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ABSTRACT 
     Recently Moscibroda and Wattenhofer came up with the 
notion of scheduling complexity to capture the minimum amount 
of time to successfully schedule all the transmission requests 
under the physical SINR model. Their algorithm featuring a non-
linear power assignment can schedule strongly connected 
transmissions in narrowband networks with 4(log )O n timeslots. 
In this paper, we first generalize this result to ultra-wideband 
networks. We show the strong connectivity scheduling 
complexity in UWB networks to be 3(log( ) log )O n m n⋅ , where m 
is the processing gain. Secondly, we show that both of these 
polylogarithmic scheduling complexity results are gained at the 
expense of exponential energy complexity with lower bound 

( 2 )nnω ⋅ . We also prove the upper bound of the energy 
complexity in narrowband networks to be 2( 2 )nO n α⋅ , and for 
UWB networks, this upper bound can be reduced by a processing 
gain factor.   
    On the other hand, we show that improving the scheduling 
complexity through arbitrary power control has its limitations, 
and that different power assignment strategies have different 
impacts on the protocol interference models, which was often 
neglected in the design of wireless scheduling algorithms. 
Compared with narrowband networks, although the effect of 
aggregate interferences in UWB networks is greatly reduced, we 
demonstrate that the constant and linear power assignments in 
UWB networks are still inefficient in the worst case with respect 
to the scheduling complexity ( ( / )n mΩ ), which suggests there is 
a need for a better arbitrary power assignment. 
    Our analyses shed new light on the design of the power 
assignment scheme and the performance analysis of the wireless 
scheduling algorithms. In energy-constrained wireless networks, a 
tradeoff between the scheduling complexity and energy 
complexity is a practical consideration. Our results in this paper 
can be directly applied to other spread-spectrum networks 
including DS-CDMA and FH-CDMA. 

Categories and Subject Descriptors 
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design – wireless communication, network topology; 
 

F.2.2 [Analysis of Algorithms and Problem Complexity]: 
Nonnumerical Algorithms and Problems - geometrical problems 
and computations, sequencing and scheduling; 

General Terms 
Algorithms, Theory, Performance 

Keywords 
Ad hoc and sensor networks, scheduling complexity, energy 
complexity, interference models, interference control, ultra-
wideband. 

1. INTRODUCTION 
       The scheduling complexity problem in wireless networks is 
to try to use the minimum amount of time to successfully 
schedule all the transmission requests to meet some topological 
property requirement. Recently Moscibroda and Wattenhofer 
proposed a solution of which the scheduling complexity for 
narrowband networks with strong connectivity property is only 

4(log )O n  timeslots [10], which is exponentially faster than ( )O n  
if individual transmissions are scheduled one by one. In this paper 
we generalize this result to cover also ultra-wideband (UWB) 
networks which are drawing increasing attention due to their 
many promising features [17]. Since a UWB network is inherently 
a spread-spectrum network [12], the aggregate interferences 
caused by other simultaneous transmissions at the intended 
receiver can be reduced by a factor of the processing gain, making 
it very competitive in wireless communications. Unlike the 
narrowband networks where the interference range is larger than 
the transmission range, as shown in Section 3, the interference 
range of UWB networks around the receiver is smaller than the 
transmission range, allowing more simultaneous transmissions at 
the receiver. And one of the recent findings in UWB network 
research [13] is that the design of the optimal MAC can be 
independent of the choice of routing. Thus the use of ultra-
wideband can re-introduce the notion of layer separation between 
the MAC and the routing layers just like in traditional wire line 
networks. This will make the resultant network more scalable and 
a good choice for generic sensor networks. Furthermore, UWB is 
multi-path fading resistant, and as the following SINR model 
shows, it is more flexible in terms of adapting its parameters to 
meet different operational requirements (e.g., change in 
processing gain). 
     For our analyses, we adopt the physical signal-to-interference-
plus-noise ratio (SINR) model, with which only when the 
received power is above the SINR ratio threshold can a message 
be successfully received. The SINR model for UWB networks 
was first given in [4], which is different from that for narrowband 
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networks [6]. Specifically, the achieved signal-to-interference-
plus-noise ratio at the receiver of link i can be represented as:      
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 where                       

iP denotes the average transmission power of link i’s 
transmitter, ix ;  

iR  denotes link i’s data rate, and 1/( )i s h cR N N T= ; sN denotes the 
number of pulses per symbol, hN  the number of timeslots per 
Pulse Repetition Interval (PRI), and cT  the pulse duration; 

fT is the PRI, and fT = hN cT ; 
2σ  is a parameter depending on the shape of  the monocycle; 

η  is the background noise plus interference from other non-UWB 
systems; 

( , )i jd x x denotes the Euclidean distance between 
transmitter ix and jx ; 
α  is the path loss exponent and β is the SINR threshold; 

0N denotes the number of simultaneous transmissions with 
transmitter ix  . 
     If we set 2( )fN Tη σ= and 21 ( )i fm R T σ= , the above is 
transformed to a form similar to the spread-spectrum SINR model 
in [5]: 
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   Here we use m for the processing gain. If m=1, this becomes the 
traditional narrowband SINR model, as used in [10]. 
    The organization of the paper is as follows. In Section 2, we 
review interference control techniques for both narrowband and 
wideband networks, and for both graph coloring based and 
physical SINR models. In Section 3, we explore different power 
assignments and their impacts on pair-wise interference models 
which play a very important role in the design of wireless 
protocols and wireless network capacity analyses. Furthermore, 
we discuss the limitations of spatial reuse through power control, 
which make the task to apply proper power control techniques to 
improving the scheduling complexity non-trivial. In Section 4, we 
give a formal definition of the scheduling complexity problem 
and show that both the constant and linear power assignments are 
inefficient with respect to the scheduling complexity in UWB 
networks. In Section 5, we generalize the non-linear power 
assignment algorithm in [10], with the guarantee that all the 
simultaneous transmissions can be successfully scheduled based 
on the SINR model, and show that the scheduling complexity of 
strong connectivity in UWB networks is 3(log( ) log )O n m n⋅ . 
This result represents an improvement over that for the 
narrowband networks. In Section 6, we define the energy 
complexity of the wireless scheduling problems, and show that the 
polylogarithmic scheduling complexity was achieved at the 
expense of the exponential energy. And in UWB networks, the 
upper bound of the energy complexity can be reduced by a 
processing gain factor. Section 7 concludes the paper and 

discusses some future tasks that could make our algorithm 
practical. 
    To the best of our knowledge, this is the first paper to study 
both the scheduling complexity and energy complexity of UWB 
(and wideband) networks, as well as the first to give energy 
complexity analyses of the strong connectivity scheduling 
problem in narrowband networks. Furthermore, this is also the 
first paper to analyze the impacts of power control on the protocol 
interference models. 
 

2. RELATED WORK 
       Interferences caused by concurrent transmissions in the 
shared communication medium could be nightmarish in wireless 
networks especially in multi-hop ad-hoc or sensor networks. If 
there are too many simultaneous transmissions, even if the 
interference from a single node is small, the aggregate 
interference could be disastrous. On the other hand, if there are 
only a few concurrent transmissions, or even to schedule them 
one by one would waste valuable bandwidth and the throughput 
capacity would suffer. Thus finding a proper interference control 
method is extremely important in wireless networks. And since 
interference control is based on the model used, therefore finding 
an appropriate interference model is equally important. For a 
recent survey on the algorithmic models of wireless ad-hoc and 
sensor networks, please refer to [14]. 
       The early interference control technique used in packet radio 
networks is to avoid the so-called “primary interference” and 
“secondary interference” problems [15]. By primary interference, 
a single node cannot perform two operations at the same time, 
such as receiving from two senders, transmitting to two receivers, 
or receiving and sending at the same time. By secondary 
interference, node A is covered in sender B’s transmitting range 
but the intended receiver is node C which is different from node 
A. Obviously avoiding secondary interference prevents the 
capture effect, which should be a good thing in the physical 
reality. The standard interference control technique to deal with 
these interferences is the “graph-based scheduling algorithm” [2]. 
It was claimed that the protocol interference model in [6] is its 
generic form. But as we will show in Section 3, the latter protocol 
model is indeed different from the graph-based one. 
      Based on the primary/secondary interference model, 
“distance-2 matching” (or strong edge coloring) for link 
scheduling and “distance-2 coloring” for broadcast scheduling 
were proposed [1]. We focus on link scheduling in this paper. In 
distance-2 matching, only links that are at least of distance two 
apart can be assigned the same timeslot (or color). This matching 
is actually in line with the 802.11 DCF MAC protocol, where 
RTS/CTS virtual carrier sensing would block the links within a 
distance of two edges. But recent research indicates that both the 
physical carrier sensing and virtual carrier sensing methods in 
802.11-ad-hoc are not throughput capacity-efficient [3].  So in 
this paper we will not consider this kind of distance-2 matching 
model. Instead, we focus on the primary interference problem – 
that is, all pairs of links sharing a common endpoint will not be 
scheduled at the same time, and the reception must satisfy the 
SINR inequality (1) but no other constraints. 
      For the graph-based models, it was shown in [2] that the 
scheduling of the maximum cardinality of the independent sets of 
the conflict graph [8] cannot guarantee the best throughput 
capacity due to the aggregate interference effect as just mentioned. 
Therefore most of the recent research has shifted to analyzing 
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physical SINR models [3][10]. For a latest survey of using 
physical SINR models in cellular networks, please refer to [9]. 
Regarding the use of SINR models in multi-hop networks, most of 
the interference control techniques focus on narrowband networks, 
and only a few of them would take on the spread-spectrum SINR 
model [5][18]. As we have mentioned, the transformed UWB 
SINR model is similar to the spread-spectrum SINR model, so all 
the results in this paper can be directly applied to other spread-
spectrum networks, such as DS-CDMA and FH-CDMA.     

3. POWER ASSIGNMENT IMPACT ON 
PROTOCOL INTERFERENCE MODELS 
AND LIMITATIONS 
      In this section, we first discuss the impact of different power 
assignments on the pair-wise interference models. And then we 
discuss the limitations of improving the spatial reuse through 
power control. Comparing with narrowband networks, there is 
more room for UWB networks to take advantage of power control 
to improve the scheduling complexity. 

3.1 Protocol Interference Models Under 
Different Power Assignments 
     We focus on the impact of the power assignments on the pair-
wise interference models, which was often neglected in wireless 
scheduling algorithm design. Basically, we can divide the current 
power assignment strategies into three categories:  
1) Constant power assignment;  
2) linear power assignment ; and 
3) arbitrary power assignment (e.g., non-linear power assignment). 
     We first consider narrowband networks. According to 
inequality (1) and because m=1 in narrowband networks, in order 
to ensure a successful transmission ( , )s rx x , the following 
inequality must hold. 

 ( , )
( , )

x s r

y s r

P d x x
N P d y x
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α β≥
+
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1 1( , ) ( )

( , )
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Pd y x
d x x P
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a) Protocol interference model with constant power 
assignment in narrowband networks: 
   With the constant power assignment, xP = yP , so by inequality 
(2), we have  
                                   1/( , ) ( , )s r s rd y x d x xαβ> ⋅                     (3) 
   If we set (1+ Δ )= 1/αβ , this becomes the same as the protocol 
model given in [6]. Since in narrowband networks, usually the 
threshold β >1 and consequently the range 1/ ( , )s rd x xαβ ⋅ is 
greater than the sender’s transmission range ( , )s rd x x . Thus to 
ensure a successful transmission, a disc of radius at 
least 1/ ( , )s rd x xαβ ⋅ around each successful receiver rx  must not 
contain other transmitters. So we denote 1/ ( , )s rd x xαβ ⋅  as the 
interference range (or exclusion region) around each receiver rx . 
For example, in Fig. 1(a), assuming constant power assignment, 
since ( , )s rd x y < ( , )s rd y y , transmission ( , )s ry y is not successful; 
whereas, since ( , )s rd y x > ( , )s rd x x , transmission ( , )s rx x is 
successful. With this we can distinguish the graph-based 
interference model from the protocol interference model which 
was considered the same in [2]. Notice that the protocol 
interference model originates from the physical SINR model, and 
so it can reflect the physical reality including the “capture effect”, 
while all the graph-based interference models cannot reflect the 
same. For example, since node rx  is in the transmission range 
of sy , it suffers from the secondary interference problem [15], so 
transmission ( , )s rx x is not successful. 

 

 

  

 
                Figure 1. Pair-wise transmissions examples     
b) Protocol interference model with linear power assignment 
in narrowband networks: 
     With the linear power assignment, xP = ( , )s rd x x αρ ⋅  and 

yP = ( , )s rd y y αρ ⋅ , and so according to inequality (2), we have 
1( , ) ( , )

( , ) ( , )
s r s r

s r s r

d y x d y y
d x x d x x

αβ> ⋅     ⇒   
1

( , ) ( , )s r s rd y x d y yαβ> ⋅      (4) 

     This protocol model was used in [14]. But compared with (3), 
it has attracted much less attention mostly because many capacity 
analysis papers assume the constant power assignment. Note that 
the interference range of receiver rx has been changed 
from 1/ ( , )s rd x xαβ ⋅ to 1/ ( , )s rd y yαβ ⋅ . For example, in Fig. 1(a), 
assuming linear power assignment, since ( , )s rd y x < ( , )s rd y y , 
transmission ( , )s rx x is not successful. And 
since ( , )s rd x y > ( , )s rd x x , transmission ( , )s ry y  is successful. 
      Now we turn to UWB networks. According to inequality (1), 
in order to ensure a successful transmission ( , )s rx x , the 
following inequality must hold. 
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c) Protocol interference model with constant power 
assignment in UWB networks: 
     With the constant power assignment, similar to part a), by 
inequality (5) we have  
                                1/( , ) ( / ) ( , )s r s rd y x m d x xαβ> ⋅                 (6) 
      The interference range 1/ ( , )s rd x xαβ ⋅ around the receiver rx  
is replaced with 1/( / ) ( , )s rm d x xαβ ⋅ . Hence the interference range 
becomes smaller than the transmission range.  
       For example, in Fig. 1(a), ifα =4, β =2, m=100, since  

( , )s rd x y =2> 1/( / ) ( , )s rm d y yαβ ⋅ 1.5,  
the previously unsuccessful transmission ( , )s ry y with constant 
power assignment in narrowband networks becomes successful in 
UWB networks. As a result, the two transmissions can be 
scheduled in parallel. 
d) Protocol interference model with linear power assignment 
in UWB networks: 
    With the linear power assignment, similar to part b), by 
inequality (5) we have 

1( , ) ( , )( )
( , ) ( , )

s r s r

s r s r

d y x d y y
d x x m d x x

α
β

> ⋅  ⇒  
1

( , ) ( ) ( , )s r s rmd y x d y yαβ> ⋅    (7) 

    The interference range around receiver rx is changed 
from 1/( / ) ( , )s rm d x xαβ ⋅ to 1/( / ) ( , )s rm d y yαβ ⋅ . For example, in 
Fig. 1(a), ifα =4, β =2, m=100, since 

( , )s rd y x =3> 1/( / ) ( , )s rm d y yαβ ⋅ 1.5, the previously 
unsuccessful transmission ( , )s rx x with linear power assignment 

xs xr 
ys yr 

 (d)  d(xs,xr)=2, d(ys,yr)=4, d(xs,yr)=3,d(ys,xr)=3 

xs xr ys yr 
(c)  d(xs,xr)=1, d(ys,yr)=1, d(xs,yr)=1,d(ys,xr)=3 

xs xr 
ys yr 
 (a)  d(xs,xr)=1, d(ys,yr)=4, d(xs,yr)=2,d(ys,xr)=3 

xr xs 
ys yr 
 (b)  d(xs,xr)=2, d(ys,yr)=4, d(xs,yr)=1,d(ys,xr)=1 
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in narrowband networks becomes successful in UWB networks. 
So the two transmissions can be simultaneously scheduled. 
      From the above analyses, on one hand, due to the large 
processing gain m when using the constant or linear power 
assignment, many unsuccessful simultaneous transmissions in 
narrowband networks become successful in UWB networks, thus 
leading to increased spatial reuse in UWB networks. On the other 
hand, as the examples in [16] have shown, even in narrowband 
networks, the unsuccessful simultaneous transmissions can also 
become successful with a proper arbitrary power assignment. For 
example, for Fig. 1(a), ifα =4, β =2, N=1, and xP =80, yP =3150, 
the two transmissions can be successfully scheduled in parallel. 
And for Fig. 1(c), ifα =3, β =4, N=1, and xP =14, yP =64, the two 
transmissions can also take place simultaneously. Nevertheless, in 
Section 4, we will show that even in UWB networks, both the 
constant and linear power assignments are still inefficient in terms 
of scheduling complexity. The following two theorems show that 
the power control technique has its limitations in reducing the 
scheduling complexity. 

3.2 Limitations of Power Control in 
Improving Spatial Reuse 
    THEOREM 3.1. In narrowband networks, for any two 
transmissions ( sx , rx ) and ( sy , ry ), if d( sx , ry ) ⋅ d( sy , rx )≤  

2 /αβ ⋅  d( sx , rx ) ⋅d( sy , ry ), then there exists no feasible power 
assignment for simultaneous transmissions; otherwise, there 
always exists a feasible power assignment to have a simultaneous 
schedule.          
    PROOF. If the two transmissions can be successfully 
scheduled, based on inequality (1) with processing gain equal to 1, 
the following two inequalities must follow: 
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From these inequalities, we have 
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power assignment for simultaneous scheduling; otherwise, there 
always exists a feasible power assignment to schedule these two 
transmissions in parallel.  
     Actually this is a special case of the Perron-Frobenius theory 
used in the power control of cellular networks [9], but it has been 
paid little attention in multi-hop networks.  
     For example, in Fig. 1(d), ifα =4, β =2, and N=1, there will 
be no feasible power assignment to simultaneously schedule 
transmission ( sx , rx ) and ( sy , ry ). The same is true of Fig. 1(b). 
     THEOREM 3.2. In UWB (or any spread-spectrum) networks, 
for any two transmissions ( sx , rx ) and ( sy , ry ), if 
d( sx , ry ) ⋅ d( sy , rx ) > 2 /( / )m αβ ⋅ d( sx , rx ) ⋅ d( sy , ry ), there 
always exists a power assignment to schedule these transmissions 
in parallel; no feasible power assignments for simultaneous 
schedule, otherwise. 
    PROOF. Similar to the proof of Theorem 3.1, if the two 
transmissions can be successfully scheduled, the following two 
inequalities must follow: 
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From these inequalities, we have 
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a power assignment to simultaneously schedule these two 
transmissions; otherwise, there is no valid power assignment to 
give a parallel schedule.   
     For example, in Fig. 1(d), if α =4, β =2, N=1, and m=10, 

xP = yP =1000, the two transmissions can be simultaneously 
scheduled.  
      Therefore, given any two transmissions in narrowband 
networks where power control cannot guarantee a simultaneous 
schedule, they can be scheduled in parallel in UWB networks as 
long as d( sx , ry ) ⋅d( sy , rx )> 2 /( / )m αβ ⋅ d( sx , rx ) ⋅d( sy , ry ). 
Given this result, we will discuss the scheduling complexity 
problem in UWB networks in Section 5. 
 

4. SCHEDULING COMPLEXITY AND 
INEFFICIENCY OF CONSTANT AND 
LINEAR POWER ASSIGNMENTS IN UWB 
NETWORKS 
4.1 Scheduling Complexity 
     We consider an arbitrarily distributed network with nodes 
X={ 0x , 1x ,…, 1nx − } in the Euclidean plane. For any links 

ijf =( ix , jx ), ( )ijf =d( ix , jx ) denotes the distance between 
node ix and node jx .  
DEFINITION 4.1. A power assignment tφ is a function 

:t Xφ +→  which maps every node in the network to a certain 
power level. ( )t ixφ = iP  denotes the power level of node ix  in 
timeslot t. A schedule S= 1 2 ( )( , ,..., )T Sφ φ φ  is a sequence of T(S) 
power assignments, where iφ  denotes the power assignment in 
timeslot i. 
DEFINITION 4.2. Given a timeslot t and a power assignment tφ , 
we say that the directed link ( , )s rx x  is successfully scheduled in 
timeslot t if rx  receives a message from sx  according to the 
SINR inequality (1).  
   Let tE be the set of all successful links in timeslot t, we have 
DEFINITION 4.3. The scheduling problem for a network 
property Ψ  is to find a schedule S of minimal length T(S), such 

that the union of the set tE ( ( )

1

T S
tt

E
=∪ ) satisfies the property Ψ . 

DEFINITION 4.4. The scheduling complexity of a network 
property Ψ  is the minimal number of timeslots T, such that there 
always exists a valid schedule S for Ψ of length T =T(S). 

4.2 The Inefficiency of Constant and Linear 
Power Assignments in UWB Networks 
      We first define the following property minψ which is the same 
as that in [10]: For every node ix X∈ , it can successfully send at 
least one message to any other node. This is the simplest property 
to check the algorithm’s scheduling complexity. We also consider 
the exponential node chain [7], where all the nodes are placed on 
a straight line with exponentially increasing distances between 
them. Fig. 2 below is an example.    
 
 •           •           •           •           •          •           •  … •  
        2i         12i+        22i+        32i+       42i+      52i+    2i n+       
Figure 2: Exponential node chain, where 2i n+ is the distance 
between nodes nx and 1nx +  
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THEOREM 4.1. For both constant and linear power assignments, 
the scheduling complexity for problem minψ is at least 

/( 2 ) ( / )n m n mαβ β⋅ ⋅ + ∈Ω , even in the absence of ambient 
noise, where n is the number of the nodes, and m is the processing 
gain. 
      PROOF. a) Constant power assignment: 
      In this case, for all nodes, transmission power iP = kP =P. Now 
consider the example in Fig. 2; we assume there are at most L 
simultaneous transmissions in a scheduling timeslot. Suppose 
node sx is the right-most transmitter in this timeslot, and node rx is 
its receiver. The other (L-1) simultaneous transmissions will cause 
aggregate interferences to node rx . According to the property of 
the exponential node chain, if node rx is on the left side of 
node sx , the distance from every other simultaneous transmitter to 
the receiver rx is d( ix , rx )≤ d( sx , rx ); and if node rx is on the 
right side of node sx , the distance from every other simultaneous 
transmitter to the receiver rx is d( ix , rx ) ≤ 2 ⋅ d( sx , rx ). 
Therefore the aggregate interference caused by these (L-1) 
simultaneous transmitters is at least ( 1) (2 ( , ))s rL P d x x α− ⋅ ⋅ . 
According to the SINR inequality (1), we have: 

( , )
( 1) (2 ( , ))

s r

s r

P d x x
mN L P d x x

α

α
β

≥
+ − ⋅ ⋅

 

     From this, it follows that the maximum number of 
simultaneous transmissions L in each timeslot is ( 2 ) /m αβ β+ ⋅ . 
Therefore, the constant power assignment method requires at least 

/( 2 )n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once. 
      b) Linear power assignment: 
      With linear power assignment, the sender sx will send to its 
receiver rx with power sP = ρ ⋅ ( , )s rd x x α , where ρ denotes the 
minimum received power to decode the message. Similar to the 
constant power assignment analysis, we assume there are at most 
L simultaneous transmissions in a scheduling timeslot. According 
to the property of the exponential node chain, for all nodes ix , it 
will cause at least the interference 2αρ to its left side nodes 
[16]. Now suppose rx is the left-most receiver, and sx is some 
transmitter in the L simultaneous transmissions. The other (L-1) 
simultaneous transmissions will cause at least the aggregate 
interference (L-1) 2αρ⋅  to this left-most receiver rx . According 
to the SINR inequality (1), we have 

( , ) / ( , )
( 1) 2    
s r s rd x x d x x

mN L

α α

α
ρ β

ρ
⋅

≥
+ − ⋅

 

From this, it follows that the maximum number of simultaneous 
transmissions L in each timeslot is ( 2 ) /m αβ β+ ⋅ . And therefore 
the linear power assignment method requires also at least 

/( 2 )n m αβ β⋅ + ⋅ timeslots to schedule all nodes at least once.  

5. THE SCHEDULING COMPLEXITY OF 
STRONG CONNECTIVITY IN UWB 
NETWORKS 
5.1 The NPAW Scheduling Algorithm 
    It is important to distinguish between link length class and link 
length class set which are used in our algorithm. A link length 
class is a set of transmission links such that the lengths of these 
links differ by at most a factor of 2 (line 6 of the main algorithm). 
A number of link length classes form a link length class set. The 
three kinds of link length class set L, S and I used in our algorithm, 
and their relationships, are described in Fig. 3. 

 
 
 
 
 
 
 
 
 
 
Figure 3: Three kinds of link length class set and their 
relationships. 
 
    In Fig. 3, Lk, Sk and Ik denote the respective length classes in 
each set. L is renamed to S because the empty length classes 
(containing no transmission links) in L were deleted (line 7 of the 
main algorithm). For example, the length classes L1 and L3 were 
deleted. S is renamed to I because in each round, the scheduling 
algorithm only selects the length classes in S with a certain length 
class separation. The separation value is log(4βn) in [10] but we 
use log(3nβ/m) in our algorithm (line 9 of the main algorithm). 
The solid arrows from S to I mean we select the length classes 
S0SjSk… in the first round, while the dashed arrows mean we 
select the length classes S1Sj+1Sk+1… in the second round (the 
details are in Tables 1 and 2). Note that only links in Lk have the 
property 12 ( ) 2k k

ijf +≤ < , but not those in Sk or Ik (because 
12k+ upper bound would not hold for them). 

     Our scheduling algorithm also uses a non-linear power 
assignment. For convenience, we refer to the scheduling 
algorithm in [10] as “NPAN” (non-linear power assignment for 
narrowband networks), and our algorithm “NPAW” (non-linear 
power assignment for (ultra)-wideband networks). The main 
algorithm of NPAW proceeds in phases. In each phase, the 
algorithm constructs a directed nearest neighbor forest pF on the 
current active nodes (lines 3, 4 and 5). Initially all the nodes in X 
are active, but after every directed link in pF has been scheduled, 
all the transmitting nodes of these links become passive in the 
next phase (line 11). When there is only one active node, the 
while loop (line 2) terminates and the node set X becomes a 
directed spanning tree with the active node as the sink (A sink 
node means a node having no outgoing link). Then the sink node 
transmits with maximum power to cover all the nodes in X (line 
13), so that the resultant topology would become strongly 
connected.    
     The challenging part of the algorithm is how to 
schedule pF both successfully and efficiently. Just as Fig. 3 has 
demonstrated, we first partition all the links in pF into length 
classes of L which is then renamed to S (lines 6 and 7). Then we 
use the subroutine Schedule() to schedule the links in length 
classes log(3 / )h n m kS β⋅ + in the kth round (lines 8, 9 and Table 2). The 
trick of this algorithm lies in two aspects: one is the non-linear 
power assignment scheme (line 9 of the subroutine). This power 
assignment uses a power scaling factorτ which depends on the 
position of the scheduling links in link length class set I (lines 1 
and 2 of the subroutine and Fig. 3). Because short links have a 
high τ  value and long links have a low τ value, this power 
assignment can increase the power of the short links relative to 
the long ones so that it makes simultaneous transmissions of very 
different lengths possible. Furthermore, because this power 
assignment takes the parameter n (total number of the nodes) into 
account, it can bound the aggregate interferences through the 
properly designed protocol interference model (lines 12 and 13 of 

  L0   L1   L2   L3   L4   …   Lk   …  L∆-1  L : 

  S : 

  I :   I0   I1   I2   …   Ik   …   Iq 

  S0   S1   S2   …   Sj   Sj+1  …   Sk  Sk+1   … 
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the subroutine). But as discussed in Sections 2 and 3.1, traditional 
pair-wise protocol interference models cannot guarantee the 
successful transmission due to the aggregate interference effect. 
     The second part of the trick is the selection of the simultaneous 
transmitting links in length class set I (Fig. 3). With the proper 
length class separation, the algorithm can bound the total number 
of deleting links at (log )O n  in each timeslot of every scheduling 
round (line 9 of the main algorithm and lines 12 and 13 of the 
subroutine), thus guaranteeing that at least Ω ( 1/ log n ) of the 
current candidate links can be simultaneously transmitted in a 
single timeslot. Therefore the polylogarithmic scheduling 
complexity can be arrived at.  
    There are three important differences of our NPAW algorithm 
from the NPAN algorithm: 
    a) We design a new non-linear power assignment for UWB 
networks (line 9 of the subroutine). 
    b) We design two new protocol interference models which can 
bound the aggregate interferences through deleting fewer or at 
most equal transmitting links than the NPAN algorithm. The 
deleted links consist of two groups: the first are in the same length 
class link scheduling (line 1 of the main algorithm, and line 12 of 
the subroutine) and the second are in different length class link 
schedulings (line 13 of the subroutine). The proofs will be given 
in Corollary 5.5 and Lemma 5.6. 
    c) As shown in Fig. 3 and Table 2, there are more length 
classes to be scheduled in the same round in link length class set I 
(line 9 of the main algorithm), and therefore the total iterations of 
the “for” loop is reduced as compared to the NPAN algorithm 
(line 8 of the main algorithm). By this reduction, we reduce the 
scheduling complexity from 4(log )O n to 3(log( ) log )O n m n⋅ .  
  
Main Algorithm:  Strong Connectivity Scheduling Algorithm for 
UWB Networks (NPAW) 
 
Input: An arbitrarily distributed set of nodes X  (c.f. section 4.1) 
Output: A schedule S satisfying strong-connectivity 
1: Define a constantυ :=4N and a variable μ which is a function of 

the processing gain m such that  

μ :=2+ ε +4 ⋅
1 ( 1)

( 2)(72) m
α αβα

α
−
−⋅ ;  α >2;  t:=1;   

{N is the background noise from inequality (1) and ε is a small 
positive parameter.} 

2: while |X|>1 do  
3: pF :=∅ ; 

4: For each ix X∈ find its closest neighbor jx such that 
pF := pF ∪ ijf ;     { ijf is a directed edge from ix to jx .} 

5: If pF contains bi-directional edges then remove one edge of 
them;  { To make pF a directed nearest neighbor forest. } 

6: Partition all the transmission links in pF  into length class 
set 0 1 1{ , ,..., }L L L LΔ−= , such that kL contains all links ijf of 
length 12 ( ) 2k k

ijf +≤ < ; { maxlog( )lΔ = ⎡ ⎤⎢ ⎥ , and maxl means the 
maximum link length in pF .} 

7: Delete all empty length classes kL in pF and rename L to 

0 1{ , ,..., ,...}kS S S S= such that kS is the thk smallest non-empty 
length-class in S; 

8:        for k=0 to log(3 / ) 1n mβ −  do 
9:        Schedule all the links 

       / log(3 / ) 1
log(3 / )0

n n m
ij h n m kh

f Sβ
β

−
⋅ +=

∈∪  

       using subroutine Schedule(); 

10:        end for 
11: Delete all the nodes from node set X except the sink node in each 

tree of the directed nearest neighbor forest pF ;   

12: end while 
13: ( )t ixφ :=N/m ⋅ β ⋅ maxlα  for ix X∈ ;  { Here maxl means the 

largest Euclidean distance between two nodes in node set X.} 
14: S:={ 1 1,..., tφ φ − }; 
Subroutine Schedule(): 
1: Let F be the set of links to be scheduled, rename these link 

length classes in S to 0 1{ , ,..., }qI I I I=  with at most q+1 length 
classes where q= / log(3 / ) 1n n mβ −⎡ ⎤⎢ ⎥ . kI is the thk smallest 
length-class in I; {line 9 of the main algorithm} 

2: for each uvf ∈ kI do ( ) : 1ux q kτ = − + ;   
{Links within the smallest length class 0I have the highest τ
value / log(3 / )n n mβ⎡ ⎤⎢ ⎥ , and links within the largest length 
 class qI have the lowest τ  value 1.} 

3: while F ≠ ∅ do 
4:     for each ix X∈  do ( ) : 0;t ixφ = end for    {Set the powers of 

the transmitters in the previously scheduled links to 0.} 
5:     : ;tF F=  : ;tE = ∅  
6:      while tF ≠ ∅ do 
7:           Choose the link *

ij tf F∈ of minimal length; 

8:          *: { };t t ijE E f= ∪ *: \ { };t t ijF F f=  

9:          ( ) *( ) : (3 / ) ( )ix
t i ijx n m fτ αφ υ β= ⋅ ;   {Schedule link *

ijf } 

10:          for each kl tf F∈ do 
11:              : ( ) ( )ik i kx xδ τ τ= − ; 
12:               if ikδ =0 and d( ix , lx ) *( )ijfμ≤ ⋅  

                   then : \ { };t t klF F f=  
13:                    else if d( ix , lx ) ( 1) / *(3 / ) ( )ik

ijn m fδ αβ +≤ ⋅   
                          then : \ { };t t klF F f=  

14:               end if 
15:            end for 
16:       end while 
17:      : \ ;tF F E=   t:=t+1; 
18: end while 

 
5.2 Correctness Analysis 
     In Section 5.1, we have shown that in each timeslot of every 
scheduling round, the deleting links in the NPAW algorithm must 
be fewer than or at most equal to the deleting links in the NPAN 
algorithm. This means that there are more transmission links that 
should be scheduled in the same timeslot, thus proving that the 
successful simultaneous transmissions of all available links is of 
fundamental importance. 
LEMMA 5.1. Consider a scheduled link xf with intended 
sender sx and receiver rx . Let ( )r iI y  be the interference caused 
at rx by simultaneously transmitting nodes iy for 
which ( ) ( )i sy xτ τ< . It holds that ( ) 1( ) (3 / ) sx

r iI y n m τυ β −≤ . 
PROOF. In our main algorithm, because every node iy transmits 
messages to its nearest neighbor, we have d( iy , rx ) ( )yf≥ . 
Hence the interference at rx caused by iy is at most 

( )r iI y = 
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( )(3 / ) ( )
( , ) ( )

iy
yi

i r y

n m fP
d y x f

τ α

α α

υ β ⋅
≤ 3 3( ) ( ) 1( ) ( )i sn ny x

m m
β βτ τυ υ −= ≤ .  

LEMMA 5.2. Consider a scheduled link xf with intended 
sender sx and receiver rx . Let ( )r iI y  be the interference caused 
at rx by simultaneously transmitting nodes iy for 
which ( ) ( )i sy xτ τ> . It holds that ( ) 1( ) (3 / ) sx

r iI y n m τυ β −≤ . 
PROOF. Assume for contradiction that there exists a 
node iy with ( ) ( )i sy xτ τ> and ( ) 1( ) (3 / ) sx

r iI y n m τυ β −> . Then 

( )r iI y =
( )(3 / ) ( )

( , ) ( , )

iy
yi

i r i r

n m fP
d y x d y x

τ α

α α

υ β ⋅
≤ 3 ( ) 1( ) sn x

m
β τυ −>  

From this, we have ( 1) /( , ) (3 / ) ( )is
i r yd y x n m fδ αβ +< ⋅ . 

However, this contradicts the definition of our algorithm. In line 
13 of the subroutine, if node iy has been scheduled (because it has 
short link length, line 7 of the subroutine), from the above 
inequality, node sx should have been deleted, which establishes 
the contradiction. Therefore, ( ) 1( ) (3 / ) sx

r iI y n m τυ β −≤  holds.  
LEMMA 5.3. Consider a scheduled link xf with intended 
sender sx and receiver rx . Let 0

rI  be the total interferences caused 
at rx by simultaneously transmitting nodes iy for 
which ( ) ( )i sy xτ τ= . The following holds: 
 ( ) 1 ( )0 ( / 3) ( / ) (3 )s sx x

rI m nτ τυ β −≤ ⋅ ⋅ . 
PROOF. The proof of this lemma is similar to that of Lemma 4.4 
in [10]. The main idea is that because the lengths of the links in 
the same length class differ by at most a factor of 2, according to 
a simple geometric area argument, the deleting links must be 
bounded by a certain number. The difference is that we change 
the ring width from 1

2 ( 3) ( )xfμ − ⋅ to 1
2 ( 2 ) ( )xfμ ε− − ⋅ . And 

more importantly, the μ value is greatly reduced due to the 
introduction of the processing gain m in the denominator. Thus 
the deleting links in the same length class are greatly reduced. 
Plugging in the value of μ in line 1 of the main algorithm, the 
results follow. We omit the detailed proof because of the lack of 
space.  
THEOREM 5.4 For an arbitrary timeslot t, all scheduled 
transmissions tE in t are received successfully by the intended 
receivers, and thus the computed schedule is correct. 
PROOF. Consider a scheduled link xf with intended 
sender sx and receiver rx . The aggregate interferences at this 
receiver rx can be calculated through Lemmas 5.1, 5.2 and 5.3.  
    By Lemmas 5.1 and 5.2, we know that for 
all iy with ( ) ( )i sy xτ τ> and ( ) ( )i sy xτ τ< , the 
interference ( )r iI y is bounded by ( ) 1(3 / ) sxn m τυ β − . Hence, 
because there are at most n nodes in these sets, it holds that 

3 ( ) 1

: ( ) ( )
( ) ( ) s

i s i

n x
r i m

y x y
I y n β τ

τ τ
υ −

≠

≤ ⋅∑ = ( ) 1 ( )( ) (3 )
3

s sx xn
m

τ τυ β −⋅ ⋅  

Therefore the aggregate interference at rx is 
( ) 1 ( ) ( ) 1 ( )( / 3) ( / ) (3 ) ( / 3) ( / ) (3 )s s s sx x x x

rI m n m nτ τ τ τυ β υ β− −= ⋅ ⋅ + ⋅ ⋅  

= ( ) 1 ( )2 ( /3) ( / ) (3 )s sx xm nτ τυ β −⋅ ⋅ ⋅  
And SINR at rx is 

( )

( ) 1 ( )
(3 / ) ( ) / ( )
2 ( / 3) ( / ) (3 )

s

s s

x
x x
x x

n m f fSINR
N m n

τ α α

τ τ
υ β

υ β −

⋅ ⋅
=

+ ⋅ ⋅ ⋅
 

Since υ :=4N (line 1 of the main algorithm) 
( )

( ) 1 ( )
(3 / )

2 ( / 3) ( / ) (3 )

s

s s

x

x x
n mSINR

mN m n

τ

τ τ
υ β β

υ β −

⋅
= ≥

+ ⋅ ⋅ ⋅
 

From this, we conclude that the computed schedule is correct.  
 

5.3 Efficiency Analysis 
COROLLARY 5.5. In each timeslot, the deleted links in the 
same length class in the NPAW algorithm are strictly fewer than 
the deleted links in the NPAN algorithm. 
PROOF.  This conclusion is from the proof of Lemma 5.3.  
LEMMA 5.6. In each timeslot, the deleted links in different 
length classes in the NPAW algorithm are fewer than or at most 
equal to the deleted links in the NPAN algorithm. 
PROOF.  From line 13 of the subroutine, on one hand, if the 
difference of the power scaling factors between different length 
classes is the same, because we have introduced the processing 
gain m as the denominator in the base, the deleted links must be 
fewer than its counterpart in NPAN. On the other hand, since 

( 1) /(3 / ) ikn m δ αβ + ≤ ( / log(3 / ) 1 1) /(3 / ) n n mn m β αβ − + = /2n α , and since 
( 1) /(4 ) ikn δ αβ + ≤ ( / log(4 ) 1 1) /(4 ) n nn β αβ − + = /2n α , the deleted links 

must be at most equal to its counterpart in NPAN.  
THEOREM 5.7. The scheduling complexity for strong 
connectivity in UWB networks is 3(log( ) log )O n m n⋅ . 
PROOF. First of all, according to the construction of the directed 
nearest neighbor forest pF in each phase of the main algorithm, 
the number of the nodes in the forest 1pF + ≤ (1/2) ⋅ pF . Hence at 
most log n directed nearest neighbor forests pF exist until there 
remains only a single active node (line 13 of the main algorithm). 
And according to Corollary 5.5 and Lemma 5.6, the total number 
of the deleting links in each timeslot of the same scheduling round 
must not exceed (log )O n which is the result of the NPAN 
algorithm. Hence, at least a fraction of Ω ( 1/ log n ) of the 
transmission links that remain to be scheduled in the kth 
scheduling round can be simultaneously scheduled in a single 
timeslot. Then after at most x timeslots, the number of remaining 
nodes that still need to be scheduled 
is / log(1 1/ log )x x ny n y e−⋅ − ≤ ⋅ , where y is the initial number of 
nodes that need to be scheduled in pF ( y n≤ ). So when 

ln logx y n= ⋅ , the number of remaining nodes in this scheduling 
round is 1. Based on this observation, each scheduling round (the 
subroutine Schedule()) only requires at most 2(log )O n timeslots. 
And according to line 8 of our main algorithm, there are at most 
log(3 / )n mβ scheduling rounds; therefore the total scheduling 
complexity of this algorithm is: 

2 3( ) (log ) log log(3 / ) (log( / ) log )T S O n n n m O n m nβ≤ ⋅ ⋅ ∈ ⋅ .  
     
6. THE ENERGY COMPLEXITY OF 
WIRELESS SCHEDULING PROBLEMS 
      We define the energy complexity of the wireless scheduling 
problem to be the total energy cost for successfully scheduling all 
the transmission requests to meet some topological property 
requirement. 
THEOREM 6.1. For the strong connectivity scheduling 
algorithm in narrowband networks, the lower bound of the energy 
complexity is ( 2 )nnω ⋅  ; and the upper bound of the energy 
complexity is 2( 2 )nO n α⋅ , where n is the number of the nodes. 
PROOF. In the NPAN algorithm, only links in link length class 

log(4 )h n kS β⋅ + can be scheduled simultaneously in the kth scheduling 
round (k is from 0 to log(4 ) 1nβ − , represented by the columns of 
Table 1). And h is from 0 to / log(4 ) 1n nβ − (represented by the 
rows of Table 1). In particular, let’s consider the link length 
classes kS and log(4 )n n kS β− + , which are the shortest length class 
and the longest length class in the kth scheduling round, 
respectively.  
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     According to Fig. 3, suppose the length class kS is mapped 
from uL ,we have u k≥ ; And suppose the length 
class log(4 )n n kS β− + is mapped from log(4 )n n vL β− +  ,we have v u k≥ ≥ . 
According to the power scaling factorτ of their algorithm, length 
class kS has the highest τ value / log(4 )n nβ ; and length 
class log(4 )n n kS β− + has the lowestτ value, of 1. So according to the 
non-linear power assignment scheme in the algorithm, the power 

( )kP S assigned to the links in kS has the property 
/ log(4 ) / log(4 ) ( 1)(4 ) 2 ( ) (4 ) 2n n u n n u

kn P S nβ α β αυ β υ β +⋅ ≤ < ⋅ ⇒
( 1)2 2 ( ) 2 2n u n u

kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅  
The power log(4 )( )n n kP S β− + assigned to links in log(4 )n n kS β− + has the 

property 1 log(4 )
log(4 )( ) (4 ) (2 )n n v

n n kP S n β α
β υ β − +

− + ≥ ⋅ ⋅     and 
1 log(4 ) 1

log(4 )( ) (4 ) (2 )n n v
n n kP S n β α

β υ β − + +
− + < ⋅ ⋅   ⇒                 

1 ( 1) 1
log(4 )2 2 /(4 ) ( ) 2 2 /(4 )n v n v

n n kn P S nα α α α α α
βυ β υ β− + −

− +⋅ ⋅ ≤ < ⋅ ⋅                    
 Because 0 ≤  k ≤ u ≤ v ≤ log(4 ) 1nβ − , we have  

02 2nυ ⋅ ⋅ ≤ ( 1)2 2 ( ) 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅ ≤  

1 ( 1) 1
log(4 )2 2 /(4 ) ( ) 2 2 /(4 )n v n v

n n kn P S nα α α α α α
βυ β υ β− + −

− +⋅ ⋅ ≤ < ⋅ ⋅
≤ (4 ) 2nn αυ β⋅ ⋅  
From this, and because the sink node of the final directed 
spanning tree transmits with the power maxN lαβ⋅ ⋅ , which could 
be 2nN αβ⋅ ⋅ , we get the lower bound of the energy complexity 
for the strong connectivity scheduling problem in narrowband 
networks, which is ( 2 )nnω ⋅ , and the upper bound of the energy 
complexity, which is 2( 2 )nO n α⋅ .  
THEOREM 6.2. For the strong connectivity scheduling 
algorithm in UWB (or any spread-spectrum) networks, the lower 
bound of the energy complexity is still ( 2 )nnω ⋅ ; but the upper 
bound of the energy complexity is reduced to 21( 2 )n

mO n α⋅ ⋅ , 
where n is the number of the nodes and m is the processing gain. 
PROOF. With our main algorithm, only links in link length class 

log(3 / )h n m kS β⋅ + can be scheduled simultaneously in the kth 
scheduling round (k is from 0 to log(3 / ) 1n mβ − , represented by 
the columns of Table 2); and h is from 0 to 

/ log(3 / ) 1n n mβ − (represented by the rows of Table 2). In 
particular, let’s consider the link length classes 

kS and log(3 / )n n m kS β− + , which are the shortest length class and the 
longest length class in the kth scheduling round, respectively.  
     According to Fig. 3, suppose the length class kS is mapped 
from uL , we have u k≥ ; and suppose the length class 

log(3 / )n n m kS β− + is mapped from log(3 / )n n m vL β− +  ,we have v u k≥ ≥ . 
From line 2 of the subroutine Schedule(), the length class kS has 
the highest τ value / log(3 / )n n mβ⎡ ⎤⎢ ⎥ ,and the length 
class log(3 / )n n m kS β− + has the lowestτ value, of 1. So according to 
the non-linear power assignment scheme in our algorithm, the 
power ( )kP S assigned to the links in kS has the property 

/ log(3 / )( ) (3 / ) 2n n m u
kP S n m β αυ β ⎡ ⎤⎢ ⎥≥ ⋅                            and 

/ log(3 / ) ( 1)( ) (3 / ) 2n n m u
kP S n m β αυ β ⎡ ⎤ +⎢ ⎥< ⋅                                    ⇒  

( 1)2 2 ( ) 2 2n u n u
kP Sα αυ υ +⋅ ⋅ ≤ < ⋅ ⋅  

The power log(3 / )( )n n m kP S β− + assigned to links in log(3 / )n n m kS β− +  
has the property 

1 log(3 / )
log(3 / )( ) (3 / ) (2 )n n m v

n n m kP S n m β α
β υ β − +

− + ≥ ⋅ ⋅      and 

 1 log(3 / ) 1
log(3 / )( ) (3 / ) (2 )n n m v

n n m kP S n m β α
β υ β − + +

− + < ⋅ ⋅   ⇒              
( ) 1 ( 1) 1

log(3 / )2 /(3 / ) ( ) 2 /(3 / )n v n v
n n m kn m P S n mα α α α

βυ β υ β+ − + + −
− +⋅ ≤ < ⋅

Because  0 ≤  k ≤ u ≤ v ≤ log(3 / ) 1n mβ − , we have  

0 ( 1)2 2 2 2 ( ) 2 2n n u n u
kP Sα αυ υ υ +⋅ ⋅ ≤ ⋅ ⋅ ≤ < ⋅ ⋅ ≤

( ) 1 ( 1) 1
log(3 / )2 /(3 / ) ( ) 2 /(3 / )n v n v

n n m kn m P S n mα α α α
βυ β υ β+ − + + −

− +⋅ ≤ < ⋅

≤ (3 / ) 2nn m αυ β⋅ ⋅  
From this, and because the final sink node transmits with the 
power N/m ⋅ β ⋅ maxlα (line 13 of the main algorithm), which could 
be / 2nN m αβ⋅ ⋅ , we get the lower bound of the energy complexity 
for the strong connectivity scheduling problem in UWB networks 
is ( 2 )nnω ⋅ , and the upper bound of the energy complexity 
is 21( 2 )n

mO n α⋅ ⋅ .  
Table 1. Link length classes scheduling (in order) in narrowband 
networks (from left to right, from top to bottom). 

0S  log(4 )nS β  2 log(4 )nS β     … log(4 )n nS β−  

1S  log(4 ) 1nS β +  2 log(4 ) 1nS β +     … log(4 ) 1n nS β− +  
 …  …  …    …  … 

kS  log(4 )n kS β +  2 log(4 )n kS β +     … log(4 )n n kS β− +  
 …  …  …    …  … 

log(4 ) 1nS β −  2 log(4 ) 1nS β −  3log(4 ) 1nS β −     … 1nS −  
Table 2. Link length classes scheduling in UWB networks             
(from left to right, from top to bottom). 

0S  log(3 / )n mS β  2 log(3 / )n mS β    … log(3 / )n n mS β−  

1S  log(3 / ) 1n mS β + 2log(3 / ) 1n mS β +   … log(3 / ) 1n n mS β− +

 …  …  …   …  … 

kS  log(3 / )n m kS β + 2log(3 / )n m kS β +   … log(3 / )n n m kS β− +

 …  …  …   …  … 

log(3 / ) 1n mS β − 2log(3 / ) 1n mS β − 3log(3 / ) 1n mS β −   … 1nS −  
   From these two theorems, we can see that the polylogarithmic 
scheduling complexity comes at the expense of exponential 
energy complexity. The results can also be applied to the situation 
in [11] because they also adopt the NPAN algorithm. Compared 
with narrowband networks, by Theorem 6.2, we can see that the 
upper bound of the energy complexity can be reduced by a 
processing gain factor in UWB networks.  

7. CONCLUSIONS 
     In this paper, we generalize the scheduling complexity in 
narrowband networks to UWB networks, and reduce it 
from 4(log )O n to 3(log( ) log )O n m n⋅ . By considering the impact 
of the arbitrary power assignment on pair-wise transmissions 
scheduling, we explicitly show that when some node distance 
function is satisfied, there does not exist any power assignment 
for simultaneous link scheduling, and thus the scheduling 
complexity cannot be further improved via the means of power 
assignment. Therefore, the scheduling algorithm must take full 
advantage of the power assignment schemes so that it can 
simultaneously schedule as many links as possible without 
violating the physical SINR model. Compared to narrowband 
networks, we show that there is more room for UWB networks to 
take full advantage of power control to improve the scheduling 
complexity. Besides the power control limitations, we also give a 
detailed analysis on the power control impact on the pair-wise 
protocol interference models. More importantly, we explicitly 
prove that the polylogarithmic scheduling complexity is gained at 
the expense of exponential energy complexity in both narrowband 
networks and UWB networks.  
    In order to turn our algorithm into a practical network protocol, 
some problems need to be solved first, including the following. 
 1) Although in UWB networks, the upper bound of the energy 
complexity can be reduced by a processing gain factor, the 
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exponential energy complexity lower bound would not change. 
Thus reducing the energy complexity without sacrificing the 
scheduling complexity is a very interesting and challenging task. 
To take up this challenge, a new arbitrary power assignment may 
need to be designed.  
 2) Our paper assumes that the traffic demand of all links is 1, but 
in some realistic wireless networks, different links experience 
different traffic demands. For example, the nodes near the 
wireless router in wireless mesh networks experience more traffic 
demands than the nodes on the border of the network [3]. 
Therefore, devising some efficient link scheduling to meet both 
topological requirements and arbitrary link traffic demands is 
another very challenging and interesting problem. Constraint- 
programming techniques may be useful. 
3) With the non-linear power assignment, every transmitting node 
must know its own power scaling factor τ , which is based on 
some global picture, thus making it difficult to implement the 
algorithm in a distributed manner. To take up this challenge, 
implementing a clustering algorithm is a possible method. 
4) Our algorithm assumes one channel is used, but actually in 
MIMO networks (e.g., 802.11n), a node can be equipped with 
multiple radios and operate on multiple channels. Thus extending 
our algorithm to multi-radio multi-channel scenarios is a natural 
idea. 
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