
Yet Another History Meehan~m
for Command Interpretors

Francis C.M. Lau
A~ul Asthana

C o m p u t e r C o m m u n i c a t i o n s Ne tworks G r o u p
Univers i ty o f Wnte r loo

Wate r loo , O n ta r i o
C a n a d a N2L 3G1

1. I N T R O D U C T I O N

User level software has two main components, namely,
functionality and form of presentation. Functionality
refers to the facilities provided by the software, while
form refers to the way in which these are presented to
the user (user interface). These two components ulti-
mately decide the "acceptance" of the software and need
to be "balanced" with respect to each other, eg. a
powerful application may loose or obscure much of its
functionality if the user interface is not designed with

c a r e .

In this paper we discuss the requirements of a history

mechanism with respect to the "functionality" expected
of it and the "form" in which it is to be presented.
Finally, we present our design that is based on these

requirements.

2. D E S I G N I N G H I S T O R Y M E C H A N I S M S F O R

C O M M A N D I N T E R P R E T O R S

For any design project one has to study the application,
specify user requirements, translate these requirements
into design criteria and finally make a software
specification that meets the user requirements. In this
section we outline the application and discuss steps for

arriving at the design criteria.

2.1. A p p l i c a t i o n (F u n c t i o n a l i t y)

History mechanisms have been extensively used in da ta
base systems to ensure that information is not lost
[GRAY81], in network file-servers and distributed file
systems for consistency and error recovery [MITC79,
STURS0], in the design of text editors [HAMMSI,
LAMP76, STALSI, GOOD81], and in many other less
obvious situations. The technique is to record/log an
update of an object, consisting of the name of the
update procedure and its arguments. Based on the log

one can provide facilities for "error recovery", "undo-
ing" a command, repeating a command etc.

At the command interpretor level only a few of these
facilities are realistic. Consider the undo command,
where the previous command can be undone. A system
will have to maintain "old copies" or an "old s tate" of
the machine at all times, which is not practical in most
cases. Besides, certain actions can not be undone at this
level, eg. printing a file.

In general, commands issued by a user tend to be
strongly correlated and a user often executes more or less
an identical set of commands, with or without
modification, eg. a think ~ edit ~ compile ~ run
sequence may be executed several times. If a mechanism
were available to aid the user in this regard, a user
would reduce repetitive work and would save on typing
Using a history mechanism, a user should be able to:

Recall previous commands for viewing

Repeat a command (or a set of commands)
without changing any arbmments.

Modify a command (or commands) and execute it.

2.2. M o d e l

The history mechanism is modeled as having two axes
The horizontal axis contains the text of s single com-
mand (or a set of commands keyed in on the same line}
The vertical axis corresponds to the time axis and con-
tains the sequence of commands as they are issued by
the user in time.

To modify a previous command(s) the user first selects a
command or commands from the vertical axis. Then,
within the command one selects one or more arguments -
(1) word, {2) pathname, (3) character, or (4) some other
defined object. Now, the possible actions are: (1) replace
an object, (2) add an object (at the front, at the end, or

SIGPLAN Notices, Vi9 #3, March 1984

-52-

in the middle), and (3) delete an object (same as replac-
ing it with a null axgument).

An object can be selected in one of three ways

1. Speci[y tAe object by content (or con~e~) - for
example, 'fred'.

2. Specify the ~bjee~ by podtio~ ~ for example, the
$th object.

3. Specify the ob]ec¢ by pointing ~$ it* - that is, move
the cursor to the object in question and select it.

For the vertical axis, similar actions apply; however, the
objects in question are events. Note for (1) and (2) we
can specify (implicitly or explicitly) multiple objects
simultaneously. The selection can be absolute (eg. line
in which pattern was matched) or relative (eg. the line
after the line in which the pattern was matched).

2.3. Users' Requirements

We took samples from a from a loom user community**

to compile a list of "desirable" qualities for a history
mechanism. These requirements are listed in decreasing

order of importance to the user. We have a small dis-

cussion with each point that identifies approaches to

meet the requirements.

2.3.1. E a s y t o L e a r n a nd E a s y t o Use

People are already accustomed to conventional command
input {generally true for most systems, except U~'IX***
to some extent} and may not be naturally willing to
learn something new, unless it is very helpful and/or
eazy to learn and use.

This requirement translates into providing a small reper-

toire of symbols, for both objects (selection) and opera-
tots. The symbols should reflect its meaning as far as

possible. The premise behind the approach is that it is

easier to perform complex functions by combining a rela-
tively small set of primitive objects than to choose from

a much larger set of commands.

.Another consideration is the choice of keys employed.
For any command we should keep the number of keys-

trokes smMl as well as minimizing the number of
different keys hit, using as many default options as there

are available. This minimizes command size and
simplifies the interface.

* In general thi~ feature requtres earpor control cLI~IEL~ty.
** Computer Communlcatiom~ Network~ Group, Unlvenrlty ef
Waterloo
*~ UNIX Is a trademark of Bell Laboratorim, Inv.

2.3°2. Natural and Consistent

A user ~H use a ~ystem if it is natural to use (command

syntax) and if it is consistent within itself and its
environment. A user should be able to compose and exe~
cute naturally, and conveniently a command after study-
ing the symbois.

The zyntax chosen is of the object-verb-modifier forIn
where one selects the objects before specifying the operw-
tion. Consistency with the environment can be provided

by a correct choice of symbols, in that they do not clash
with their use in other system facilities or at least they
are ~imilar in meaning. Consistency within the mechan-

ism is improved by the lack of special cases. Speci~
eases may improve speed of executing a command but

are unnerving to a casual user.

2.3.3. Fast

A user will only use those facilities that help him in get-

ting a thing done easily and faster than other means. In
this application it means that editing should be faster

than retyping. Hence, symbols are bound to a single key
that is convenient to use.

2 .3 .4 . Reliable and R o b u s t

The user expects the mechanism to be forgiving, in that
a user should be allowed to prevent and correct mis-
takes. After a long or complicated editing he may not
anticipate the consequences of the actions he performs,
thus leading to feelings of tension and uncertainty.

Confirmation is provided for indicating the effect of a
command, to the user. It is helpful for long edit's or
before issuing a dangerous command, but can be annoy-
ing for simple or short commands.

2 .3 .5 . G e n e r a l , F lex ib le and P o w e r f u l

Most users issue simple commands and some systems
provide facilities for command script (eg. makefile in
UNIX} thus they do not require excessive power or flexi-
bility. Advanced users always constitute the minority
but they should not be frustrated by the lack of features

We provide an extensible system, through a profiling and
an aliasing mechanism. Profiling allows a user to "tune'
the environment to suit his purpose, while aliasing allows
him to construct keystroke macros and bind them to
simpler keystrokes. Thus an advanced user makes
higher level constructs once and uses them just as if the
mechanism had provided them.

- S S -

3. H I S T O R Y M E C H A N I S M S

We present, in moderate detail, one existing history
mechanism and our proposal. We evaluate each of them
with respect to the above criteria and finally point out
directions for future mechanisms.

3.3. C s h ' s His to ry Mechan i sm [JOY83a]

Csh, running on UNIX, is the first implementation of a
command language interpretor incorporating a history
mechanism. It consist of a list whose she is controlled
by the history variable {set in the user profile}. History
substitutions reintroduce sequences of words from these
saved commands {log} into the input stream. This
allows a user to repeat a command, reuse arguments
from a previous command, or fix spelling mistakes in
previous commands.

SeLection is achieved both by context and by position,
where position refers to the number of the "word" (argu-
ment}. Selection in the vertical axis is specified by (1)
event number, (2) relatively (-number), (3) by a prefix of
a command, or (4) by a string contained in a word in the
command (does not match across word boundaries).
Within a line an object can be (1) one or more characters
(within a word) or (2) one or more worda A total of 10
symbols are provided for selection and a symbol has
meaning in the context of its use; eg. a number (decimal)
refers to an event number if the context is selection of
an event (command llne) or to an argument number if
the context is selection within the event. There are a
host of special cases where keystrokes may be saved and
a default selector is assumed for mlsdng selectors.

There axe a set of 10 operators that operate on the
selected words. These allow the user to (1) search for
string and substitute - (s / l / r / } , (2) remove trailing path-
name, leaving the head - (h}, (3) remove trailing '.xxx'
component, leaving the root name - (r), (4) remove all
but the exte~ion ' . m ' component- (e}, (5) remove
leading pathname components, leaving the tall - (t}, (6)
repeat the previous substitution - (&}, (7) apply the
change globally, prefixing the above, eg. 'g&' - (g), (8)
print the command but do not execute it - (p), (9) quote
the substituted words- (q), (10) like {q), but break into
words at blanks, tabs and newlines - {x).

History substitutions begin with the character 'f' and
may begin anywhere in the input stream (nesting is n o t
permitted). The 'P may be preceded by the escape char-
acter 'V to prevent its special meaning. All selections
and operations are preceded by ': ' , the delimiter.

3.1.1. E v a l u a t i o n o f the His to ry M e c h a n i s m

We feel that this mechanism is not easy to learn as it
has a a relatively large number of symbols to be learnt
and special cases to be studied. Command naming is not
natural for some operations (eg. h, r, e, x, etc.). This
may keep him from using those commands. The
mechanism is easy to use for simple operations, eg
repeat a command, use all the arbguments of a previous
command, etc., but in more complicated substitutions
the syntax is cumbersome. One can avoid the complica-
tions if he can remember all the special cases, eg. the '!
seperating the event specification from the word designs-
tot can be omitted if the argument selector begins with a

T, '$', '* ' , '- ', or '%' .
The selection procedure is quite natural. The problem of
consistency arises with the special cases. These are nei-
ther natural or consistent and may result in confusing a
user.

The mechanism is helpful ~to the user in reducing his
typing burden specially for simple substitutions. A user
conversant with all special eases is provided a powerfh
tool but an average user is not able to use all the facili-
ties to an advantage.

The facility of confirmation is provided to the user on a
per command basis. If confirmation is requested, a com-
mand is logged as the last command and is printed. To
execute it one has to type the code for repeating the last
command.

The mechanism is very powerful and flexible. The user
has tremendous choice in his approach of modifying a
command.

One of the features not supported by this mechanism is
that of executing a set of commands. The vertical axis
is only used for selection of either full commands or a set
of arguments from different commands.

3,2. A New His tory M e c h a n i s m - Modif ica t ion by
Pos i t ion

Csh's provision for substitution, we believe, is too power-
fui but inefficient for general use. IS is easier and faster
in most cases to retype certain string than to correct
some character in it. In this new mechanism, the smal-
lest object to be referenced is a word (not a character}
and selection in the horizontal axis is achieved only by
position (not by content). A word here is either an argu-
ment of a command or a pathnsme component. For
modification of a single command (one horizontal entry
in the history), we provide operations to: (1) match a
word, (2) delete a word, (3) replace a word, and (4) add a
word (at the front, in the middle, or at the end). In
order to minimize the number of keystrokes, the default
is to include all words (ie. a '*') that are not explicitly

~54-

matched, deleted, or replaced.

3.2.1. C o m m a n d S t r u c t u r e

An history invocation ha~ the following general struc-
ture:

command-aelector V command-modifiee

We use a ' V ' whenever a space is to be emphasized. We
shall first discuss the command-modifier. The basic
designators for operations are:

M a t c h

matches a word

matches zero or more words

Delete

deletes a word

deletes zero or more words

Replace

~ord matches and replaces a word with

A d d

[starts addition

] ends sdditk, n

F o r p a t h n a m e s

{}
{modi.~er}

matches a pathname

a word is now a pathname component,
for all the above operations

Note that matching (ie. '.', ,2, ,{ }') occurs from left to
right (the natural way} and is left-justlfied. On the
other hand, '* ' and 'ffif' match the maximum possible
number of words; however, when there are two or more
conflicting such characters (eg. '=={}ffiffi') the leftmost one
is given priority. A pathname is any word that has a ' / '
in it. Therefore ' / tmp/wr i te .e ' is a pathname and
'write.c' is not. ' / ' is considered a pathname component;
thus, ' - lsys/termlib' is composed of the pathname com-
ponents '-]zys', ' / ' , and ' termlih. ' Any symbol can be
escaped with '~,'. As a result, there are altogether ten
special symbols used by this mechanism: '. ' , '* ' , '- ' , '= , ' ,

't', % '{', % % %
An e x a m p l e .

4 d/u/ y dir/ne tdi
5 vi +$ write.c

ec -O -I/usr/curses write.c-L~y~/termlib
7 pr -i12 wrRe.c] lpr &
8 a.out
9 ed

M a t c h

!5

Dele te

!~V*-

16 V-

Iccv.-

! p r v

Rep l ace

15v*read.c

Tprvp

A d d

tlmeVTce

fccV*[Vr.c -hv].

r4V*[.hak

TeeV*{.[/Iib

e b v < t S V a .] V > o u t

equals '!5 *' which matches the
entire eveat 5 and repeats it

deletes '- tsys/termlib' from event
6

deletes 'cc' from event 6r

deletes ' -O' from event 6

deletes '1 lpr &' from event 7

deletes ']us r / ' from event 6
(remember that matching is left-
justified)

replaces 'write.c' to 'read.c' in
event 5

changes event 7 to 'p -i12 write.c

produces ' t ime cc -O
-yu /eur s . . . '

adds the arguments in brackets
after 'wrlte.c' in event 6

changes 'nextdir ' to 'ncxtdir.bak
in event 5

changes '- lsys/termlib' to '-
lsys/l ib/termlib' ('* ' here
matches the maximum number of
words and therefore includes the
first pathname in the event)

p m d u c ~ 'cb <wri te .c > o u t '

Next, the command-selector. Here, all we need is match-
ing, that is, matching a command (event) prefix (by con-
tent), an event number, or an event position. To be con-
sistent, the semantics of the symbols '. ' , '*', '- ' , and 'ffif'
are more or less preserved (the latter two do not actually
delete the event(s) from the history list, they do a "non-
match"). The "flu character" is now ' m ' instead of '*~
therefore everything that is needed has to be explicitly
matched. Matching is right-justified (since most recent

- 5 5 -

events are more likely to be selected}, that ~ if we view
the verticM axis as {refering to previous example)

4 5 6 7 8 9

matching will try to occur as close to the right end as

possible (unless reverted by '=ffi' or '*' which matches the

maximum number of items). Some examples will show

how commands are selected (refering to the above his,.

tory list):

!c

Ice

l*pr

15*a.out

Io-.~.

l . ° .~

I.

I.--

selects all events (is. 4 to 9)

selects the null event

matches event 9 ('cd') and selects
it

matches event 6

equals 'I*pr==' and selects events
4 t o 7

selects events 5 to 8

selects events 4, 6, and 9

selects events 4 and 6 since the
'ffiffi' would match the maximum
number of events

selects the previous event

selects the third previous event

Note that a modifier following a selector would apply its

actions to all the selected events. Therefore, commands

like

Ivi*prv*read.c

have to be cautiously issued. Of course, the one we
show here will not replace all 'write.e' with 'read.c'.

To provide some safeguard when number of events are
to be repeated, the user may choose to be prompted for
modification for each event in turn. This is done by
entering just the command selector and the space
(without the space, the selected event(s) will be executed
right away without any modification); the history
mechanism would then print each event (or "the event"
if only one event is selected) and wait for a modifier
from the user terminal (terminated with carriage return)
which is to be applied to this current event. This option
also facilitates the user to "visualize" the changes that
he is going to make.

While going through the list of events prompted by the
system, the user might want to skip over certain events
or he might decide to stop the process altogether for tbe
rest of the list and return to the shell level; to do this,
the user hits < r u b o u t > for the former and < b r e a k >
for the latter. The same applies to a singly-selected
event, and in this case any one of these keys will do.

3.2.2. Op t ions

We provide optional features that make the system flexi-
ble enough to accomodate users' diverse needs. These
options settings ~re given in a file called '.histrc' and
allow the user to tune the history environment to its
best. These options include:

Size of History. The default is one.

Aliases. Some often-used keystrokes can be

alined. For example,

all= $ ~. =.1

alias PP I. •ffi{}ffi=]

makes $ the last argument
of the previous event

makes PP the last path-
name of the previous
event; to select the first
pathname is not possible
since the left ' = ' is
defaulted to be stronger.

ltere are some examples

echo I$

124 *$

grep if tPP

of their use:

echos last argument of pre-
vious event; note that the
first T is needed for his..
tory invocation, and the
second q' will select the
event.

replaces last argument of
event 24 by last argument
of previous event

which is obvious

The user can use any combination of characters
for aliases and it is his responsbility to choose the
appropriate combinations so that no confusion
may arise. The history mechanism will, at invoca-
tion time, find all aliases and do simple expansion
on them. In case of both 'P ' and 'PP ' are aliase
names, the latter will be expanded.

Confirm=rich. If this option is set, all history
modifications have to be "passed" by the user- by
hitting a carriage return after the modified com-
mand is displayed on the screen. By hitting the
< r u b o u t > key instead of the carriage return, the
command will be discarded.

St=tic E~ests. Instead of having each modified
event to be added to the end of the history list
like a new command, the user may choose to have
the event modified "in place." This will tend to
keep the history small and the user doesn't have
to worry about "losing track of previous com-
mands." However, in this case, the vertical axis is
no longer a time axis. Further options in this
respect may perhaps allow the command to be

-56-

"extracted" and placed as the last command (the
space previously occupied is recovered).

Saving Hi~tory beSweeu Sesslons. When the user
signs off, the history list is saved in a file which is
retrieved and revived as initial history when the
user starts a new session.

3.2.3. E v a l u a t i o n o f the Ne w M e c h a n i s m

We claim that this history mechanism satisfies most of
the criteria we presented in previous sections, ie. easy to
learn, easy to use, consistent and natural, fast, robust
and reliable, flexible, and powerful. The one m%;or
disadvantage of this scheme is in dealing with long com-
mands. [,'or example, to replace a word which is at the
50th position in a 100-word event is inefficient and
cumbersome. If there happens to be some nearby path-
name, perhaps the user can first position to this path-
name and then fill in rest of the dots. However, we do
not think long commands like this would appear too
often (in our UNIX's here, the longest commands exist in
makefiles).

4. C O N C L U S I O N S

With the current popularity of pointing or poeltioniu~
devices future history mechanisms would most certainly
employ graphical techniques. These meehani~vas ean be
classified into those that use cursor capability with text
driven command interpretors, and those that use a menu
driven interpretor.

A history mechanism using cursor eapabiliey has the
same functionality as the on we disett~sed. The
difference would be in the way it is presented. A great
advantage with cursor capability is that the user now
sees changes instantly. To indicate the scope of selection
{vertical) relevant commands can be displayed in the
editing window. Editing functions made available
should be a small subset of those available in screen edi-
tors, eg. Vi [$OY83b]. Such a mechanism would provide
an easy to use, powerful and consistant environment,
with inbuilt confirmation.

A mechanism for a menu driven interpretor has
inherently different requirements. Such an interface gen-
erally leads the user down a menu tree after each selec-
tion {a hierarchical menu structure} and a user does not
make "mistakes". A history mechanism can be helpful
if it helps one in maintaining a log of previous com-
mands, repeating a command or at least descend to a
certain level in the tree, for the execution of another
command.

5° R E F E R E N C E S

GOOD81 Good, M. "Etude and the Folklore of User
Interface Design." Proe. ACM SIGPLAN
SIGOA Syrup. on Test Mrmipulatfoa, Ports
land, Oregon, Jun 198]. 34--43.

GRAYS1 Gray, J. et. at. "The Recovery Manager of
the System R Database Manager." Comput-
f•f Surveyor 13, 2, Jun 1981. 223-242.

~La2~l~MS1 Hammer, M. et. al. "Etude: An Integrated
Document Processing System." Proc. of She
19M o~Tee Automation Conference, AF~PS,
Max 1981.

JOY83a Joy, W. "An Introduction to the C Shell.'
UNIX Programmer's Manual, 4.2 BSD, Aug
1983.

JOY83b Joy, W. and Horton, M. "An Introduction to
Display Editing with Vi." UNIX
Programmer'8 Manual, 4.2 BSD, Aug 1983.

Lampson, B. W. "Bravo Manual." Alto
User'# IIandbook, Xerox Palo Alto Research
Center, Palo Alto, Calif., Nov. 1978.

Mitchell, J. G. and Dion, J. A. "A Com-
parison of two Network-Based File Servers."
CACM, 25, 4, Apr 1982. 233-245.

Stallman, R. M. "EMACS, the FExtensible,
Customizable Self-documenting Display Edi-
tor." Proe. ACM SIGPLAN SIGOA Syrup.
oa Tezt Manipulation, Portland, Oregon, Jun
1981. 147-156.

Sturgis, H. E. et. al. "Issues in the Design
and Use of a Distributed File System."
Operatlag Systems Revlew, 14, 3, Jul 1980
55-89.

LAMP78

MITC82

STALS1

STUR80

