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Abstract

This paper proposes a new nature-inspired algorithm (NA)—mosquito host-seeking al-
gorithm (MHSA)—the inspiration for which comes from the host-seeking behavior of
mosquitoes. Applying the algorithm to the traveling salesman problem (TSP), every
city pair is treated as an artificial mosquito, and the TSP solving process is transformed
into the host-seeking behavior of a swarm of artificial mosquitoes. We study the evolu-
tion of “swarms”, the artificial mosquitoes’ microcosmic actions, and macroscopic swarm
intelligence, and present efficient solutions to TSP using MHSA. The proposed MHSA
is fundamentally different from the other popular NAs in its motivation, principle, the
optimization mechanism, its elements and their states, and the biological model, the
mathematical model and theoretical foundation on which it is based. We show that (1)
MHSA can converge; (2) its parameter setting does not depend on algorithm learning
or prior knowledge; and (3) MHSA can describe complex behaviors and dynamics. The
properties of MHSA, including correctness, convergence and stability, are discussed in
details. Simulation results attest to the effectiveness and suitability of MHSA.

Key words: Traveling salesman problem (TSP), mosquito host-seeking algorithm
(MHSA), distributed and parallel algorithm.

1. Introduction

Recently in computer science, there is an increased interest in computational ap-
proaches that are inspired by the principles of nature and that can solve difficult prob-
lems [1,9]. Whereas physical and biological sciences try to find microscopic laws that
extrapolates to the macroscopic realm, computer science is principally synthetic and is
concerned with the construction of algorithms that may be inspired by physics or biol-
ogy [2]. Computing can be seen as a property of nature, and therefore by mimicking
natural phenomena, it is possible to construct new intelligent algorithms for solving com-
putationally difficult problems [5]. Successful nature-inspired approaches include genetic
algorithm [10], ant colony optimization [3,12], particle swarm optimization [21] and cel-
lular particle swarm optimization [13], molecular algorithm [1], artificial life [4], artificial
neural networks [8], cellular automaton[13], simulated annealing algorithm [14], elastic
net [8], etc.

The goal of this work is to investigate and develop a biology-inspired approach—
mosquito host-seeking algorithm (MHSA)—as a new addition in the category of nature-
inspired algorithms (NAs). To demonstrate the problem solving abilities of MHSA, we
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have applied the approach to the traveling salesman problem (TSP), where every city
pair is treated as an artificial mosquito. The TSP solving process is transformed into the
kinematics and dynamics of a swarm of artificial mosquitoes. We study the host-seeking
behaviors of mosquitoes, the evolution of their “swarms”, the mosquitoes’ microcosmic
actions, and macroscopic swarm intelligence, and finally present efficient solutions to TSP.

The proposed MHSA is motivated by certain observations on the host-seeking be-
haviors of mosquitoes: that is, the kinematics and dynamics of mosquitoes exhibit the
properties of parallelism, openness, local interactivity, and self-organization. This stim-
ulated us to mimic the host-seeking behaviors of mosquitoes in constructing a model for
intelligent computing. This new model can overcome some of the limitations of existing
popular NAs. MHSA has these advantages: (1) it has the ability to perform large-scale
distributed parallel optimization; (2) it can converge; (3) its parameters do not depend
on algorithm learning or any prior knowledge; (4) it can describe complex behaviors
and dynamics; (5) it has a comprehensive optimization ability for multiple objectives;
(5) it is robust—MHSA is basically independent of the initial conditions, problem size,
small-range parameters changes, etc; (7) it has a powerful processing ability in a complex
and dynamic real-time changing environment; (8) it is flexible and easy to adapt to a
wide range of optimization problems. All in all, it is fundamentally different from the
other popular NAs in many regards, including the optimization mechanism, its elements
and their states, and the biological model, the mathematical model and the theoretical
foundation on which it is based.

We apply MSHA to TSP with the motivation that the algorithm coupled with TSP
provides an ideal platform for the study of general methods that can by applied to a wide
range optimization problems. Recently, using TSP as a platform, some new methods were
presented: (1) the Lin-Kernighan-Heulsgaun (LKH) algorithm [11], which is a well known
method that can reach optimal results for the TSPLIB benchmarks [17]; (2) the mul-
tiagent optimization system (MAOS) algorithm [20], which is a nature-inspired method
which supports cooperative search by the self-organization of a group of compact agents
situated in an environment with certain shared public knowledge; (3) immune-inspired
self-organizing neural network algorithm [15], which is a variation of the Real-Valued
Antibody Network algorithm; (4) ant colony optimization with multiple ant clans (ACO-
MAC) algorithm [19], where the authors introduced the concept of multiple ant clans
coming from parallel genetic algorithm to search the solution space; they utilized various
islands to avoid local minima and thus the method can yield global minimum for solving
TSP.

The structure of the rest of the paper is as follows. In Section 2, we formalize the
problem model of TSP as a platform for the study of MHSA. The parallel computing
architecture, biological model and mathematical model of MHSA are proposed in Sections
3, 4 and 5, respectively. In Section 6, we discuss the suitability, correctness, convergence,
and stability of the MHS model and algorithm. The MHS algorithm is presented in
Section 7. In Section 8, we present simulation results which attest to the effectiveness
and suitability of MHSA. Finally, conclusions are drawn in Section 9.

2. The TSP model

In this paper, TSP is regarded as a platform for presenting MHSA, and so the TSP
mathematical description given here is somewhat different from many of the other ones in
the literature. The main feature of our TSP model is that the n−city TSP is decomposed
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into n × n paratactic computing cells. We discuss how MHSA solves our TSP using its
particular parallel computing architecture in the next section.

Definition 1. The n-city TSP is defined as:
Minimize: Z =

∑

i,j

dij · rij

s.t. 1. rij ∈ {0, 1};

2. rij = rji;

3.
∑

i

rij = 2;

4.
∑

j

rij = 2.

( i = 1, n )

The main parameters of any TSP instance are as follows.

Ci: The i-th city (i = 1, n).

Cj: The j-th city (j = 1, n).

(xi, yi): The coordinates of city Ci.

dij: The distance between city pair (Ci, Cj), (i, j = 1, n), dij =
√

(xi − xj)2 + (yi − yj)2.

pij: The path between Ci and Cj.

xij: xij = 1 if pij can be passed through; otherwise 0.

Z: The shortest path through n cities.

rij: The solution of TSP: (1) When t = end, rij = 0, 1 ( rij = 1 if Z passes pij; otherwise
0);
(2)When t < end, rij ∈ [0, 1].

rij is the main variable in the computing cells. With our MHSA, n × n rij will
evolve in parallel until the algorithm converges (t = end). In order to make the solution
(rij) progress towards the optimal result, we introduce an artificial variable cij into the
computing cells, which is the weight of city pair (Ci, Cj), as follows.

• When t = 0, cij(t = 0) = max
i,j

dij − dij;

• When t > 0, cij(t > 0) ∈ [0, 1].

In every computing cell, rij and cij will evolve at the same time together. In addition,
the state of the computing cells depends on logical variable xij. Computing cell Cij is
“alive” if xij = 1; otherwise “dead”. The n × n computing cells of n-city TSP are shown
in Fig. 1.
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r11, c11 ··· r1j, c1j ··· r1n, c1n

...
...

...

ri1, ci1 ··· rij, cij ··· rin, cin

...
...

...

rn1, cn1 ··· rnj, cnj ··· rnn, cnn

Fig. 1 The n × n computing cells of n-city TSP

3. The parallel computing architecture of MHSA

The parallel computing architecture of the MHSA, as shown in Fig. 2, is composed
of four computing cell arrays, C,Crow,Ccol, and Cgloble, whose computing cells are denoted
by Cij,Ci∗,C∗j, and C∗∗, respectively.
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Fig.2 The parallel computing architecture of the MHSA

The number of computing cells in each array is equal to: n × n for C, n for Crow,
n for Ccol, and 1 for Cgloble, respectively, and hence the total number of computing cells
equals n2 +2n+1. There is no interconnection among computing cells in the same array,
whereas there are local interconnections between the following computing cell pairs: Cij

and Ci∗; Cij and C∗j; Ci∗ and C∗∗; C∗j and C∗∗. It is obvious that the connection degree
of each computing cell in the array C of n × n computing cells is equal to at most 2, and
the unique computing cell in Cgloble has connection degree n + n, with the total number
of interconnections being 2n2 + 2n.

At time t in a fixed time slot ̺ , the computing cell Cij sends its dynamical state
qij(t)〈rij(t), cij(t)〉 to computing cells Ci∗ and C∗j, and receives the feedback inputs that
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are generated by computing cells Ci∗ and C∗j at time (t − τ). By using the received
qij(t), the computing cell Ci∗ ( C∗j, resp.) obtains its calculation state ri∗(t) ( r∗j(t),
resp.) according to the equation ri∗(t) =

∑

j

rij(t) (r∗j(t) =
∑

i

rij(t), resp.); which yields

its current output to be fed back to the computing cell Cij. Meanwhile, the computing
cell Ci∗ and C∗j receive the feedback from computing cell C∗∗. The computing cells,
Ci∗, C∗j, and C∗∗, will change their calculation states respectively. The computing cell
Cij will change its dynamical state according to Eqs. 6 and 7 (to be given in Section 5),
respectively.

The implementation of MHSA can enjoy a high degree of parallelism and good scala-
bility. All the computations of cellular dynamics both in the same array and in different
arrays are concurrently carried out. The cellular structure, the cellular dynamics and the
algorithm are all independent of the problem scale. Moreover, there is no direct intercon-
nection among computing cells in the same array, and so it is relatively easy to implement
the proposed structure in VLSI technology.

4. The biological model of MHSA

In this model, every computing cell is treated as an artificial mosquito mij, which
transforms the n−city TSP solving process into the host seeking behavior of a swarm of
n× n artificial mosquitoes. As shown in Fig. 3, all artificial mosquitoes (in a swarm) are
evenly distributed at an even radian surrounding a host. Each female artificial mosquito,
corresponding to a living computing cell, is attracted to seek towards the host by carbon
dioxide, odours, and radiated heat. The radial distance between an artificial mosquito
and the host represents the corresponding artificial mosquito’s personal utility—that is,
an artificial mosquito’s success value of host-seeking. The higher the concentration of
carbon dioxide and odours, the faster the artificial mosquitoes try to move toward their
host. When all the artificial mosquitoes stop moving, being in an equilibrium state, the
computational process arrives at an optimum solution of TSP.

Fig.3 The biological model of MHSA

In more details, each artificial mosquito mij has a grayscale value rij, which will
constantly change between 0 and 1 as the artificial mosquito moves. When all mosquitoes
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are in an equilibrium state, all rij will be 1 or 0. rij = 1 represents the artificial mosquito
mij attacking the host, as well as represents the path pij being black (the shortest path Z
passes through the path). On the contrary, rij = 0 represents that mij would not attack
the host, or pij being white (Z does not pass through the path).

In addition, each artificial mosquito mij has a sex attribute xij. mij is female if
xij = 1; otherwise, mij is male if xij = 0. xij does not evolve with time. The existence
of the x variable enables the MHS mathematical model to solve those TSPs where there
is no through route between some cities. If the route (pij) between city i and city j is
not a through road, then xij =0; otherwise xij =1. Only grayscale values rij of female
artificial mosquitoes will change with the motion of mij. rij of male artificial mosquitoes
will always be 0—that is, the corresponding computing cell will always be dead and path
pij will always be white.

5. The mathematical model of MHSA

The mathematical model of MHSA for n-city TSP is defined as follows.

Definition 2. Let uij(t) be the radial distance between an artificial mosquito mij and the
host at time t, and let J(t) be the utility sum of all artificial mosquitoes. We define uij(t)
and J(t), respectively, by

uij(t) = exp ( −cij(t)rij(t)xij(t) ) ; (1)

J(t) =
n
∑

i=1

n
∑

j=1

uij(t) (2)

The smaller uij(t) is, the closer the artificial mosquitoes mij are to the host, and the
larger the utility of mij.

Definition 3. At time t, the attraction function, P (t), which is caused by the host is
defined by

P (t) = ǫ2 ln
n
∑

i=1

n
∑

j=1

exp[−u2
ij(t)/2ǫ

2] − ǫ2 ln n2 (3)

where 0 < ǫ < 1. The smaller P (t) the better. With Eq. (3), we attempt to construct
a potential energy function, P (t), such that the decrease of its value would imply the
increase of the minimal utility of all the artificial mosquitoes. We prove it in Proposition
3. This way we can solve the optimization problem in the sense that we consider not only
the aggregate utility, but also the individual personal utilities, especially the minimum
one. In addition, ǫ represents the strength of a host’s attraction. The bigger ǫ the better.
If we did not get a sufficiently satisfactory result with MHSA, we can make ǫ smaller. The
attraction of the host causes the artificial mosquitoes to move to increase their minimal
personal utility.

Definition 4. At time t, the artificial mosquitoes’ interaction behavior function, Q(t), is
defined by

Q(t) =
n
∑

i=1

|
n
∑

j=1

rij(t)xij(t) − 2 |2 −
∑

i, j

∫ uij

0
{[1 + exp(−ζijx)]−1 − 0.5}dx. (4)
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ζij(t) of artificial mosquito mij(t) represents the aggregate intention strength at time

t. The greater ζij(t) is, the more necessary artificial mosquito mij(t) has to modify its
rij(t). ζij(t) is usually within [-15,15]. For TSP in particular, ζij(t) can be set to 10.

The first term of Q(t) is related to the constraints on TSP; the second term involves so-
cial coordinations among the artificial mosquitoes. The first term of Q(t) corresponds to a
penalty function. The second term of Q(t) is chosen as shown because we want ∂Q

∂uij
to be a

monotone decreasing sigmoid function, as shown in Fig. 4. −{[1 + exp(−ζijuij)]
−1 − 0.5}

is such a function. Therefore we let ∂Q
∂uij

equal to −{[1 + exp(−ζijuij)]
−1 − 0.5}. Then

∂Q
∂uik

is integrated to be Q.

Fig. 4 Graphical presentation of ∂Q
∂uij

.

Artificial mosquitoes can move toward the host along their own radial orbit under the
the influence of these factors:

• the personal host-seeking behavior;

• the aggregate host-seeking behavior;

• the attraction of the host;

• the motion that is related to social coordinations in the swarm of artificial mos-
quitoes.

These four factors can all contribute to the artificial mosquitoes’ movements towards
the host. Moreover, these factors produce hybrid attraction forces.

Definition 5. The general hybrid attraction function for artificial mosquito mij, Eij(t),
can be defined by

Eij(t) = −λ1uij(t) − λ2J(t) − λ3P (t) − λ4Q(t) (5)

where 0 < λ1, λ2, λ3, λ4 < 1 .

Definition 6. The dynamic equations of computing cell Cij for solution variable rij(t)
and weight variable cij(t) are defined, respectively, as follows.

drij(t)/dt = −λ1
∂uij(t)

∂rij(t)
− λ2

∂J(t)
∂rij(t)

− λ3
∂P (t)
∂rij(t)

− λ4
∂Q(t)
∂rij(t)

(6)

dcij(t)/dt = −λ1
∂uij(t)

∂cij(t)
− λ2

∂J(t)
∂cij(t)

− λ3
∂P (t)
∂cij(t)

− λ4
∂Q(t)
∂cij(t)

(7)
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where ∂Q(t)

∂uij(t)
= −{[1 + exp(−10(t)uij(t))]

−1 − 0.5}.

Definition 7. Motion equations for artificial mosquito mij are defined by










duij(t)/dt = Ψ1(t) + Ψ2(t)

Ψ1(t) = −uij(t) + γvij(t)

Ψ2(t) = [−λ1 − λ2
∂J(t)

∂uij(t)
− λ3

∂P (t)
∂uij(t)

− λ4
∂Q(t)
∂uij(t)

]{[
∂uij(t)
∂rij(t)

]2 + [
∂uij(t)
∂cij(t)

]2}

(8)

where γ > 1. And vij(t) is a piecewise linear function of uij(t) defined by

vij(t) =











0 if uij(t) < 0

uij(t) if 0 ≤ uij(t) ≤ 1

1 if uij(t) > 1,

(9)

The definitions of Eqs. (8) and (9) are for the convergence proofs of MHSA (see
Section 6.4).

6. The theoretical foundation of MHSA

In this section, we discuss the suitability, correctness, convergence, and stability of the
MHS model and algorithm. Subsection A elucidates the correctness of MHSA. Subsections
B, C and D show that all the artificial mosquitoes converge to their stable equilibrium
states through MHSA.

6.1. Correctness analysis

In the following, we derive some formal properties of the mathematical model presented
above.
Proposition 1. Updating the grayscale values rij and weights cij by Eq. (6) and Eq.
(7) respectively amounts to changing the speed of artificial mosquito mij by Ψ2(t) of Eq.
(8).

Denote the j-th terms of Eq. (6) and Eq. (7) by 〈 drij(t)

dt
〉j and 〈 dcij(t)

dt
〉j, respectively.

When rij is updated according to (6), the first and second terms of (6) will give rise to
the following speed increments of the artificial mosquito mij, respectively:

〈duij(t)/dt〉r1 =
∂uij(t)

∂rij(t)
〈drij(t)

dt
〉1 = −λ1[

∂uij(t)

∂rij(t)
]2; (10)

〈duij(t)/dt〉r2 =
∂uij(t)

∂rij(t)
〈drij(t)

dt
〉2 = −λ2

∂uij(t)

∂rij(t)
∂J(t)
∂rij(t)

= −λ2
∂uij(t)

∂rij(t)
∂J(t)

∂uij(t)

∂uij(t)

∂rij(t)
= −λ2

∂J(t)
∂uij(t)

[
∂uij(t)

∂rij(t)
]2

(11)

Similarly, the third and the fourth term of Eq. (6) will give rise to the following speed
increments of the artificial mosquito mij:

〈 duij(t)/dt 〉r3 = −λ3
∂P (t)
∂uij(t)

[
∂uij(t)

∂rij(t)
]2 ;

〈 duij(t)/dt 〉r4 = −λ4
∂Q(t)
∂uij(t)

[
∂uij(t)

∂rij(t)
]2.

Similarly, for Eq. (7), we have 〈duij(t)/dt〉cj, j = 1, 2, 3, 4. We thus obtain
4

∑

j=1

[ 〈 duij(t)/dt 〉cj + 〈 duij(t)/dt 〉rj ]

= [−λ1 − λ2
∂J(t)

∂uij(t)
− λ3

∂Pt)
∂uij(t)

− λ4
∂Q(t)
∂uij(t)

]{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂rij(t)
]2} = Ψ2(t).

Therefore, updating r
(j)
ij and c

(j)
ij by (6) and (7), respectively, gives rise to the speed

increment of artificial mosquito mij which is exactly equal to Ψ2(t) of Eq. (8).
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Proposition 2. The first and second term of Eqs. (6) and (7) will cause the artificial
mosquito mij to move towards the host; that is, the personal utility of the artificial
mosquito mij increases, in direct proportion to the value of (λ1 + λ2).

According to Eqs. (10) and (11), the sum of the first and second term of Eqs. (6) and
(7) will be

〈duij(t)/dt〉r1 + 〈duij(t)/dt〉r2 + 〈duij(t)/dt〉c1 + 〈duij(t)/dt〉c2

= [−λ1 − λ2
∂J(t)

∂uij(t)
]{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2}

= −(λ1 + λ2)x
2
ij(t)[r

2
ij(t) + c2

ij(t)][uij(t)]
2

≤ 0.

Therefore, the first and second term of (6) and (7) will cause uij(t) to monotonically
decrease.
Proposition 3. For MHSA, if ǫ is very small, then decreasing the attraction forces P (t) of
the host (Eq. (3)) amounts to increasing the minimal utility of the artificial mosquitoes.

Supposing that H(t) = max
i,j

{u2
ij(t)}, we have

[exp(H(t)/2ǫ2)]2ǫ2 ≤ [
n
∑

i=1

n
∑

j=1

exp(u2
ij(t)/2ǫ

2)]2ǫ2 ≤ [nn exp(H(t)/2ǫ2)]2ǫ2 .

Taking the logarithm of both sides of the above inequalities gives

H(t) ≤ 2ǫ2 ln
n
∑

i=1

n
∑

j=1

exp(u2
ij(t)/2ǫ

2) ≤ H(t) + 2ǫ2 ln n2.

Since n2 is constant and ǫ is very small, we have

H(t) ≈ 2ǫ2 ln
n
∑

i=1

n
∑

j=1

exp(u2
ij(t)/2ǫ

2) − 2ǫ2 ln n2 = 2P (t).

It turns out that the attraction forces P (t) at time t represent the maximum of u2
ij(t)

among all the artificial mosquitoes mij, which is the minimal personal utility of the
artificial mosquitoes at time t. Hence the decrease of attraction function P (t) will result
in the decrease of the maximum of uij(t).
Proposition 4. Updating rij and cij according to Eqs. (6) and (7) amounts to increasing
the minimal utility of artificial mosquitoes in direct proportion to the value of λ3.

The speed increment of artificial mosquito mij, which is related to attraction function
P (t), is given by

〈 duij(t)

dt
〉3 = 〈 duij(t)/dt 〉r3 + 〈 duij(t)/dt 〉c3

= −λ3
∂P (t)
∂uij(t)

{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2}.

Denote by 〈dP (t)
dt

〉 the differentiation of the attraction function P (t) with respect to
time t arising from using Eqs. (6), (7). We then have

〈dP (t)
dt

〉 = ∂P (t)
∂uij(t)

〈duij(t)

dt
〉3

= −λ3[
∂P (t)
∂uij(t)

]2{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2}

= −λ3ω
2
ij(t)u

2
ij(t)x

2
ij(t)[r

2
ij(t) + c2

ij(t)][uij(t)]
2

≤ 0

where ωij(t) = exp[−u2
ij(t)/2ǫ

2]/
n
∑

i=1

n
∑

j=1

exp[−u2
ij(t)/2ǫ

2].

It can be seen that using Eqs. (6) and (7) gives rise to a monotonic decrease of P (t).
Then by Proposition 3, the decrease of P (t) will result in the increase of the minimal
utility, in direct proportion to the value of λ3.
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Proposition 5. Updating rij and cij by Eqs. (6) and (7) gives rise to a monotonic
increase of the whole utility of all the artificial mosquitoes, in direct proportion to the
value of λ2.

Similar to Proposition 2, it follows that when an artificial mosquito mij modifies its
rij and cij by Eqs. (6) and (7), differentiation of J(t) with respect to time t will not be

positive—i.e., 〈dJR(t)
dt

〉 ≤ 0, and it is directly proportional to the value of λ2.
Proposition 6. Updating rij and cij by Eqs. (6) and (7) gives rise to a monotonic de-
crease of the artificial mosquitoes’ behavior interaction function Q(t), in direct proportion
to the value of λ4.

As in the above, we have

〈duij(t)

dt
〉4 = −λ4

∂Q(t)
∂uij(t)

{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2}; and

〈dQ(t)
dt

〉 = ∂Q(t)
∂uij(t)

〈duij(t)

dt
〉4

= −λ4[
∂Q(t)
∂uij(t)

]2{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2}

≤ 0.

6.2. Convergence analysis

In this subsection, we show that all artificial mosquitoes can converge to their stable
equilibrium states through MHSA.

In mathematics, stability theory deals with the stability of the solutions of differential
equations and dynamical systems. Definitions of stability include Lyapunov stability
and structural stability. Lyapunov stability occurs in the study of dynamical systems.
Lyapunov functions are a family of functions that can be used to demonstrate the stability
or instability of some state points of a system. The demonstration of stability or instability
requires finding a Lyapunov function for the given dynamical system.

Most of dynamical systems are energy-cost systems. In this kind of systems, the total
energy will decrease with the elapsing time until the total energy reaches the least stor-
age. Therefore, the measurement in energy can become the measurement of stability in
dynamical systems. In this paper, all related factors that affect the evolution of artificial
mosquitoes are treated as corresponding items of a “hybrid attraction function (Eij(t))”
which is similar to “energy function”. In this subsection, we construct a Lyapunov func-
tion based on a hybrid attraction function defined in Eq. (5). This Lyapunov function
is an attraction-related positive definite function. We can judge the stability of the given
problem by analyzing if the Lyapunov function monotonically decreases with the elapsing
time.

Lyapunov second theorem on stability Consider a function L(X) such that

• L(X) > 0 (positive definite);

• dL(X(t))/dt < 0 (negative definite).

Then L(X(t)) is called a Lyapunov function candidate and X is asymptotically stable in
the sense of Lyapunov.

It is easier to visualize this method of analysis by imagining a swarm of mosquitoes and
a host. If the host disappears along with its attraction and is never restored, eventually
the swarm of mosquitoes would come to a stop at some final resting state. This final
state is called the stable equilibrium state. For the simple second theorem on stability, a
good selection for a Lyapunov function is the hybrid attraction function. Of course, some
changes of the attraction function are necessary.

10



 

 

 

ACCEPTED MANUSCRIPT 

 
Theorem 1. If the condition (14) about the parameters remain valid, then MHSA will
converge to a stable equilibrium state.

Proof. Denote (rij)n×n(t) and (cij)n×n(t) by R(t) and C(t) respectively. For the biological
model of MHSA, we define a Lyapunov function L(R(t))
L(R(t)) , R(t)

R(t) is updated according to Eq. (6).
R(t + 1) = R(t) + ∆R(t + 1);

∆rij(t + 1) ≈ drij(t)

dt
= −λ1

∂uij(t)

∂rij(t)
− λ2

∂J(t)
∂rij(t)

− λ3
∂P (t)
∂rij(t)

− λ4
∂Q(t)
∂rij(t)

.

Whatever rij is initialized or updated to be, the matrix R is dealt with using the
following three steps.

• rij = 0 | ∀xij = 0. If xij = 0, then rij = 0, to ensure that a male artificial mosquito
mij (entry (i, j) of R) which is not related is not updated.

• Nonnegativity: 0 ≤ rij ≤ 1. If min
i,j

rij < 0, then let rij = rij − min
i,j

rij.

• Normalization. Let rij = 2 rij/
n
∑

j=1

rij and rij = 2 rij/
n
∑

i=1

rij, in order to satisfy the

constraint of the problem defined in Definition 1; that is,
n
∑

j=1

rij = 2 and
n
∑

i=1

rij = 2,

i, j = 1, 2, · · · , n.

After cij is updated according to Eq. (7), the matrix C should be dealt with using the
three steps just mentioned again.

By using the three steps, the entries of matrices R and C will evolve in the closed unit
1-dimensional space.

Because 0 ≤ rij ≤ 1, then R(t) > 0. So L(R(t)) > 0.

dL(R(t))/dt =
∑

i,j

drij(t)/dt,

where
drij(t)/dt =

drij(t)

duij(t)
· duij(t)

dt
= 1

duij(t)

drij(t)

· duij(t)

dt

= −1
cij(t)xij(t) exp[−cij(t)rij(t)xij(t)]

· duij(t)

dt
,

where
duij(t)/dt =

∂uij(t)

∂rij(t)

drij(t)

dt
+

∂uij(t)

∂cij(t)

dcij(t)

dt

= [−λ1 − λ2
∂J(t)

∂uij(t)
− λ3

∂P (t)
∂uij(t)

− λ4
∂Q(t)
∂uij(t)

]{[∂uij(t)

∂rij(t)
]2 + [

∂uij(t)

∂cij(t)
]2},

drij(t)/dt = 1
cij(t)xij(t) exp[−cij(t)rij(t)xij(t)]

· [λ1 + λ2
∂J(t)

∂uij(t)
+ λ3

∂P (t)
∂uij(t)

+ λ4
∂Q(t)
∂uij(t)

]{[
∂uij(t)
∂rij(t)

]2 +

[
∂uij(t)
∂cij(t)

]2}.

∴ dL(R(t))/dt =
∑

i,j

{[
∂uij(t)

∂rij(t)
]2+[

∂uij(t)

∂cij(t)
]2}

cij(t)xij(t) exp[−cij(t)rij(t)xij(t)]
· [λ1 +λ2

∂J(t)
∂uij(t)

+λ3
∂P (t)
∂uij(t)

−λ4
∂Q(t)
∂uij(t)

].(12)

If all the items of the summation in Eq. (12) are less than 0, then dL(R(t))/dt < 0;
that is,

{[
∂uij(t)

∂rij(t)
]2+[

∂uij(t)

∂cij(t)
]2}

cij(t)xij(t) exp[−cij(t)rij(t)xij(t)]
· [λ1 + λ2

∂J(t)
∂uij(t)

+ λ3
∂P (t)
∂uij(t)

+ λ4
∂Q(t)
∂uij(t)

] < 0 (13)

Except for the entries that xij(t) = 0, rij(t) = 0, cij(t) = 0, we always have 0 <
rij(t), cij(t) ≤ 1. So we have cij(t)rij(t)xij(t) > 0 and cij(t)xij(t) > 0. Then
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exp[−cij(t)rij(t)xij(t)] > 0. We obtain 1

cij(t)xij(t) exp[−cij(t)rij(t)xij(t)]
> 0.

Thus to make Eq. (13) exist, the second item λ1 + λ2
∂J(t)

∂uij(t)
+ λ3

∂P (t)
∂uij(t)

+ λ4
∂Q(t)
∂uij(t)

must

be

λ1 + λ2
∂J(t)

∂uij(t)
+ λ3

∂P (t)
∂uij(t)

+ λ4
∂Q(t)
∂uij(t)

< 0 (14)

Based on Lyapunov second theorem on stability, as long as we properly select the
parameters λ1, λ2, λ3, λ4, according to Eq. (14), then convergence and stability can be
guaranteed. That is, when t → ∞, R(t) → R. Eq. (14) will be analyzed further in the
next subsection. �

6.3. Parameters analysis

There are only five coefficients in MHSA. They are ǫ, λ1, λ2, λ3, and λ4. We analyze
them here and point out what values they should take on.

Firstly, as discussed above, ǫ represents the strength of the attraction forces of the
host. The larger ǫ is, the faster the artificial mosquitoes would move towards the host;
hence, ǫ influences the convergence speed of the TSP process. ǫ needs to be carefully
adjusted in order to obtain the shortest path Z. As required in Proposition 3, ǫ must be
small. Usually, 0 < ǫ < 1.

Theorem 2. Regarding the coefficients λ1, λ2, λ3, λ4, we can draw the following conclu-
sions from Eq. (14).

1. If the values of λ1, λ2, λ3, and λ4 change in direct proportion, the results of the
MHS algorithm will hardly be influenced. Thus, we can let λ1, λ2, λ3, λ4 ∈ (0, 1).

2. Whatever value λ3 is chosen to be, convergence of the MHS algorithm will hardly
be influenced.

3. In order for the MHS algorithm to converge, λ4 should be much larger than λ1 and
λ2, based on Eq. (17).

Proof. 1. It is straightforward from Eq. (14).
2. In Eq. (14), where
∂J(t)

∂uij(t)
= 1;

∂P (t)
∂uij(t)

= −uij ·
exp[−(uij)

2/2ǫ2]
nP

i=1

nP
j=1

exp[−(uij)2/2ǫ2]
< 0;

∂Q(t)
∂uij(t)

= −[ 1
1+exp(−10uij)

− 1
2
] < 0.

Putting the positive items of Eq. (14) on the left side of “<” and the negative items
on the right side, Eq. (14) becomes

λ1 + λ2 < −uij ·
exp[−(uij)

2/2ǫ2]
nP

i=1

nP
j=1

exp[−(uij)2/2ǫ2]
· λ3 −

∂Q(t)
∂uij(t)

· λ4 (15)

In Eq. (15), since uij ∈ [0, 1] and 0 < ǫ < 1, then uij ·
exp[−(uij)

2/2ǫ2]
nP

i=1

nP
j=1

exp[−(uij)2/2ǫ2]
≈ 1

n×n
.

Usually n is large because MHSA is good at large scale problems. Thus 1
n×n

is very
small.

1
n×n

is the coefficient of λ3 in Eq. (15), and therefore λ3 will hardly influence the
convergence of the MHS algorithm.

3. Based on conclusion 2, Eq. (15) will approximately be
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λ1 + λ2 < − ∂Q(t)

∂uij(t)
λ4. (16)

Where, − ∂Q(t)
∂uij(t)

= 1
1+exp(−10uij)

− 1
2
≈ 0.4933;

Therefore, Eq. (16) becomes

λ1 + λ2 < 0.4933 · λ4. (17)

For example, if λ1 + λ2 ≤ 0.45 and λ4 ≥ 0.9, then the above condition (Eq. (15)) will
be satisfied and MHSA will converge to a stable equilibrium state. �

The larger λ4

λ1+λ2
, the faster MHSA would converge.

6.4. Convergence proofs

Theorems 3–6 indicate that all the artificial mosquitoes converge to their stable equi-
librium points through the algorithm MHSA. For smooth reading, we take out the proofs
of all the lemmas and theorems here and assign them to the Appendix.
Lemma 1. If γ − 1 > −Ψ2(t) > 0, ∂Ψ2(t)

∂uij(t)
< 1 for uij(t) > 1, and ∂Ψ2(t)

∂uij(t)
> 1 − γ for

0 < uij(t) < 1, then the artificial mosquito mij will converge to a stable equilibrium point
with uij(t) > 1, vij(t) = 1.

Lemma 2. If γ > 1,−Ψ2(t) < 0, and ∂Ψ2(t)
∂uij(t)

< 1 for uij(t) > 1, then the artificial mosquito

mij will converge to a stable equilibrium point with uij(t) > 1, vij(t) = 1.

Lemma 3. If γ > 1, ∂Ψ2(t)
∂uij(t)

< 1 for uij(t) = 1+; and ∂Ψ2(t)
∂uij(t)

> 1 − γ for uij(t) = 0+ and

uij(t) = 1−, then the equilibrium points s1 and s3 in Fig. 5 are unstable and a saddle
point, respectively.

-

6

@
@

@
@

@
@

@@

�
�

��@
@

@
@

@
@

@
@@

vij(t)

1 2 3 uij(t)

-1

1

2

duij(t)

dt

γ vij(t), γ > 1

−Ψ2(t) > γ − 1

γ − 1 > −Ψ2(t) > 0

−Ψ2(t) < 0

as1

saddle point

a

s3
♦
s2

Segment II

saddle point

•p3

•p2

•p1

stable point

Segment I

Ψ1(t)

•
p4

•
p5

•p6stable point

Segment III
•p7

Ψ1(t)−uij(t)

Fig. 5 When γ > 1, the reachable equilibrium points of the dynamic status vij(t) of an
artificial mosquito mij. The point where −Ψ2(t) equals Ψ1(t) is an equilibrium point. •,
△ and ♦ denote a stable equilibrium point, saddle point and unstable equilibrium point,

respectively.

Theorem 3. If γ > 1, ∂Ψ2(t)
∂uij(t)

< 1 for uij(t) ≥ 1+, and ∂Ψ2(t)
∂uij(t)

> 1−γ for 0+ ≤ uij(t) ≤ 1−,

the dynamical equation (8) has a stable equilibrium point on Segment III iff the right side
of the equation is larger than 0 for uij(t) = 1 and vij(t) = 1.

Theorem 4. If γ > 1, ∂Ψ2(t)
∂uij(t)

< 1 for uij(t) ≥ 1+, and ∂Ψ2(t)
∂uij(t)

> 1−γ for 0+ ≤ uij(t) ≤ 1−,

then the dynamical Eq. (8) has a stable equilibrium point iff

γ > 1 + 2[λ3 + 0.25λ4]. (18)
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Lemma 4. If γ > 1, ζij(t) ≥ 0, and the following conditions are valid,

λ1 + λ2 < (1 + 1/32)λ3 + 0.25λ4. (19)

γ > max{1 + 4[λ1 + λ2 + 0.25λ3 + ζij(t) λ4], 1 + 2[λ3 + 0.25λ4]}. (20)

then the dynamical Eq. (8) has a stable equilibrium point with uij = 1, vij = 1.
Theorem 5. If γ > 1, and the condition (19) are valid, then the dynamical Eq. (8) has
a stable equilibrium point with uij = 1, vij = 1.
Theorem 6. If the conditions (19) and (20) remain valid, then MHSA will converge to
a stable equilibrium state.

7. The parallel MHS algorithm

Given the coordinates of n cities and xij (unavailable paths), our mosquito host-seeking
algorithm (MHSA) is as follows.
Step 1. Initialize: Initialize the number of artificial mosquitoes to be n × n. Initialize
the sex of all artificial mosquitoes to be xij. Initialize all grayscale values rij of artificial
mosquitoes mij to be the average values. Initialize all weight cij to be dij. Select the
related coefficients ǫ, λ1, λ2, λ3, λ4 to be 0.8, 0.05, 0.05, 0.9, 0.9, respectively. Section 6.3
(Parameters analysis) gives the theoretical reasons for these values.
Step 2. For each computing cell Cij (artificial mosquito mij):

1. Calculate the uij(t) of each mij by Eq. (1), and duij(t)/dt.

2. Calculate drij(t) by Eq. (6) and dcij(t) by Eq. (7).

3. Update the grayscale value rij(t) by rij(t+1) = rij(t)+drij(t)/dt; update the weight
cij(t) by cij(t + 1) = cij(t) + dcij(t)/dt.

4. If all duij(t)/dt = 0, then finish successfully.

8. Simulations

We give the experimental results in this section. First, we use a simple example (a
small-scale problem) to explain how our MHS algorithm is used. Secondly, we show the
actual times and iterations used to solve different TSP instances on a cluster, which should
speak for the efficiency and parallelism of our MHSA. Thirdly, we make a performance
comparison and a general comparison between MHSA and other benchmark NAs. All the
experiments presented in this section were completed on a cluster. Each of the machines
of the cluster has a Pentium 4 2.0 GHz CPU with 512 Kbytes of L2 cache and 512 Mbytes
of DDR SDRAM, and they are interconnected via Fast Ethernet.

8.1. How to use the MHS algorithm

In order to show how the MHS algorithm can be used to solve a TSP instance, here
we give a very simple example of a 10-city TSP for which MHSA has to find the shortest
path.

The coordinates of 10 cities are initialized as random numbers between 0 and 1 (see
Fig. 6). The X-axis and Y-axis coordinates of the 10 cities are:

C1(0.518000, 0.249000) C2(0.558000, 0.384000)
C3(0.430000, 0.452000) C4(0.289000, 0.441000)
C5(0.082000, 0.922000) C6(0.366000, 0.825000)
C7(0.910000, 0.538000) C8(0.852000, 0.284000)
C9(0.720000, 0.082000) C10(0.591000, 0.097000)
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Fig. 6 An example of TSP

Step 1. Initialization: (t = 0)
1. xij:

There are 100 artificial mosquitoes. All xij = 1 i = 1, 10, j = 1, 10. That is, all paths
between any two cities are available, and all artificial mosquitoes are female.
2. cij:
(1) Initialize the weight cij of all artificial mosquitoes. Set cij to be max

i,j
dij − dij. This

way the maximization problem is transformed to a minimization problem.
(2) Initialize the 10 artificial mosquitoes mii to be extremely weak, that is, set dii =
10, i = 1, 10, so as to make the 10 artificial mosquitoes not able to seek and attack the
host. rii will not be equal to 1.
(3) When i 6= j, dij =

√

(xi − xj)2 + (yi − yj)2, where (xi, yi) is the coordinates of city
Ci.
(4) In addition, the initial matrix C should be dealt with using the following three steps.

• cij = 0 | ∀xij = 0.

• Nonnegativity: Let cij = cij − min
i,j

cij.

• Normalization. Let cij = 2 cij/
10
∑

j=1

cij and cij = 2 cij/
10
∑

i=1

cij.

Columns 1–5 of the initial matrix (cij)10×10 are

cij(t = o) 1 2 3 4 5
1 0 0.2210 0.2228 0.2195 0.2226
2 0.2206 0 0.2285 0.2207 0.2188
3 0.2226 0.2287 0 0.2171 0.2183
4 0.2185 0.2201 0.2164 0 0.2267
5 0.2224 0.2191 0.2185 0.2276 0
6 0.2187 0.2225 0.2182 0.2363 0.2250
7 0.2240 0.2228 0.2228 0.2209 0.2225
8 0.2259 0.2215 0.2250 0.2173 0.2208
9 0.2246 0.2236 0.2278 0.2161 0.2192
10 0.2227 0.2209 0.2200 0.2246 0.2261

Columns 6–10 of the initial matrix (cij)10×10 are
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cij(t = o) 6 7 8 9 10

1 0.2191 0.2240 0.2261 0.2249 0.2227
2 0.2225 0.2223 0.2213 0.2235 0.2204
3 0.2184 0.2225 0.2250 0.2279 0.2197
4 0.2357 0.2199 0.2165 0.2155 0.2235
5 0.2253 0.2223 0.2208 0.2194 0.2259
6 0 0.2207 0.2168 0.2164 0.2236
7 0.2212 0 0.2227 0.2225 0.2238
8 0.2171 0.2225 0 0.2299 0.2207
9 0.2165 0.2221 0.2298 0 0.2197
10 0.2241 0.2238 0.2209 0.2200 0

3. rij:
(1) Initialize all grayscale values rij of artificial mosquitoes mij to be the average values.

(rij)10×10 = (2/n)10×10 = (0.2)10×10.
Here rij are initialized by the average values. Alternatively, rij can also be initialized

as random numbers between 0 and 1. In fact, based on the experimental results, we found
that the results are not affected by the initialization of rij.
(2) the initial matrix (rij)10×10 should be dealt with using the following three steps, too.

• rij = 0 | ∀xij = 0. If xij = 0, then rij = 0.

• Nonnegativity: 0 ≤ rij ≤ 1. If min
i,j

rij < 0, then let rij = rij − min
i,j

rij.

• Normalization. Let rij = 2 rij/
10
∑

j=1

rij and rij = 2 rij/
10
∑

i=1

rij, in order that TSP can

be solved.

4. Z(R):

Z(R)(t = 0) =
n
∑

i=1

n
∑

j=1

dijrijxij = 28.5866.

Step 2. For each computing cell Cij (artificial mosquito mij): (we show only the first
evolutionary iteration; t=1)

1. Compute ∆rij and ∆cij in parallel:

(1) ∆rij:
According to Eq. (6), we have

∆rij ≈ drij/dt = −λ1
∂uij

∂rij
− λ2

∂J
∂rij

− λ3
∂P
∂rij

− λ4
∂Q
∂rij

where,
∂uij

∂rij
= −cijxij exp(−cijrijxij)

∂J
∂rij

= −cijxij exp(−cijrijxij)

∂P
∂rij

= ∂P
∂uij

· ∂uij

∂rij
= −uij ·

exp(−u2
ij/2ǫ2)

nP
i=1

nP
j=1

exp(−u2
ij/2ǫ2)

· ∂uij

∂rij

∂Q
∂rij

= 2
n
∑

j=1

xij ·
n
∑

i=1

(
n
∑

j=1

rijxij − 1) − [ 1
1+exp(−10uij)

− 1
2
] · ∂uij

∂rij

(2) ∆cij:
According to Eq. (7), we have

∆cij ≈ dcij/dt = λ1
∂uij

∂cij
− λ2

∂J
∂cij

− λ3
∂P
∂cij

− λ4
∂Q
∂cij

where,
∂uij

∂cij
= −rijxij exp(−cijrijxij)
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∂J
∂cij

= −rijxij exp(−cijrijxij)

∂P
∂cij

= ∂P
∂uij

· ∂uij

∂cij
= −uij ·

exp(−u2
ij/2ǫ2)

nP
i=1

nP
j=1

exp(−u2
ij/2ǫ2)

· ∂uij

∂cij

∂Q
∂cij

= −[ 1
1+exp(−10uij)

− 1
2
] · ∂uij

∂cij

2. Update rij(t = 1) and cij(t = 1) in parallel:

rij(t = 1) = rij(t = 0) + ∆rij(t = 1)

cij(t = 1) = cij(t = 0) + ∆cij(t = 1)
λ1 = 0.05 λ2 = 0.05 λ3 = 0.9 λ4 = 0.9 ǫ = 0.8

After we get rij(t = 1) and cij(t = 1), matrices R and C should be dealt with using
the three steps mentioned in Step 1–3–(2) and the three steps mentioned in Step 1–2–(4),
respectively.

Updated for the first time, columns 1–5 of matrix (rij)10×10 are

rij(t = 1) 1 2 3 4 5
1 0 0.2201 0.2226 0.2180 0.2223
2 0.2201 0 0.2315 0.2203 0.2176
3 0.2226 0.2315 0 0.2150 0.2167
4 0.2180 0.2203 0.2150 0 0.2297
5 0.2223 0.2176 0.2167 0.2297 0
6 0.2174 0.2229 0.2168 0.2428 0.2264
7 0.2242 0.2225 0.2225 0.2199 0.2221
8 0.2273 0.2211 0.2261 0.2152 0.2200
9 0.2257 0.2242 0.2302 0.2137 0.2180
10 0.2224 0.2198 0.2186 0.2252 0.2272

Columns 6–10 of matrix (rij)10×10 are

rij(t = 1) 6 7 8 9 10
1 0.2174 0.2242 0.2273 0.2257 0.2224
2 0.2229 0.2225 0.2211 0.2242 0.2198
3 0.2168 0.2225 0.2261 0.2302 0.2186
4 0.2428 0.2199 0.2152 0.2137 0.2252
5 0.2264 0.2221 0.2200 0.2180 0.2272
6 0 0.2203 0.2148 0.2142 0.2244
7 0.2203 0 0.2224 0.2221 0.2239
8 0.2148 0.2224 0 0.2331 0.2199
9 0.2142 0.2221 0.2331 0 0.2187
10 0.2244 0.2239 0.2199 0.2187 0

Updated for the first time, columns 1–5 of matrix (cij)10×10 are

cij(t = 1) 1 2 3 4 5
1 0 0.2205 0.2226 0.2189 0.2223
2 0.2205 0 0.2295 0.2208 0.2185
3 0.2226 0.2295 0 0.2165 0.2178
4 0.2189 0.2207 0.2165 0 0.2281
5 0.2223 0.2185 0.2178 0.2281 0
6 0.2184 0.2228 0.2179 0.2384 0.2255
7 0.2238 0.2224 0.2225 0.2204 0.2221
8 0.2262 0.2213 0.2253 0.2167 0.2205
9 0.2249 0.2238 0.2285 0.2155 0.2189
10 0.2223 0.2203 0.2193 0.2246 0.2261
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Columns 6–10 of matrix (cij)10×10 are

cij(t = 1) 6 7 8 9 10
1 0.2185 0.2238 0.2262 0.2250 0.2223
2 0.2228 0.2224 0.2213 0.2238 0.2203
3 0.2179 0.2225 0.2253 0.2285 0.2193
4 0.2384 0.2204 0.2167 0.2155 0.2246
5 0.2255 0.2221 0.2205 0.2189 0.2261
6 0 0.2207 0.2164 0.2159 0.2240
7 0.2207 0 0.2224 0.2221 0.2235
8 0.2164 0.2224 0 0.2308 0.2204
9 0.2159 0.2221 0.2308 0 0.2194
10 0.2240 0.2235 0.2204 0.2194 0

When Step 2 is repeated 29 times, at the end of the 29-th iteration, we get the
equilibrium state of the TSP example. Matrix (rij)10×10(t = 29) is

rij(t = end) 1 2 3 4 5 6 7 8 9 10
1 0 0 0 0 0 0 1 1 0 0
2 0 0 1 0 0 1 0 0 0 0
3 0 1 0 0 0 0 0 0 1 0
4 0 0 0 0 1 1 0 0 0 0
5 0 0 0 1 0 0 0 0 0 1
6 0 1 0 1 0 0 0 0 0 0
7 1 0 0 0 0 0 0 0 0 1
8 1 0 0 0 0 0 0 0 1 0
9 0 0 1 0 0 0 0 1 0 0
10 0 0 0 0 1 0 1 0 0 0

When all mosquitoes are in the equilibrium state, all grayscale values rij converge to
0 or 1 using the MHS algorithm. rij = 1 represents the artificial mosquito mij having
attacked the host, as well as the path pij being black (the shortest path Z passes through
the path). On the contrary, rij = 0 represents mij did not attack the host, and pij is
white (Z does not pass through the path). In this way, based on (rij)10×10(t = 29), we
can draw the shortest path of the example TSP problem in Fig. 6 as Fig. 10.

The experimental results of the TSP example are summarized in Table 1.

Table 1: Experimental results of the TSP example

Parallel processors 1
TSP scale 10

Convergence iterations 29
Convergence time(second) 2

Z(t = 29) 5.3327
Z(t ∈ (29,∞)) 5.3327

As shown in Table 1, at t = 29, the shortest path Z(= 5.3327) is obtained, and stays
unchanged in the remainder of the iterations. That is, for t > 29, Z and matrix R stay
unchanged. Obviously, Z(t = 0) > Z(t = 29), and the TSP example is optimized.

What is more, using the MHS algorithm, only the same optimal solution will be
obtained for the same TSP. This verifies the stability of MHSA. Because the scale of the
TSP example is very small, we only use one processor in the cluster.

The evolutionary process of the TSP example using MHSA is shown in Fig. 7–10.
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Fig. 7 Grayscale values rij(t = 0) Fig. 8 Grayscale values rij(t = 10)

Fig. 9 Grayscale values rij(t = 20) Fig. 10 Grayscale values rij(t ≥ 29)

In the four figures, the darker the line between two cities, the larger rij is. When
rij = 1, a stable state is obtained, and path pij should be drawn in black. We use a green
line instead to distinguish the stable state (black line) from other gray lines.

From a large amount of experimental results, we find that all grayscale values rij will
always converge to 0 or 1 regardless of the TSP scale using MHSA. For example, we
used 250 parallel processors in the cluster to solve a 5000-city TSP problem by MHSA.
25000000 rij evolved and updated in parallel. After 28694 seconds (about 8 hours), all
25000000 rij converged to 0 or 1.

8.2. Efficiency and parallelism of MHS algorithm

The MHS algorithm provides a valuable alternative to traditional methods because of
its inherent parallelism. The grayscale values and weights, rij, cij, can be computed and
updated in parallel without any information exchange, which is the foundation of MHSA’s
efficiency. The experimental results clearly confirm the outstanding parallel capability of
MHSA (see Table 2 ). We used 1, 8, and 16 computing nodes of the cluster, respectively.
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 Table 2: Convergence time and speeds of MHSA with scale
Scale 16 parallel nodes 8 parallel nodes 1 parallel node

cities time(s) iterations time(s) iterations time(s) iterations

110 0.983 242 1.90 166 16.767 176

160 2.583 600 5.74 348 58.827 393

200 5.453 1046 12.62 602 169.793 816

225 10.8 1759 25.87 973 343.651 1312

250 15.868 2227 42.034 1293 569.017 1832

275 29.419 3327 63.617 1722 1044.953 2842

300 38.901 4159 99.039 2276 1571.968 3711

320 63.718 5711 130.258 2679 2113.836 4351

340 84.762 6806 183.987 3410 3358.083 5839

360 118.984 8404 247.028 4122 4276.371 6758

375 155.671 9816 336.842 4988 5839.789 8245

390 262.693 12544 446.898 5834 8130.714 9963

405 307.017 13909 578.865 6845 9729.199 11014

420 374.298 15629 699.978 7718 13528.261 13064

435 425.01 17180 861.57 8609 15294.553 14319

450 594.781 19854 997.091 9528 18108.043 15921

465 698.079 21922 1641.718 11881 25035.577 18459

480 774.948 23927 1418.417 11523 27951.384 20024

495 987.354 26780 2122.651 13738 37178.713 22961

510 1332.217 30418 2196.459 14275 38786.457 24314

Table 2 includes the sequential version which uses one computing node of the cluster.
The other parts of the table are for the parallel version, using 4 and 16 computing nodes of
the cluster. “Iterations” and “time” are the number of iterations and the time the MHSA
algorithm takes to converge, respectively. As shown in Table 2, for a 510-city TSP,
the convergence time using 8 computing nodes is about 1/7 the time of the sequential
version; and the convergence time using 16 computing nodes is about half the time with
8 computing nodes. The convergence time is almost inversely proportional to the number
of computing nodes used by MHSA.

Fig. 11 Convergence time of MHSA with scale
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As shown in Fig. 11, the convergence time of the sequential version increases expo-

nentially with the scale, which is similar to all the exact methods. When parallelized, the
convergence time drops significantly, which speaks for the high parallelism of MHSA.

8.3. Comparison between MHSA and other benchmark NAs

As mentioned in Section 1, popular nature-inspired approaches (NAs) include genetic
algorithm (GA), simulated annealing algorithm (SA), ant colony optimization (ACO),
particle swarm optimization (PSO), etc. The proposed MHSA and these benchmark NAs
share some common features, which are listed in Table 3.

Table 3: Common features between MHSA and other benchmark NAs

Aspects Common features

Drawn from Observations of physical processes that occur in nature

Belong to The class of meta-heuristics, approximate algorithms

Parallelism Have inherent parallelism

Performance Consistently perform well

Fields of application Artificial intelligence including multi-objective optimization

Solvable problems All kinds of difficult problems

Next, we compare the proposed algorithm, MHSA, with ant colony optimization(ACO),
simulated annealing (SA), elastic net (EN), and self-organizing map (SOM). Results on
ACO, SA, EN, and SOM are from [6], [7] and [16]. The MHSA results are averaged over
25 trials. The comparison results on average tour length obtained for five 50-city TSP
instances are presented in Table 4.

As shown in Table 4, MHSA has better performance than other benchmark NAs on
TSP.

Table 4: Comparison between MHSA and other benchmark NAs on random instances of symmetric TSP

MHSA ACO SA EN SOM
City set 1 5.75 5.88 5.88 5.98 6.06
City set 2 6.00 6.05 6.01 6.03 6.25
City set 3 5.49 5.58 5.65 5.70 5.83
City set 4 5.66 5.74 5.81 5.86 5.87
City set 5 6.21 6.18 6.33 6.49 6.70

We also summarize the relative differences between MHSA and the benchmark NAs
in Table 5.
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Table 5: Relative differences between HMSA and other benchmark NAs

HMSA GA SA ACO PSO

Inspired by Host-seeking behavior of mosquitoes Natural evolution Thermodynamics Behaviors of Biological swarm

real ants (e.g., swarm of bees)

Key components Hybrid attraction function; differential Chromosomes Energy function Pheromone laid Velocity-coordinate

dynamic equations model

Exploration Both Macro-evolutionary and Macro- Micro- Macro- Macro-

Micro-evolutionary processes evolutionary evolutionary evolutionary evolutionary

processes processes processes processes

Dynamics Can capture the entire dynamics Cannot capture Can capture Cannot capture Cannot capture

inherent in the problem partly

High-dimensional, highly Can describe Cannot describe Can describe Cannot describe Cannot describe

nonlinear, random behaviors partly

and dynamics

Adaptive to problem changes Fast Middle Fast Low Middle

Exchange overhead Low Middle Low Low Middle
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9. Conclusion

From observations on the host-seeking behaviors of mosquitoes, we find that the kine-
matics and dynamics of mosquitoes exhibit the properties of parallelism, openness, local
interactivity, and self-organization. This stimulates us to develop a new model for intel-
ligent computing by mimicking the host-seeking behaviors of mosquitoes. The mosquito
host-seeking (MHS) model can overcome some of the limitations of existing popular NAs.
In summary, MHSA has the following advantages:

1. By its inherent parallel structure, the model admits a highly parallel algorithmic
implementation and thus possesses the ability to deal with large-scale complex prob-
lems.

2. We have proved that the MHS algorithm would converge to a stable equilibrium
state, based on Lyapunov second theorem on stability. And since the solution
obtained by MHSA can approach the theoretical optimum solution, MHSA offers
better performance than other benchmark NAs proposed in recent literature.

3. Parameter values are deduced from the convergence proofs of the MHSA algorithm,
and hence their setting does not depend on algorithm learning or any prior knowl-
edge.

4. It is fundamentally different from the other popular NAs in terms of its motivation
and basic principle, the optimization mechanism, the elements and their states, and
the biological model, the mathematical model and theoretical foundation on which
it is based.

5. It is robust in the sense that it is basically independent of the initial conditions,
problem size, small-range changes of the parameters, etc.

6. It can be applied to the optimization of multiple objectives which could include
aggregate utility, personal utility, minimal personal utility, etc.

7. It has a powerful processing ability in a complex and dynamic real-time changing
environment.

8. It has greater flexibility than other methods, making it very easy to adapt to for a
wide range of optimization problems.

9. It can describe complex, high-dimensional, highly nolinear, micro-evolutionary and
random behaviors and dynamics. This is due to the introduction of the aggregate in-
tention strength factor (ζij) in the definition of the artificial mosquitoes’ interaction
behavior function Q(t). In the future, by studying the complex problems involved in
a variety of complicated social interactions and autonomous behaviors, we can try
to categorize and model such social behaviors and construct a mathematical model
to compute ζij.

Appendix

Proof of Lemma 1. For γ > 1, Ψ1(t) of artificial mosquito mij is a piecewise linear
function of the stimulus uij(t), as shown in Fig. 5: Segment I, Segment II, and Segment
III. By Eq. (8), a point is an equilibrium point, i.e., duij(t)/dt = 0, iff −Ψ2(t)=Ψ1(t) at
the point. We see that for the case of γ − 1 > −Ψ2(t) > 0, an equilibrium point may be
on Segment I, II or III. Note from Eq. (1), uij(t) ≥ 0. Thus we need not consider the
equilibrium point on Segment I.

Suppose that the artificial mosquito mij is at an equilibrium point on Segment III at
time t0, and an arbitrarily small perturbation △uij to the equilibrium point occurs at
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time t1. Since ∂Ψ2(t)

∂uij(t)
< 1, and ∂Ψ1(t)

∂uij(t)
= −1 for uij(t) > 1, we have c = [ ∂Ψ1(t)

∂uij(t)
+ ∂Ψ2(t)

∂uij(t)
] < 0,

and

△duij

dt
=

duij

dt
|t1 −

duij

dt
|t0=

duij

dt
|t1= △[Ψ1(t)+Ψ2(t)] ≈ [ ∂Ψ1(t)

∂uij(t)
+ ∂Ψ2(t)

∂uij(t)
]△uij = − | c | △uij.

That means
duij

dt
|t1 is always against △uij, or in other words, the perturbation will be

suppressed and hence the artificial mosquito mij will return to the original equilibrium
point.

Whereas, for an equilibrium point on Segment II, because
∂Ψ2(t)
∂uij(t)

> 1 − γ and ∂Ψ1(t)
∂uij(t)

= γ − 1 > 0, we have

c = [ ∂Ψ2(t)
∂uij(t)

+ ∂Ψ1(t)
∂uij(t)

] > 0, and

duij

dt
|t1≈ [ ∂Ψ1(t)

∂uij(t)
+ ∂Ψ2(t)

∂uij(t)
]△uij =| c | △uij

such that the perturbation is intensified and the artificial mosquito mij departs from the
original equilibrium point on Segment II. Therefore, an equilibrium point on Segment II
is unstable, and only an equilibrium point on Segment III, e.g., p4 in Fig. 5, is stable with
uij(t) > 1, vij(t) = 1. �

Proof of Lemma 2. Due to γ > 1 and −Ψ2(t) < 0, an equilibrium point must be on

Segment III, e.g., p6 in Fig. 5. Moreover, as stated in the proof of Lemma 1, ∂Ψ2(t)
∂uij(t)

< 1

for uij(t) > 1 guarantees any equilibrium point on Segment III to be stable, with uij(t) >
1, vij(t) = 1. �

Proof of Lemma 3. It is straightforward from the proof of Lemma 1 . �

Proof of Theorem 3. By Lemmas 1–3, the equilibrium points on Segment II and
Segment III, except for the saddle point s3 in Fig. 5, are unstable and stable, respectively.
We denote the right side of Eq. (8) by RHS.

Sufficiency. Assume that RHS =
duij(t)

dt
= Ψ1(t) + Ψ2(t) > 0 holds for uij(t) =

1, vij(t) = 1. It follows that Ψ1(t) 6= −Ψ2(t) for uij(t) = 1, vij(t) = 1, namely, it is
impossible that the equilibrium point is the intersection point s3 where Ψ1(t) = −Ψ2(t).

Since RHS =
duij

dt
> 0 at point uij(t) = 1, vij(t) = 1, the increase of uij(t) from value 1

leads to the situation that the artificial mosquito mij converges to a stable equilibrium
point on Segment III.

Necessity. Suppose that Eq. (8) has a stable equilibrium point. We need to prove
that RHS > 0 holds for uij(t) = 1 and vij(t) = 1. By contrary, if there is RHS ≤ 0 for
uij(t) = 1 and vij(t) = 1, then the equilibrium point must be either at the point s3 where

RHS = 0, or on Segment II because RHS =
duij

dt
< 0 would give rise to the decrease of

uij(t) from value 1. Since the point s3 and any equilibrium point on Segment II are all
non-stable, we have a contradiction. �

Proof of Theorem 4. By Eqs. (1), (2), (3), (4) we have

Ψ2(t) = {λ1+λ2−λ3ω
2
ij(t)u

2
ij(t)−λ4[(1+exp(−ζij(t)uij(t)))

−1−0.5]2}[r2
ij(t)+c2

ij(t)][uij(t)]
2

(21)

Note that ω2
i (t), r

2
ij(t), c

2
ij(t) ≤ 1. By Theorem 1, for uij(t) = 1, vij(t) = 1, we have

γ > 1 − Ψ2(t) = 1 + {−λ1 − λ2 + λ3ω
2
ij(t)u

2
ij(t)

+λ4[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]2}[r2

ij(t) + c2
ij(t)][uij(t)]

2

≤ 1 + 2[λ3 + 0.25λ4]. �
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Proof of Lemma 4. Using Eq. (21) and noting

dωij(t)

duij(t)
= 2ωij(t)uij(t)(ωij(t) − 1), we

obtain
∂Ψ2(t)
∂uij(t)

= {2[−λ1 − λ2 + λ3ω
2
ij(t)u

2
ij(t) + λ4[(1 + exp(−ζij(t)uij(t)))

−1 − 0.5]2]

+[−2λ3ωij(t)
dωij(t)
duij(t)

u2
ij(t)−2λ3ω

2
ij(t)uij(t)−2λ4ζij(t) exp(−ζij(t)uij(t))[(1+exp(−ζij(t)uij(t)))

−1−

0.5]

×[1 + exp(−ζij(t)uij(t))]
−2](−uij(t))}x2

ij(t)[r
2
ij(t) + c2

ij(t)][−uij(t)]

= {2[−λ1 − λ2 + λ3ω
2
ij(t)u

2
ij(t) + λ4[(1 + exp(−ζij(t)uij(t)))

−1 − 0.5]2]

+[−4λ3ω2
ij(t)u

3
ij(t)(ωij(t)− 1)− 2λ3ω2

ij(t)uij(t)− 2λ4ζij(t) exp(−ζij(t)uij(t))[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]

×[1 + exp(−ζij(t)uij(t))]
−2](−uij(t))}x2

ij(t)[r
2
ij(t) + c2

ij(t)][−uij(t)]

Then from ∂Ψ2(t)
∂uij(t)

< 1 for uij(t) ≥ 1+; and uij(t) ≤ ωij(t), rij(t), cij(t) ≤ 1, we derive

∂Ψ2(t)
∂uij(t)

< 2[2(−λ1 − λ2 + λ3 + 0.25λ4) + 4λ3(2/3)2(3/4)3/12] < 1,

which leads to Eq. (19).

Similarly, from ∂Ψ2(t)
∂uij(t)

> 1 − γ for 0+ ≤ uij(t) ≤ 1−, we have

∂Ψ2(t)
∂uij(t)

> 4(−λ1 − λ2 − λ3/4 − ζij(t)λ4) > 1 − γ,

which leads to Eq. (20). By Theorem 4, therefore the conclusion is valid. �

Proof of Theorem 5. Straightforward, by Lemmas 4 and 5. �

Proof of Theorem 6. Using Eq. (21) and noting
dωij(t)

duij(t)
= 2ωij(t)uij(t)(ωij(t) − 1), we obtain

∂Ψ2(t)
∂uij(t)

= {2[−λ1 − λ2 + λ3ω
2
ij(t)u

2
ij(t)

+λ4[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]2]

+[−2λ3ωij(t)
dωij(t)

duij(t)
u2

ij(t) − 2λ3ω
2
ij(t)uij(t)

−2λ4ζij(t) exp(−ζij(t)uij(t))

[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]

[1 + exp(−ζij(t)uij(t))]
−2](−uij(t))}

x2
ij(t)[r

2
ij(t) + c2

ij(t)][−uij(t)]

= {2[−λ1 − λ2 + λ3ω
2
ij(t)u

2
ij(t)

+λ4[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]2]

+[−4λ3ω
2
ij(t)u

3
ij(t)(ωij(t) − 1) − 2λ3ω

2
ij(t)uij(t)

−2λ4ζij(t) exp(−ζij(t)uij(t))

[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]

[1 + exp(−ζij(t)uij(t))]
−2](−uij(t))}

x2
ij(t)[r

2
ij(t) + c2

ij(t)][−uij(t)]

For the force field F , we define a Lyapunov function L(t) by

L(t) = −1
2

∑

i,k

(γ − 1)vij(t)
2 +

∑

i,k

∫ t

0

dvij(x)

dx
{−λ1 − λ2

+λ3ω
2
ij(x)u2

ij(x) + λ4[(1 + exp(−ζij(x)uij(x)))−1 − 0.5]2}

[r2
ij(x) + c2

ij(x)][−uij(x)]2dx.

We hence have

| L(t) | ≤
∑

i,k

( γ − 1 ) | vij(t)
2 | +

∑

i,k

∫ t

0
| dvij(x)

dx
|
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· | { −λ1 − λ2 + λ3 ω2

ij(x) u2
ij(x)

+λ4[(1 + exp(−ζij(x)uij(x)))−1 − 0.5]2}

| [r2
ij(x) + c2

ij(x)][−uij(x)]2dx.

Since condition (20) is valid, vij(t) ≤ 1 and ui(t) ≤ 1, it follows that

| L(t) | ≤
∑

i,k

( γ − 1 ) +
∑

i,k

γ < m n γ

which implies that L(t) is bounded.
In addition, we have

dL(t)
dt

= −
∑

i,k

(γ − 1)vij(t)
dvij(t)

dt

+
∑

i,k

dvij(t)

dt
{−λ1 − λ2 + λ3ω

2
ij(t)u

2
ij(t)

+λ4[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]2}

[r2
ij(t) + c2

ij(t)][−uij(t)]
2

= −
∑

i,k

dvij(t)

dui(t)

duij(t)

dt
{−uij(t) + γvij(t)

+{λ1 + λ2 − λ3ω
2
ij(t)u

2
ij(t)

−λ4[(1 + exp(−ζij(t)uij(t)))
−1 − 0.5]2}

[r2
ij(t) + c2

ij(t)][−uij(t)]
2}

= −
∑

i,k

dvij(t)

duij(t)
(

duij(t)

dt
)2 ≤ 0.

Thus L(t) will monotonically decrease with the elapsing time. �
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