
Moving Big Data to The Cloud
Linquan Zhang∗, Chuan Wu∗, Zongpeng Li†, Chuanxiong Guo‡, Minghua Chen§ and Francis C.M. Lau∗

∗The University of Hong Kong, Hong Kong †University of Calgary, Canada
‡Microsoft Research Asia, China §The Chinese University of Hong Kong, Hong Kong

Abstract—Cloud computing, rapidly emerging as a new com-
putation paradigm, provides agile and scalable resource access
in a utility-like fashion, especially for the processing of big data.
An important open issue here is how to efficiently move the data,
from different geographical locations over time, into a cloud
for effective processing. The de facto approach of hard drive
shipping is not flexible, nor secure. This work studies timely,
cost-minimizing upload of massive, dynamically-generated, geo-
dispersed data into the cloud, for processing using a MapReduce-
like framework. Targeting at a cloud encompassing disparate
data centers, we model a cost-minimizing data migration prob-
lem, and propose two online algorithms, for optimizing at any
given time the choice of the data center for data aggregation
and processing, as well as the routes for transmitting data
there. The first is an online lazy migration (OLM) algorithm
achieving a competitive ratio of as low as 2.55, under typical
system settings. The second is a randomized fixed horizon control
(RFHC) algorithm achieving a competitive ratio of 1+ 1

l+1
κ
λ

with
a lookahead window of l, where κ and λ are system parameters
of similar magnitude.

I. INTRODUCTION

The cloud computing paradigm enables rapid on-demand
provisioning of server resources (CPU, storage, bandwidth)
to users, with minimal management efforts. Recent cloud
platforms, as exemplified by Amazon EC2 and S3, Microsoft
Azure, Google App Engine, Rackspace, etc., organize a shared
pool of servers from multiple data centers, and serve their users
using virtualization technologies.

The elastic and on-demand nature of resource provisioning
makes a cloud platform attractive for the execution of various
applications, especially computation-intensive ones [1]. More
and more data-intensive (big data) applications, e.g., Facebook,
Twitter, and big data analytics applications, such as the Human
Genome Project [2], are relying on the clouds for processing
and analyzing their petabyte-scale data sets, using a computing
framework such as MapReduce and Hadoop [3].

An important issue however has largely been left out in this
respect: How does one move the massive amounts of data into
a cloud, in the very first place? The current practice is to copy
the data into large hard drives for physical transportation to
the data center [4], or even to move entire machines [5]. Such
physical transportation incurs undesirable delay and possible
service downtime, while outputs of the data analysis are often
needed to be presented to users in the most timely fashion
[5]. It is also less secure, given that the hard drives are prone

The research was supported in part by Hong Kong RGC General Re-
search Fund (717812, 411209, 411010, and 411011), a China 973 Program
(2012CB315904), an Area of Excellence Grant (AoE/E-02/08), and two gift
grants from Microsoft and Cisco.

to infection of malicious programs and damages from road
accidents. A safer and more flexible data migration strategy is
in need, to minimize any potential service downtime.

The challenge escalates when we consider that data are
dynamically and continuously produced, from different ge-
ographical locations, e.g., astronomical data from disparate
observatories [6], user data from different Facebook front-end
servers. For dynamically-generated data, an efficient online
algorithm is desired, for timely guiding the transfer of data
into the cloud over time; for geo-dispersed data sets, we wish
to select the best data center to aggregate all data onto (e.g.,
Amazon Elastic MapReduce launches all processing nodes in
the same EC2 Availability Zone [7]), given that a MapReduce-
like framework is most efficient when data to be processed
are all in one place, and not across data centers due to the
enormous overhead of inter-data center data moving in the
stage of shuffle and reduce [8].

As the first dedicated effort in the cloud computing lit-
erature, this work studies timely, cost-minimizing migration
of massive amounts of dynamically-generated, geo-dispersed
data into the cloud, for processing using a MapReduce-like
framework. Targeting a typical cloud platform that encom-
passes disparate data centers of different resource charges, we
carefully model the cost-minimizing data migration problem,
and propose efficient online algorithms, which optimize the
routes of data into the cloud and the choice of the data center
for data aggregation and processing, at any give time. Our
detailed contributions are as follows:
. We analyze the detailed cost composition and identify the
performance bottleneck for moving data into the cloud, and
formulate an offline optimal data migration problem. The
optimization computes optimal data routing and aggregation
strategies at any given time, and minimizes the overall system
cost and data transfer delay, over a long run of the system.

. Two online algorithms are proposed to practically guide
data migration over time: an online lazy migration (OLM)
algorithm and a randomized fixed horizon control (RFHC)
algorithm. Theoretical analyses show that the OLM algorithm
achieves a worst-case competitive ratio of 2.55, without the
need of any future information and regardless of the system
scale, under the typical settings in real-world scenarios. The
RFHC algorithm achieves a competitive ratio of 1+ 1

l+1
κ
λ that

approaches 1 as the lookahead window l grows. Here κ and
λ are system dependent parameters of similar magnitude.
. We conduct extensive experiments to evaluate the perfor-
mance of our online algorithms, using real-world meteorolog-

ical data generation traces. The online algorithms can achieve
close-to-offline-optimum performance in most cases examined,
revealing that the theoretical worst-case competitive ratios are
pessimistic, and only correspond to rare scenarios in practice.

The remainder of this paper is organized as follows. We
discuss related work in Sec. II, and present the system model
and the offline optimal data migration problem in Sec. III. We
design two online algorithms and analyze their competitive
ratios in Sec. IV. Evaluation results are presented in Sec. V.
Sec. VI concludes the paper.

II. RELATED WORK

The recent years have witnessed significant interest in mi-
grating different applications onto the cloud platform. Hajjat et
al. [9] develop an optimization model for migrating enterprise
IT applications onto a hybrid cloud. Wu et al. [10] advocate
deploying social media applications into clouds, for leveraging
the rich resources and pay-as-you-go pricing. These projects
focus on workflow migration and application performance
optimization, by carefully deciding the modules to be moved
to the cloud and the data caching/replication strategies in the
cloud. The very rudimentary question of how to move large
volumes of application data into the cloud however is not
explored.

Few existing work discussed such transfer of large amounts
of data to the cloud. Cho et al. [11] design Pandora, a cost-
aware planning system for data transfer to the cloud provider,
via both the Internet and courier services. Different from our
study, they focus on static scenarios with a fixed amount of
bulk data to transfer, rather than dynamically generated data;
in addition, a single cloud site is considered, while our study
considers multiple data centers.

A number of online algorithms have been proposed to
address different cloud computing and data center issues.
For online algorithms without future information, Lin et
al. [12] investigate energy-aware dynamic server provisioning,
by proposing a Lazy Capacity Provisioning algorithm with a
3-competitive ratio. Assuming lookahead into the future, Lu
and Chen [13] study the dynamic provisioning problem in data
centers, design future-aware algorithms based on the classic
ski-rental online algorithm. Lin et al. [14] investigate load
balancing among geographically-distributed data centers with
a receding horizon control (RHC) algorithm, and show that the
competitive ratio can be reduced substantially by leveraging
the predicted future information.

III. THE DATA MIGRATION PROBLEM

A. System Model

Consider a cloud with K data centers distributed in a set
of regions K (K = |K|). A user (e.g., a global astronomical
telescopes application) continuously produces large volumes
of data at a set D of geographic locations (e.g., dispersed
telescope sites). The user connects to the data centers from
different data generation locations via VPNs, with G VPN
gateways (G) at the user side and K VPN gateways each
collocated with a data center (Fig. 1). A private network of

Legend

Data Location 1

Data Location 2

DC 1

DC 2

DC 3

DC 4

Gateways at
the user side

Gateways at the
data center side Intranet links in cloud

Internet links
Intranet links at the user side

GW2'

GW1'GW1

GW2

GW3

GW4

GW3'

GW4'

Fig. 1. An illustration of the cloud system.

the user inter-connects all the data generation locations and the
VPN gateways at the user side. Such a model reflects typical
connection approaches between users and public clouds (e.g.,
AWS Direct Connect [15]), where dedicated, private network
connections are established between a user’s premise and the
cloud, for enhanced security and reliability, and guaranteed
inter-connection bandwidth.

While intra-cloud links and links in the private network are
usually over provisioned, the bandwidth Ugi on a VPN link
(g, i) from user side gateway g to data center i is limited, and
constitutes the bottleneck in the system.
B. Cost-minimizing Data Migration: Problem Formulation

We consider a time-slotted system with slot length τ . Fd(t)
bytes of data are produced at location d in slot t. ldg is the
latency between data location d ∈ D and gateway g ∈ G,
pgi is the delay along VPN link (g, i), and ηik is the latency
between data centers i and k. These delays are dictated by the
respective geographic distances.

A cloud user faces the problem of deciding (i) via which
VPN connections to upload the data into the cloud, and (ii) to
which data center should they be aggregated, for processing by
a MapReduce-like framework, such that the monetary charges
incurred, as well as the latency for the data to reach the
aggregation point, are minimized.
Decision variables. (1) Data routing variable xd,g,i,k(t) de-
notes the portion of data Fd(t) produced at location d in t, to
be uploaded through VPN connection (g, i) and then migrated
to data center k for processing. xd,g,i,k(t) > 0 indicates that
the data routing path d → g → i → k is employed, and
xd,g,i,k = 0 otherwise. Let ~x = (xd,g,i,k(t))∀d,g,i,k, the set of
feasible data routing variables are:

X =

{
~x(t) |

∑
g∈G,i∈K,k∈K

xd,g,i,k(t) = 1 and xd,g,i,k ∈ [0, 1],

∀d ∈ D, ∀g ∈ G, ∀i ∈ K, ∀k ∈ K
}
. (1)

Here
∑
g,i,k xd,g,i,k(t) = 1 ensures that all data produced from

location d are uploaded into the cloud in t.
(2) Binary variable yk(t) indicates whether data center k is
target of data aggregation in time slot t (yk(t) = 1) or not
(yk(t) = 0). At any given time, exactly one data center is
chosen. Let ~y(t) = (yk(t))∀k∈K, the set of possible data
aggregation variables are:

Y =

{
~y(t) |

∑
k∈K

yk(t) = 1 and yk(t) ∈ {0, 1}, ∀k ∈ K
}
. (2)

Costs. The costs incurred in time slot t include the following
components.
(1) The overall bandwidth cost for uploading data via the VPN
connections, where

∑
d∈D,k∈K Fd(t)xd,g,i,k(t) is the amount

uploaded via VPN connection (g, i), and fgi is the unit charge
for uploading one byte of data via (g, i):

CBW (~x(t)) ,
∑

g∈G,i∈K

(fgi
∑

d∈D,k∈K

Fd(t)xd,g,i,k(t)). (3)

(2) Storage and computation costs are important factors to
consider in choosing the data aggregation point. In a large-
scale online application, processing and analyzing in t may
involve data produced not only in t, but also from the past, in
the form of raw data or intermediate processing results [16].
Without loss of generality, let the amount of current and his-
tory data to process in t be F(t) =

∑t
ν=1(αν

∑
d∈D Fd(ν)),

where
∑
d∈D Fd(ν) is the total amount of data produced in

time slot ν from different data generation locations, and weight
αν ∈ [0, 1] is smaller for older times ν and αt = 1 for the
current time t. Assume all the other historical data, except
those in F(t), are removed from the data centers where they
were processed. Let Ψk(F(t)) be a non-decreasing, convex
cost function for storage and computation in data center k in
t. The aggregate storage and computing cost in t is:

CDC(~y(t)) ,
∑
k∈K

yk(t)Ψk(F(t)). (4)

(3) The best data center for data aggregation could differ in
t than in t− 1, due to temporal and spatial variations in data
generation. Historical data needed for processing together with
the new data in t, at the amount of

∑t−1
ν=1(αν

∑
d∈D Fd(ν)),

should be moved from the former data center to the current.
Let φik(z) be the non-decreasing, convex migration cost to
move z bytes of data from data center i to date center k,
satisfying triangle inequality: φik(z) + φkj(z) ≥ φij(z). The
migration cost between time slot t− 1 and time slot t is:

CtMG(~y(t), ~y(t− 1)) ,
∑
i∈K

∑
k∈K

([yi(t− 1)− yi(t)]+

[yk(t)− yk(t− 1)]+φik(

t−1∑
ν=1

αν
∑
d∈D

Fd(ν))).

(5)

Here [a− b]+ = max{a− b, 0}.
(4) We use a routing cost to model delays along the selected
routing paths:

CRT (~x(t)) ,
∑
d,g,i,k

Lxd,g,i,k(t)Fd(t)(ldg + pgi + ηik), (6)

where xd,g,i,k(t)Fd(t)(ldg + pgi + ηik) is the product of data
volume and delay along the routing path d→ g → i→ k. L is
the routing cost weight converting xd,g,i,k(t)Fd(t)(ldg +pgi+
ηik) into a monetary cost, reflecting how latency-sensitive the
user is. In this work, L is a constant provided by the user a
priori. The latency ldg + pgi + ηik is fixed in each time slot,
but can change over time.

In summary, the overall cost incurred in t in the system is:
C(~x(t), ~y(t)) =CBW (~x(t)) + CDC(~y(t))+

CtMG(~y(t), ~y(t− 1)) + CRT (~x(t)).
(7)

The offline optimization problem. The optimization problem
of minimizing the overall cost of data upload and processing
over a time interval [1, T], can be formulated as:

minimize
T∑
t=1

C(~x(t), ~y(t)) (8)

subject to: ∀t = 1, . . . , T ,

(8a) ~x(t) ∈ X ,
(8b)

∑
d∈K,k∈K Fd(t)xd,g,i,k(t)/τ ≤ Ugi, ∀i ∈ K, ∀g ∈ G,

(8c) xd,g,i,k(t) ≤ yk(t),∀d ∈ D, ∀g ∈ G, ∀i ∈ K,∀k ∈ K,
(8d) ~y(t) ∈ Y,

Constraint (8b) states that the total amount of data routed
via (g, i) into the cloud in each time slot should not exceed
the upload capacity of (g, i). (8c) ensures that a routing path
d→g→i→k is used (xd,g,i,k(t) > 0), only if data center k is
the point of data aggregation in t (yk(t) = 1).

IV. TWO ONLINE ALGORITHMS

We next design two online algorithms for guiding data
routing and aggregation over time. The first algorithm relies
only on the current and historical information, and the second
further exploits predicted information from the future.

A. The OLM Algorithm

The offline optimization problem in (8) can be divided into
T one-shot optimization problems at each time t:

minimize C(~x(t), ~y(t)) subject to: (8a)(8b)(8c)(8d). (9)

A naive online algorithm that solves (9) in each time slot
can be far from optimal, migrating data back and forth
prematurely. We design a more judicious online solution by
exploring the inter-slot dependencies for data center selection.

We divide the overall cost C(~x(t), ~y(t)) into: (i) migration
cost CtMG(~y(t), ~y(t − 1)) defined in (5), related to decisions
in t−1; and (ii) non-migration cost that relies only on current
information at t:
Ct−MG(~x(t), ~y(t)) = CBW (~x(t))+CDC(~y(t))+CRT (~x(t)). (10)

We design a lazy migration algorithm that postpones data
center switching indicated by the one-shot optimum, until the
cumulative non-migration cost (in Ct−MG(~x(t), ~y(t))) signifi-
cantly exceeds the potential data migration cost.

As shown in Alg. 1, we solve the one-shot optimization
in (9) at t = 1, and obtain the optimal data center in-
dicted by ~y(1), the optimal routes ~x(1). Let t̂ be the time
of the data center switch. In each following time slot t,
we compute the overall non-migration cost in [t̂, t − 1],∑t−1
ν=t̂

Cν−MG(~x(ν), ~y(ν)).The algorithm checks whether this
cost is at least β2 times the migration cost C t̂MG(~y(t̂), ~y(t̂−1)).
If so, it solves the one-shot optimization to derive ~x(t)
and ~y(t) without considering the migration cost, i.e., by
minimizing Ct−MG(~x(t), ~y(t)) subject to (8a) − (8d) and
an additional constraint, that the potential migration cost,
CtMG(~y(t), ~y(t − 1)), is no larger than β1 times the non-
migration cost Ct−MG(~x(t), ~y(t)) at time t. If a change of
migration data center is indicated (~y(t) 6= ~y(t − 1)), the

Algorithm 1 The Online Lazy Migration (OLM) Algorithm
1: t = 1;
2: t̂ = 1; //Time slot when the last change of aggregation data center

happens
3: Compute data routing decision ~x(1) and aggregation decision ~y(1) by

minimizing C(~x(1), ~y(1)) subject to (8a)− (8d);
4: Compute C1

MG(~y(1), ~y(0)) and C1
−MG(~x(1), ~y(1));

5: while t ≤ T do
6: if C t̂MG(~y(t̂), ~y(t̂− 1)) ≤ 1

β2

∑t−1

ν=t̂
Cν−MG(~x(ν), ~y(ν)) then

7: Derive ~x(t) and ~y(t) by minimizing Ct−MG(~x(t), ~y(t)) in
(10) subject to (8a) − (8d) and constraint CtMG(~y(t), ~y(t − 1)) ≤
β1Ct−MG(~x(t), ~y(t));

8: if ~y(t) 6= ~y(t− 1) then
9: Use the new aggregation data center indicated by ~y(t);

10: t̂ = t;
11: if t̂ < t then //not to use new aggregation data center
12: ~y(t) = ~y(t− 1), compute data routing decision ~x(t) by solving

(9) if not derived;
13: t = t+ 1;

algorithm accepts the new aggregation decision, and migrates
data accordingly. Otherwise, the aggregation point remains
unchanged, and only data routing paths are computed.

In Alg. 1, β2 and β1 reflect the “laziness” and “aggressive-
ness” of the algorithm: a larger β2 prolongs the inter-switch
interval of the aggregation data center, while a larger β1 invites
more frequent switches. We next analyze the competitive ratio
of the OLM algorithm, i.e., the ratio of the worst-case total
cost incurred by the OLM algorithm in [1, T], over that of the
offline optimal algorithm.

Lemma 1. The overall migration cost in [1, t] is at
most max{β1,1/β2} times the overall non-migration cost
in this period, i.e.,

∑t
ν=1 C

ν
MG(~y(ν), ~y(ν − 1)) ≤

max{β1, 1/β2}
∑t
ν=1 C

ν
−MG(~x(ν), ~y(ν)).

Lemma 2. The overall non-migration cost in [1, t] is
at most ε times the total offline-optimal cost, i.e.,∑t
ν=1 C

ν
−MG(~x(ν), ~y(ν)) ≤ ε

∑t
ν=1 C(~x∗(ν), ~y∗(ν)), where

ε = max
ν∈[1,T]

max~y(ν)∈Y,~x(ν):(8a)−(8c) C
ν
−MG(~x(ν), ~y(ν))

min~y(ν)∈Y,~x(ν):(8a)−(8c) Cν−MG(~x(ν), ~y(ν))

is the maximum ratio of the largest over the smallest possible
non-migration cost incurred in a time slot, with different data
upload and aggregation decisions.

Theorem 1. The OLM Algorithm is ε(1 + max{β1, 1/β2})-
competitive.

Detailed proofs of the lemmas and the theorem are in our
technical report [17]. The value of ε depends more on data
generation patterns over time, and less on system scale. Under
a typical value ε = 1.7 from our experiments, setting β1 = 0.5
and β2 = 2 leads to a competitive ratio of 2.55.

B. The Randomized Fixed Horizon Control (RFHC) Algorithm

In practical applications, near-term future data generation
patterns can often be estimated from history, e.g., using a time
series forecasting model [18]. We next design an algorithm that
exploits such future information.

Time

Fig. 2. An illustration of different FHC algorithms with l = 2.

We divide time into equal-size frames of l + 1 time slots
each (l ≥ 0). In the first time slot t of each frame, suppose we
can predict all future information on data generation for the
next l time slots: Fd(t), Fd(t + 1), ..., Fd(t + l),∀d ∈ D. We
solve the following cost minimization problem over [t, t + l]
— given ~y(t− 1), to derive ~x(ν) and ~y(ν), ∀ν = t, . . . , t+ l:

minimize
t+l∑
ν=t

C(~x(ν), ~y(ν)), (11)

subject to: constraints (8a)—(8d), for ν = t, . . . , t+ l.

The method is essentially a fixed horizon control (FHC)
algorithm, adapted from receding horizon control in the dy-
namic resource allocation literature [14]. Allowing the first
time frame (of l+ 1 slots) to start from different initial times
p ∈ [1, l + 1], we have l + 1 versions of the FHC algorithm
(Fig. 2). In particular, for FHC(p) starting from slot p, (11)
is solved at t = p, p + l + 1, p + 2(l + 1), . . ., for routing
and aggregation decisions in the following l + 1 time slots.
For each FHC(p), an adversary can tailor an input with a
surge of data produced at the beginning of each time frame.
A high migration cost is likely to occur at each frame start,
since the surge was not considered by the decision making
in the previous frame. A randomized algorithm defeats such
adversaries by randomizing the starting times of the frames.

Alg. 2 shows our Randomized Fixed Horizon Control
(RFHC) algorithm. It first uniformly randomly chooses p ∈
[1, l+ 1] as the start of the first time frame of l+ 1 slots, i.e.,
it randomly picks one specific algorithm FHC(p) from the
l+ 1 finite horizon control algorithms: at t = 1, it solves (11)
to decide the optimal data routing and aggregation strategies
in the period of t = 1 to p−1 (p 6= 1); then at t = p, p+ l+1,
p + 2(l + 1), . . ., it solves (11) for optimal strategies in the
following l + 1 time slots, respectively.

Algorithm 2 The RFHC Algorithm
1: ~y(0) = 0;
2: p = rand(1, l + 1); //A random integer within [1,l+1]
3: if p 6= 1 then
4: Derive ~x(1) · · · ~x(p− 1) and ~y(1) · · · ~y(p− 1) by solving (11) over

the time window [1, p− 1];
5: t = p;
6: while t ≤ T do
7: if (t− p) mod (l + 1) = 0 then
8: Derive ~x(t), · · · , ~x(t+ l) and ~y(t), · · · , ~y(t+ l) by solving (11)

over the time frame [t, t+ l];
9: t = t+ 1;

Lemma 3. The overall cost incurred by FHC(p) is upper-
bounded by the offline-optimal cost plus the migration costs

TABLE I
PERFORMANCE COMPARISON AMONG THE ALGORITHMS: SPOT INSTANCE

PRICING, P = 0.25, L = 0.01

Simple OLM RFHC(0) RFHC(1) Offline
Overall cost ($) 24709 16870 16676 16327 15944
Ratio 1.55 1.06 1.05 1.02 1

to move data from the aggregation data center computed by
FHC(p) to the optimal one, at the end of the time frames.
That is, letting ~x(p) and ~y(p) be the solution derived by the
FHC(p) algorithm and Ωp,t = {ω|ω = p + k(l + 1), k =
0, 1, . . . , b t−pl+1 c}, we have for any t ∈ [1, T],
t∑

ν=1

C(~xp(ν), ~yp(ν)) ≤
t∑

ν=1

C(~x∗(ν), ~y∗(ν))

+
∑

ω∈Ωp,t

CωMG(~y∗(ω − 1), ~y(p)(ω − 1)).

Theorem 2. The RFHC algorithm is (1+ 1
l+1

κ
λ)-

competitive. Here l is the number of lookahead
steps, κ = supt∈[1,T],~y1(t),~y2(t)∈Y

CtMG(~y1(t),~y2(t))∑t−1
ν=1(αν

∑
d∈D Fd(ν))

is the maximum migration cost per unit data, and
λ = inft∈[1,T],~x(t),~y(t):(8a)−(8d)

C(~x(t),~y(t))∑t−1
ν=1(αν

∑
d∈D Fd(ν))

is
the minimum total cost per unit data per time slot.

The proofs of the lemma and theorem above can be found
in our technical report [17]. Theorem 2 reveals that the more
future steps predicted (the larger l is), the closer the RFHC
algorithm can approach the offline optimum. Values of κ and
λ are related to system input including prices and delays, and
are less involved with the data generation patterns and the
number of data centers. Under the practical settings used in
our experiments, κ

λ ≈ 0.69. In this case, even with l = 1, the
competitive ratio is already as low as 1.34.

V. PERFORMANCE EVALUATION

Due to space limitations, detailed experiment set up and
more empirical results are provided in our technical report
[17]. We have implemented and compared our offline and
online algorithms, as well as a Pandora-like simple algorithm
that fixes the choice of the data center for aggregation to be
the one in Hong Kong.

We investigate dynamical VM prices (time-varying data
processing costs) following the Spot Instance prices from
Amazon EC2 during Apr. 2012 to Jul. 2012. From Tab. I,
we see that due to lack of future price information, the OLM
algorithm performs slightly worse than the RFHC algorithm
with lookahead window l = 1.

We also evaluate the RFHC algorithm with different looka-
head window sizes, with dynamic prices. Tab. II shows that,
with the increase of the lookahead window, the performance
is approaching the offline optimum. Just a 1- or 2-step ‘peek’
into the future drives the performance very close to the offline
optimum.

VI. CONCLUDING REMARKS

This paper designs efficient algorithms for timely, cost-
minimizing migration of enormous amounts of dynamically-

TABLE II
PERFORMANCE OF RFHC ALGORITHMS WITH DIFFERENT LOOKAHEAD

WINDOW SIZES: SPOT INSTANCE PRICING, P = 0.25, L = 0.01

RFHC(0) RFHC(1) RFHC(2) RFHC(3) Offline
Overall cost ($) 16676 16327 16105 16138 15944
Ratio 1.05 1.02 1.01 1.01 1

generated, geo-dispersed data into the cloud, for processing
using a MapReduce-like framework. Two novel online algo-
rithms are designed to practically guide data migration in an
online fashion, based on solid theoretical analysis. The OLM
algorithm achieves a worst-case competitive ratio of as low as
2.55 under typical real-world settings, without the need of any
future information; the RFHC algorithm provides a decreas-
ing competitive ratio with increasing size of the lookahead
window. Our extensive experiments reveal the close-to-offline-
optimum performance of both algorithms, by comparing them
with a simple algorithm and the optimal offline algorithm,
under real-world meteorological data generation patterns.

REFERENCES

[1] M. Armbrust, A. Fox, R. Grifth, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. P. A. Rabkin, I. Stoica, and M. Zaharia, “Above the Clouds:
A Berkeley View of Cloud Computing,” EECS, University of California,
Berkeley, Tech. Rep., 2009.

[2] Human Genome Project, http://www.ornl.gov/hgmis/home.shtml.
[3] Hadoop at Twitter, http://www.slideshare.net/kevinweil/hadoop-at-

twitter-hadoop-summit-201.
[4] AWS Import/Export, http://aws.amazon.com/importexport/.
[5] Moving an Elephant: Large Scale Hadoop Data Migration at Facebook,

http://www.facebook.com/notes/paul-yang/moving-an-elephant-large-
scale-hadoop-data-migration-at-facebook/10150246275318920.

[6] R. J. Brunner, S. G. Djorgovski, T. A. Prince, and A. S. Szalay,
“Handbook of Massive Data Sets,” J. Abello, P. M. Pardalos, and
M. G. C. Resende, Eds. Norwell, MA, USA: Kluwer Academic
Publishers, 2002, ch. Massive Datasets in Astronomy, pp. 931–979.

[7] Amazon Elastic MapReduce, http://aws.amazon.com/elasticmapreduce/.
[8] M. Cardosa, C. Wang, A. Nangia, A. Chandra, and J. Weissman, “Ex-

ploring mapreduce efficiency with highly-distributed data,” in Proc. of
MapReduce 2011, 2011.

[9] M. Hajjat, X. Sun, Y. E. Sung, D. Maltz, and S. Rao, “Cloudward
Bound: Planning for Beneficial Migration of Enterprise Applications
to the Cloud,” in Proc. of ACM SIGCOMM, August 2010.

[10] Y. Wu, C. Wu, B. Li, L. Zhang, Z. Li, and F. Lau, “Scaling Social Media
Applications into Geo-Distributed Clouds,” in Proc. of IEEE INFOCOM,
Mar. 2012.

[11] B. Cho and I. Gupta, “New Algorithms for Planning Bulk Transfer via
Internet and Shipping Networks,” in Proc. of IEEE ICDCS, 2010.

[12] M. Lin, A. Wierman, L. L. Andrew, and E. Thereska, “Dynamic
Right-sizing for Power-proportional Data Centers,” in Proc. of IEEE
INFOCOM, April 2011.

[13] T. Lu and M. Chen, “Simple and Effective Dynamic Provisioning for
Power-Proportional Data Centers,” in Proc. of IEEE CISS, Mar. 2012.

[14] M. Lin, Z. Liu, A. Wierman, and L. Andrew, “Online Algorithms for
Geographical Load Balancing,” in Proc. of IEEE IGCC, 2012.

[15] Amazone Web Services, http://aws.amazon.com/.
[16] D. Logothetis, C. Olston, B. Reed, K. C. Webb, and K. Yocum, “Stateful

Bulk Processing for Incremental Analytics,” in Proc. of ACM SoCC,
2010.

[17] L. Zhang, C. Wu, Z. Li, C. Guo, M. Chen, and F. C. M. Lau,
“Move My Data to the Cloud: an Online Cost-Minimizing Approach,”
http://i.cs.hku.hk/~cwu/movedata.pdf, Tech. Rep.

[18] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control, 4th ed. Wiley, 2008.

