and budget deficits, by varying

the value of V .

A. Simulation Setup

We experiment with networks of 20 secondary users and

4 primary users uniformly randomly distributed in a square

of 10, 000 m2. There are 5 unicast sessions, with randomly

chosen sources and destinations among the secondary users.

The maximum data arrival and budget provision rates for each

session, Amax and bmax, are chosen from {0.5, 1.0, 1.5, 2.0}
and {0.1, 0.15, 0.2, 0.25}, respectively. The idle probability

of primary users follows a uniform distribution between 0 and

1, with an expectation of 0.7 in each time slot. The protocol

interference model [9] is employed, in which a transmission

is successful if a receiver is within the transmission range

of its sender and outside of the interference range of other

concurrent senders. Each primary or secondary node has a

transmission range and an interference range of 30 meters.

The minimum price for spectrum leasing zmin is set to 0.1.

Parameter V is chosen among 500, 1000 and 2000. In the

centralized Algorithm 1, the 0-1 program (27) is solved by

the glpk tool kit [1] in each time slot. The throughput utility

function is U(x) = log(x + 1). All our results presented are

the average of 1000 trials, each of which runs the algorithms

for a duration of T = [1, 106] (time slots).

B. Social Welfare with Centralized and Distributed Algorithms

We compare the social welfare achieved by the centralized

and distributed algorithms in Algorithm 1, and Algorithm 2,

respectively. V is set to 2000. In Fig. 1(a), we fix the maximum

budget provision rate bmax, but vary the maximum data arrival

rates Amax; in Fig. 1(b), the maximum data arrival rate is

fixed while the maximum budget arrival rate varies. The buffer

sizes are set following q
(m)
i = V/10, ∀i ∈ VS ,m ∈ M, i 6=

sm, i 6= dm. We can observe that the social welfare achieved



with the distributed algorithm is close to that achieved by the

centralized algorithm under each setting.
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(a) V = 2000, bmax = 0.25.
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(b) V = 2000, Amax = 2.0.

Fig. 1. Social welfare: centralized algorithm vs. distributed algorithm.

C. Impact of V
According to Corollary 1 in Sec. V, different values of V

achieve different tradeoffs between the social welfare and the

buffer usage at the nodes. With the increase of V , the social

welfare by our algorithm can be arbitrarily close to the offline

maximum, while the buffer size at each secondary user is

proportional to V .

500 1000 2000
0

0.05

0.1

0.15

0.2

0.25

V

S
oc

ia
l w

el
fa

re

Centralized
Distributed

(a) Social welfare.
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(d) Average size of all queues H.

Fig. 2. Tradeoff between social welfare and buffer usage with different V ’s.

In the experiments in Fig. 2, Amax and bmax are set to 2.0
and 0.25, respectively. The social welfare increases with the

increase of V , and stabilizes when V is larger than 1000. On

the other hand, the average size of all packet queues Q =

{Q
(m)
i , ∀m ∈ M, i ∈ VS , i 6= dm}, the average size of all

virtual queues for budget deficits H = {Hm, ∀m ∈ M}, and

the average size of all virtual queues Y = {Ym, ∀m ∈ M}
increase proportionally with the increase of V in Fig. 2(b)-

2(d). All these validate our analysis in Sec. V.

VII. CONCLUSION AND REMARKS

This paper proposes a social welfare maximization frame-

work for multi-session multi-hop data communication in sec-

ondary user networks where the secondary users have practical

budget constraints for spectrum purchase. Given any spectrum

selling mechanism of the primary users, a dynamic, joint rate

control, routing, channel allocation and pricing protocol is

derived for secondary users to make socially optimal decisions

of spectrum purchase and data delivery at any given time.

We also design a practical distributed implementation in the

case where spectrum auction is the assumed mechanism of

the primary users. Rigorous theoretical analyses demonstrate

that the proposed dynamic protocol, regardless of whether

the information from other nodes is timely or delayed, can

achieve a time-averaged social welfare (throughput minus cost)

among all secondary users that is arbitrarily close to the offline

optimum. The analyses also show nice guarantees of finite

buffer sizes for all queues without buffer overflow, as well

as bounded budget deficits in the worst cases. All these are

further verified using simulations under realistic settings.
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