
T w o - P a r e N a m e s a n d P r o c e s s T e r m i n a t i o n

Francis C.M. Lau

Computer Communications Networks Group

University of Waterloo
Waterloo, Ontario
Canada N2L 3G1

1. P r e a m b l e

At one point in designing our system? we are faced
with the problem of killing a remote process. Here
we introduce the particular naming scheme that
has been chosen for the system and shows how it
affects the solutions to the problem of process ter-
mmatmn.

2. T h e S y s t e m

At the highest abstraction, there are processes
(users' and servers') that interact via messages.
Message-passing is supported by a message
manager implemented as an integral part of the
kernel (could be thought of as just another pro-
cess). Creating, killing, or halting of processes are
done via requests to the process manager of the
kernel. Processes are members of clusters. Clus-
ters in general are of two types: distributed (appli-
cation) programs (called user clusters) and sys ton
services (called eervice clusters). Processes of a
user cluster work cooperatively towards some com-
mon goal; processes of a service cluster (called
servers) are identical - they are multiple instances
of the same service; their multiplicity leads to
increased refiability and efficiency• Our processes
therefore have a two-part name of Cluster lid
(C/D) and Loca/ /D (L/D) (notationwise:
<CID, LID>).

CIDs are unique network-wide while LIDs are
chosen arbitrarily (the former serves, in a sense, to
disambiguate the latter). As for application pro-
grams, LIDs are hardcoded at coding time and
CIDs are assigned at instantiation time (a fresh one
each time), lnstantiation turns a program into a

t" A local distributed system that supports among other
things, efficient migration of processes.

unique instance as well as a unique user cluster.
During the execution of a program instance,
member processes communicate with each other
using only LIDs, and the CID that has been
assigned to the instance is patched in automatically
by the runtime package. While user clusters' CIDs
are generally not known publicly, CIDs for services
are well-known (they are published). Adding a new
instance (ie. service proper plus a server) of a ser-
vice requires looking up the list of well-known CIDs
and copying the appropriate CID into the CID field
of the new server.

28

3. Address ing Modes

With this two-part name, the addressing modes
that are supported includes (where "C" = a
specific CID, "L" ---- a specific LID, "?" -~- "any",
and "*" = "all"):

SS <C , L > (S ~- Specific)

SA <C, *> (A = All)
S N <C, ? > (N = aNy)

N N

N A

A N

A A

<?, ?>

<?, * >

<*, ?>

<*, * >

Modes AS and NS are not included because they
don't seem to be meaningful. The following are the
common types of communications that are seen in
our system:

(1) Within the same user dus ter - T o address
members in the same user cluster, simply use
the corresponding LIDs (modes SS, SA, and

$ See [McQ.illan78] for a more extensive treatment on ad-
dressing modeB.

$N). Note that the sender process need not
specify the CID.

(2) Uoer to eerviee - Servers' names have only the
CID part (ie. the kind of service) and they
respond to request messages with addressing
modes SA and SN. Upon receipt of a request
message by all servers bearing the requested
CID, the following steps occur:

ELECT - using some distributed elec-
tion algorithm, one of the server is
elected (this could be done in advance).
If the request message has addressing
mode SA, this is ignored (ie. a replicated
service).

- CONNECT - the elected server would
acquire a unique number and use it as
LID - thus converting the request to an
SS mode.

- SERVICE - the request is serviced and
the requestor will be communicating
with a "specific" server having the com-
mon CID and an LID generated anew.

- RELEASE - the server process will relin-
quish the LID (it could be remembered
if there is any use of it afterward).

There are yet some situations that are not as
straightforward:

(3) Be tween d i f f e r e n t user cluster8 - This can
only be accomplished through some external
means. At least the CIDs have to be com-
municated before any meaningful inter-
process communications (eg. modes SS, SA,
and SN) can take place between processes
belonging to the opposite sides. Special
servers that are publicly accessible can be
provided for this purpose. For example,
"conference servers" may be used to provide
meaningful communications among user clus-
ters that are unknown to each other in the
first place.

(4) W i t h i n the t a m e service c l u s t e r - Since
servers of the same service cluster are not
individually named (except during services),
communications among them have to be done
using addressing modes SA or SN (which is
relatively inefficient). However, th~ kind of
communications seldom occur in our environ-
ment (except for election for which many
ways of speeding tlv;ngs up exist).

In est,'ace, ours is a system of processes using two-
part names (logical addresses). The set of message
managers across the network eolaborate to

implement a rout ing k e r n d on the one hand, and
provide the abstraction of end-to-end message tran-
sport using two-part names on the other hand.
Logical addresses are necessary (sufficiency depends
on routing mechanism) for efficient object migra-
tion as well as adding/deleting objects in distri-
buted environments. In our system, sending a mes-
sage to specific addressers (SS mode, as well as SA
and AA modes) incurs one unit of cost (per addres-
see); all the other modes are considered expensive
and should be used only as an initial means to
establish subsequent, connections.

4 . K l l l t n g a R e m o t e Proceam

The operation tha t we want to implement eff~
ciently is the immediate termination (after check-
ing the rights) of a remote process (the v i c t im)
that belongs to the same user cluster as the
requesting process (the killer). Note that the
actual and ultimate termination of the process is
done by the process manager on which this doomed
process depends (ie. they are on the same machine).
This implies some sort of type (2) communications
- that is, between a user process (the killer) and a
server (the process manager).

The possible choices are (let C ffi= CID of this user
cluster, w7 -~- LID of victim, and PM = CID of
process manager cluster (ie. all process managers)):

(1) Send message to the victim directly:
< C , w 7 > .- "Bang!"

(2) Send message to the process manager
directly: < P M , * > *- "Please kill process
< C , w 7 > "

(3) Send message to the victim with special indi-
cation: < C , wT>[i] *. "Bang!"

Choice (1), the "programmed," requires the victim
to i.~sue an explicit receive, and upon receiving the
kill message, terminate itself. This is rejected
because of its non-interrupt nature. It would be
wasteful (busy checking) and inefficient (time lapse
before the receive request), if adopted.

As for choice (2), since there is no way (unless some
hints exist) to find out which process man:tger is
the victim in question connected to, the kill request
has to be broadcast. This requires all process
managers form a (well-known) cluster (PM, in this
case). A kill request issued by a user process will
first be trapped locally. This is followed by the
kernel's trap routine broadcasting the request to all
process managers. Note that unlike most other
request messages, the LID field for this request
message is "*" instead of "?". Later, the one

29

manager who finds <C, w7> in its domain will
perform the killing, and the effort made by aJl the
other process managers is necessarily wasted (how
much wasted depends on how efficient the looking
up of process names in a local process table would
be for those that are "unselected")o

Choice (3) is the one we adopted. It irztroduces the
overhead of a sir, gle bit, the trap bit (it should not
be considered the "third part" of a name since it
plays no role in identification, and two-part is suffi-
cient hitherto). Apart from an extra bit that must

be transmitted along with every message, whose
overhead in terms of message load is negligible, the
receiving site has to deal with the checking of this
bit for every incoming message. The latter is, in
fact, also negligible, as compared to the amount of
computation needed to recognize (pattern-match)
the name that comes with the message. Upon
detecting an "on" value of the trap bit, the mes-
sage is switched (by the message manager} to the
local process manager (rather than the victim) who
will then carry out the termination of the victim in
due course. The advantages of this scheme, as
compared with the other choices, are briefly:

- A specific message (instead of a broadcast
message) is sent. By courtesy of the routing
mechanism, this will go to the right machine
(and t h u s the right process manager) with
minimal cost.

- The checking (whether the message is a trap
message) is done inside the message manager
- thus avoiding an extra context switch (in
ease the managers are implemented as
separate processes) that might have been
needed if the checking were done at a higher
level - which would be the case if no indica-
tion or whatsoever is included in the name
field.

names/addresses to one).

8, RefereneeB

[McQuillan78]McQuillan, J. M. "Enhanced Mes-
sage Addressing Capabilities for Computer
Networks." Pcoc. of the IEEE, 68, t l ,
November 1978. 1517-1527.

5. R e m a r k s

The "trap-bit" approach can be generalized: one
bit allows single redirection, two bits allows three-
way redirection, and so o n A request of the form

O P (< C , w 7 >) ; (ie. < C , w7>[bits] - " O P ")

issued by some user process would be translated
into

<S[bits], - > -- "Please perfrom OP on < C , w 7 > "

at the receiving site. Broadcast is avoided in this
case and the sending site is alleviated from the bur-
den of finding out the specific name(s} of the server
that is to serve the request (is, saving from two

30

