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Abstract

k-Interval Routing Scheme (k-IRS) is a compact routing method that allows up to k interval labels to be assigned to an arc; and
global k-IRS allows not more than a total of k interval labels in the whole network. A fundamental problem is to characterize the
networks that admit k-IRS (or global k-IRS). Many of the problems related to single-shortest-path k-IRS have already been shown
to be NP-complete. For all-shortest-path k-IRS, the characterization problem remains open for k > 1. In this paper, we study the
time complexity of devising minimal-space all-shortest-path k-IRSs and show that it is NP-complete to decide whether a graph
admits an all-shortest-path k-IRS, for every integer k > 3, and so is that of deciding whether a graph admits an all-shortest-path
k-strict IRS, for every integer k > 4. These are the first NP-completeness results for all-shortest-path k-IRS where k is a constant
and the graph is unweighted. The NP-completeness holds also for the linear case. We also prove that it is NP-complete to decide
whether an unweighted graph admits an all-shortest-path IRS with global compactness of at most k, which also holds for the linear
and strict cases.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Interval Routing is a space-efficient routing method for communication networks [13]. The routing table stored at
each node groups the set of destination addresses that use the same output port into intervals of consecutive addresses.
Formally, the network is modeled as a finite graph G = (V, E), where the set of vertices, V , represents the nodes
of the network, and the set of edges, E , represents the bidirectional links. An edge (u, v) between the nodes u and v

I An early version of Section 3 of this paper was presented at the 11th International Colloquium on Structural Information and Communication
Complexity (SIROCCO 2004) [R. Wang, F. Lau, Y.Y. Liu, NP-complete results for all-shortest-paths interval routing, in: 11th Internat. Coll. on
Structural Information and Communication Complexity, SIROCCO 2004, in: Lecture Notes in Computer Science, vol. 3104, Springer-Verlag, June
2004, pp. 267–278].
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induces two opposite arcs: 〈u, v〉 and 〈v, u〉; the 2|E | induced arcs form an arc set A of G. A routing scheme for
network G assigns each arc 〈u, v〉 a subset I (u, v) ⊆ V , such that the union of the subsets assigned to the arcs
emanating from u covers the set V −{u}. Routing is then performed according to the assignment I , such that at vertex
u, a message will be sent on the arc 〈u, v〉 whose I (u, v) contains the destination of the message. A good interval
routing scheme would try to minimize the number of intervals in I (u, v) over all the arcs by selecting a particular
address mapping L : V → {1, 2, . . . , |V |} and an assignment I : A → 2V . If each I (u, v) contains not more than k
intervals under L , the routing scheme, denoted by R = (L , I ), is called a k-Interval Routing Scheme (k-IRS).

The standard definition of IRS assumes a single routing path between any two nodes, which imposes the outgoing
arcs of a node u to be assigned disjoint subsets, i.e., I (u, v) ∩ I (u, w) = φ for v 6= w. Clearly, the routing process
with such an IRS is deterministic. A more flexible routing scheme, called multi-path IRS or non-deterministic IRS
[14,9], allows multiple arcs of a node to lead to the same destination; the routing process can pick one of these arcs
arbitrarily or according to traffic conditions.

We consider two different models of networks. The weighted model associates each edge of the graph with a
positive number, to denote the cost of communication for the edge; the unweighted model assumes the cost of every
edge to be one unit. The length of a path under either model is the sum of the costs of the edges in the path. In general,
routing along shortest paths is desirable. A shortest path IRS always induces shortest paths. A single-shortest-path
IRS offers a unique shortest path between any two vertices in the graph. An all-shortest-path IRS is a multi-path IRS
that gives exactly all the shortest paths between any pair of vertices in the graph.

1 and |V | being considered consecutive, the interval [a, b] with a > b denotes the set {i
∣∣ a 6 i 6 |V |} ∪ {i

∣∣
1 6 i 6 b}. An interval [a, b] is linear if a 6 b, and circular otherwise. An IRS using only linear intervals is a linear
IRS, LIRS in short. An IRS is strict, denoted by SIRS, if every arc 〈u, v〉 satisfies u /∈ I (u, v). An IRS is denoted by
SLIRS if it is both strict and linear.

The space efficiency of an IRS is measured by compactness. Edge compactness is the maximum, over all the arcs
〈u, v〉, of the number of intervals in I (u, v); global compactness is the sum of the interval numbers over all arcs
〈u, v〉. The characterization of networks that admit a shortest path interval routing scheme with edge compactness k
(i.e., k-IRS) or global compactness k (global k-IRS for short) is a fundamental question in this field.1 Successful work
has been done for many special classes of graphs, including trees, outerplanar graphs, hypercubes, meshes, r -partite
graphs, interval graphs, unit-circular graphs, tori, 2-trees, chordal rings, and general graphs; see [1,8,11–15] for some
examples. A summary of these and other results can be found in [9]. For general graphs, existing complexity results
for the weighted/unweighted models and various IRS variants are summarized in Table 1, where an entry for any of
the single-path IRS or global compactness refers to both the strict and non-strict versions of the problem; an entry for
the all-shortest-path IRS of edge compactness refers to both the linear and non-linear versions of the problem; NPC
denotes an NP-complete problem.

All the problems related to single-shortest-path IRS are known to be NP-complete. The NP-completeness for the
entries of fixed k > 3 in single-path needs an explanation. It follows from combining the result of [6] with that of [10],
or with [16]. In [6], Flammini gave a polynomial-time construction of graphs from binary matrices such that there are
at most k blocks of consecutive 1’s in each column of the matrix under some row permutation if and only if there is
a single-shortest-path (k + 1)-IRS for the constructed graph; in [10], Goldberg et al. proved that for every constant
k > 2, deciding whether a given binary matrix can be row permuted such that each column has at most k blocks of
consecutive 1’s is NP-complete; in [16], we strengthened the result by showing that the same NP-completeness holds
even if the problem is restricted to symmetric matrices.

For the all-shortest-path IRS case, only partial answers (both positive and negative) have been given. 1-SIRS can
be reduced to the consecutive ones property of binary matrices, which can be solved in linear time [2]. Flammini
et al. in [7] presented characterizations for 1-SLIRS and 1-LIRS. On the negative side, in [5], it was shown that the
optimization problem of determining the minimal k such that a given weighted network belongs to the class of all-
shortest-path k-IRS is NP-hard. For unweighted networks, the characterization remains open for all-shortest-path IRS
of compactness k > 1 [9]. In the context of global compactness, Flammini et al. in [4] derived the NP-completeness
for deciding whether there exists an all-shortest-path global k-IRS for a weighted network and an integer k, and this

1 Note the stress on “shortest path” because if the shortest path requirement is relaxed, every graph supports a single-path 1-IRS and global
(2|E |)-IRS.
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Table 1
Complexity results on characterization of shortest-path IRSs

Paths represented Compactness measure Compactness k Variants Graph model
Unweighted Weighted

Single
Edge

k = 1
IRS NPC, [3] NPC, [3]
LIRS NPC, [3] NPC, [3]

Fixed k = 2
IRS NPC, [6] NPC, [6]
LIRS NPC, [6] NPC, [6]

Fixed k > 3
IRS NPC, [6,10,16] NPC, [6,10,16]
LIRS NPC, [6,10,16] NPC, [6,10,16]

General k
IRS NPC, [6] NPC, [5]
LIRS NPC, [3] NPC, [3]

Global General k
IRS NPC, [3] NPC, [5]
LIRS NPC, [3] NPC, [3]

All
Edge

Fixed k = 1
IRS ? ?
SIRS P, [2,7] P, [2,7]

Fixed k = 2
IRS ? ?
SIRS ? ?

Fixed k = 3
IRS NPC, this paper NPC, this paper
SIRS ? ?

Fixed k > 4
IRS NPC, this paper NPC, this paper
SIRS NPC, this paper NPC, this paper

General k
IRS NPC, this paper NPC, [5]
SIRS NPC, this paper NPC, [5]

Global General k
IRS NPC, this paper NPC, [4]
LIRS NPC, this paper NPC, this paper

result is extended in [5] to single-shortest-path IRS. In terms of global compactness and for unweighted networks, the
characterization is open for all-shortest-path IRS.

In this paper, we study the characterization question of all-shortest-path IRS under the unweighted graph model,
and with respect to both edge and global compactness. Specifically, we prove that the characterization of networks
which admit all-shortest-path k-IRS (linear or non-linear) is NP-complete for every constant k > 3, and the
characterization of networks which admit all-shortest-path global k-IRS (or its variants) is NP-complete for general
k . These results can be easily generalized to the weighted network model, and hence extend substantially the related
NP-completeness results of [4,5].

The rest of the paper is organized as follows. The next section gives some formal definitions of the IRS models
and their variants and the characterization problems. The NP-completeness results for the edge compactness and
global compactness are respectively presented in Sections 3 and 4. Note that [17] is a preliminary report of the results
presented in Section 3. We give some conclusive remarks in the last section.

2. Preliminaries

The graphs we consider are connected, loopless, and do not contain multi-edges. The length of a path in the graph
is the sum of the costs of the edges in the path; for the unweighted model, this is equal to the number of edges in
the path. For an arc e = 〈u, v〉, S(u, v) denotes the subset of vertices which can be reached from vertex u through a
shortest path starting with e; note that S(u, v) 6= S(v, u). We use Ad j (v) to denote the set of neighbours of vertex v

in the graph.
We define an Interval Routing Scheme (IRS) as follows.

Definition 1. Let G = (V, E) be a graph that induces arc set A. An IRS on G is a pair 〈L , I 〉 where

(1) L is a one-to-one vertex labeling, L : V → {1, 2, . . . , |V |};
(2) I is an arc labeling, I : A → 2V , assigning a subset of V to each arc of A, such that for every vertex

u ∈ V,
⋃

(u,v)∈E I (u, v)
⋃

{u} = V ;
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(3) for every x, y ∈ V :
(3.1) there exists a sequence of vertices x = u0, u1, . . . , us = y such that for 1 6 i 6 s, y ∈ I (ui−1, ui ); this

sequence is called a routing path induced by 〈L , I 〉;
(3.2) any routing path induced by 〈L , I 〉 between x and y is a simple path of G, i.e., u0, u1, . . . , us are mutually

different vertices of V .

To save space in the routing table, an IRS expresses I (u, v), the subset of V assigned to an arc e = 〈u, v〉, with
intervals over {1, 2, . . . , |V |}.

Definition 2. An interval of {1, 2, . . . , |V |} is one of the following:

(1) A linear interval [i, j] = {i, i + 1, . . . , j}, where i, j ∈ {1, 2, . . . , |V |} and i 6 j ;
(2) a circular interval [i, j] = {i, . . . , |V |, 1, . . . , j}, where i, j ∈ {1, . . . , |V |} and i > j ; or
(3) the null interval [ ] which is the empty set φ.

For simplicity, we will not always strictly distinguish between a vertex v and its label L(v), and will say that a
vertex v ∈ V is contained in an interval [i, j] if L(v) ∈ [i, j].

Definition 3. Given U ⊆ V and a labeling L of V , we denote by N (L , U ) the minimum number of disjoint intervals
such that their union is equal to {L(v)

∣∣ v ∈ U }.

For example, suppose V = {v1, v2, . . . , v9} and L(vi ) = i , then N (L , {v5, v6, v7, v9}) = 2, because {5, 6, 7, 9} =

[5, 7] ∪ [9, 9], and N (L , {v1, v2, v5, v6, v7, v9}) = 2 if the circular interval is allowed, 3 otherwise. Apart from this
use of the circular interval in expressing I (u, v) as intervals, I (u, v) itself may or may not be allowed to include the
starting vertex u. These restrictions give rise to the following variants of IRS.

Definition 4. Let R = 〈L , I 〉 be an IRS on a graph G = (V, E); we say that R is a

(1) Strict Interval Routing Scheme (SIRS) if for every arc 〈u, v〉 ∈ A, u /∈ I (u, v);
(2) Linear Interval Routing Scheme (LIRS) if for every arc 〈u, v〉 ∈ A the intervals representing I (u, v) are restricted

to be linear;
(3) Strict Linear Interval Routing Scheme (SLIRS) if it is both an SIRS and an LIRS.

When u ∈ I (u, v), there is an interval on arc 〈u, v〉 that contains the starting vertex u. An interval on an outgoing
arc of a vertex containing the vertex itself is called a self-enclosing interval; otherwise, it is a strict interval.

Definition 5. Let R = (L , I ) be an IRS (SIRS, LIRS, SLIRS, respectively) on a graph G = (V, E), then

• the (edge) compactness of R is the integer k = max{N (L , I (u, v)), N (L , I (v, u))
∣∣ (u, v) ∈ E}; we denote by

(edge) k-IRS (k-SIRS, k-LIRS, k-SLIRS, respectively) every IRS (SIRS, LIRS, SLIRS, respectively) of (edge)
compactness not more than k;

• the global compactness of R is the integer k = N (L) =
∑

(u,v)∈E (N (L , I (u, v)) + (L , I (v, u))); we denote by
global k-IRS (k-SIRS, k-LIRS, k-SLIRS, respectively) every IRS (SIRS, LIRS, SLIRS, respectively) of global
compactness not more than k.

For practical reasons, we are interested in designing IRSs that induce only shortest paths.

Definition 6. Let R = 〈L , I 〉 be an IRS (SIRS, LIRS, SLIRS, respectively) on a graph G = (V, E); we say that R is

(1) a single-shortest-path IRS (SIRS, LIRS, SLIRS, respectively) if it induces one and only one of the shortest paths
between every pair x, y ∈ V ; or

(2) an all-shortest-path IRS (SIRS, LIRS, SLIRS, respectively) if it induces exactly the set of all shortest paths
between every pair x, y ∈ V .

By the definitions, for all-shortest-path IRS, the arc labeling I does not have much flexibility in assigning subsets
to arcs—I (u, v) is either S(u, v) or S(u, v) ∪ {u}; and for all-shortest-path SIRS, the arc labeling I is identical to S,
i.e., I (u, v) = S(u, v) for every arc 〈u, v〉.

Given a graph G and an integer k, the problems of determining whether G supports an all-shortest-path k-IRS
(k-SIRS, k-LIRS, k-SLIRS, global k-IRS, global k-SIRS, global k-LIRS, global k-SLIRS, respectively) are defined as
follows.
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The all-shortest-path k-IRS (k-SIRS, k-LIRS, k-SLIRS, respectively) problem:
Instance: A graph G, and a positive integer k.
Question: Is there an all-shortest-path k-IRS for G?

The all-shortest-path global k-IRS (k-SIRS, k-LIRS, k-SLIRS, respectively) problem:
Instance: A graph G, and a positive integer k.
Question: Is there an all-shortest-path global k-IRS for G?

Clearly, all of these problems are in the class of NP. In fact, given a graph G, an integer k, a vertex labeling L , and
an arc labeling I , it can be verified in polynomial time whether 〈L , I 〉 is an all-shortest-path k-IRS (k-SIRS, k-LIRS,
k-SLIRS, global k-IRS, global k-SIRS, global k-LIRS, global k-SLIRS, respectively) for G.

In the following, we prove that all of the above problems are NP-complete; in particular, the all-shortest-path k-
IRS and k-LIRS problems are NP-complete for every constant k > 3, and the k-SIRS and k-SLIRS problems are
NP-complete for every constant k > 4. The proof is based on a polynomial transformation to these problems from the
following NP-complete problem.

Definition 7. The consecutive ones blocks problem for symmetric matrices (k-C1BS for short):
Instance: An n × n symmetric binary matrix M , and an integer k > 0.
Question: Is there a permutation of the rows of M such that for each column j the number of blocks of consecutive
1’s (i.e., the number of entries such that M[i, j] = 1 and either M[i + 1, j] = 0 or i = n) is at most k?

In [16], we proved that k-C1BS is NP-complete for every fixed k > 2.
In the next section, we show a construction of graphs from symmetric matrices such that the matrices can be row

permuted to give each column not more than k blocks of consecutive 1’s if and only if the constructed graph supports
an all-shortest-path (k + 1)-IRS ((k + 2)-SIRS). In the final section, we will point out that the transformation can start
from a similar NP-complete problem given in [5] to prove the NP-completeness of all-shortest-path k-IRS for general
integer k, but not a constant k.

The NP-completeness for global compactness is proved in Section 4 by polynomial transformations from the
following well-known NP-complete problem.

Definition 8. The Hamiltonian path problem (HP):
Instance: Graph G = (V, E).
Question: Does G contain a Hamiltonian path?

3. NP-completeness for edge compactness

Starting with any instance of k-C1BS, 〈Mn×n, k〉, where M is a symmetric binary matrix, we construct a graph
G = (V, E) such that there is a row permutation on M leading to each column having not more than k consecutive
1’s blocks if and only if G supports an all-shortest-path (k + 1)-IRS. The construction is simple. For each row i of
M , we create a set Ri = {ri,1, ri,2, . . . , ri,k+4} of k + 4 vertices in G, which we call row vertices; for each column
j of M , we create a set C j = {c j,1, c j,2, . . . , c j,2n(k+4)+1} of 2n(k + 4) + 1 vertices in G, called column vertices;
these two types of vertices induce a bipartite subgraph of G, and Ri − C j edges exist if and only if M[i, j] = 1.
Finally, we add a new vertex a to G to link all the other vertices so that the diameter of G is at most 2. Formally,
G = (V, E) is obtained as follows (refer to Fig. 1, where for simplicity, a line between Ri and C j represents an edge
set, {(ri,l , c j,h)

∣∣ ri,l ∈ Ri , c j,h ∈ C j }).

V = R + C + {a}, where

R =

⋃
16i6n

Ri and Ri = {ri,l
∣∣ 1 6 l 6 k + 4}; and

C =

⋃
16 j6n

C j and C j = {c j,h
∣∣ 1 6 h 6 2n(k + 4) + 1}; and

E = {(ri,l , c j,h)
∣∣ ri,l ∈ Ri , c j,h ∈ C j , M[i, j] = 1}

∪{(a, ri,l)
∣∣ ri,l ∈ R} ∪ {(a, c j,h)

∣∣ c j,h ∈ C}.
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Fig. 1. The transformation graph (s = k + 4 and t = 2n(k + 4) + 1).

Note that any two vertices ri,l and ri,l ′ of Ri have identical neighbour sets Ad j (ri,l) = Ad j (ri,l ′), and so do any two
vertices c j,h and c j,h′ of C j . By Γ (Ri ) we denote the set of those column vertices that are neighbours of ri,l ∈ Ri .
Clearly, Γ (Ri ) = Ad j (ri,l) − {a} = {c j,h

∣∣ (ri,l , c j,h) ∈ E} =
⋃

M[i, j]=1 C j . Similarly, we use Γ (C j ) to refer to the
set of those row vertices that are linked with c j,h ∈ C j . Then, Γ (C j ) =

⋃
M[i, j]=1 Ri .

As the diameter of G is 2, for each arc e = 〈u, v〉, S(e), the optimally reachable vertices from u via e, is
Ad j (v) − Ad j (u) + {v} − {u}. We summarize in the next proposition the S(e) for various types of arcs e in G.

Proposition 1. In the transformation graph G = (V, E),

S(a, ri,l) = {ri,l},

S(a, c j,h) = {c j,h},

S(ri,l , a) = {a} + R − {ri,l} + C − Γ (Ri ),

S(ri,l , c j,h) = {c j,h} + Γ (C j ) − {ri,l},

S(c j,h, a) = {a} + C − {c j,h} + R − Γ (C j ),

S(c j,h, ri,l) = {ri,l} + Γ (Ri ) − {c j,h};

for 1 6 i, j 6 n, 1 6 l 6 k + 4, and 1 6 h 6 2n(k + 4) + 1.

In the above, as well as in the following, we use “+” and “−” for the union and the difference operation on sets
respectively.

Lemma 1. There exists a permutation of the rows of the symmetric matrix Mn×n that would result in a matrix having
at most k blocks of consecutive 1’s per column if and only if the graph G obtained by the transformation from
〈Mn×n, k〉 supports an all-shortest-path (k + 1)-IRS.

Proof. Suppose first of all that there exists a permutation π of the rows of Mn×n that leads to at most k blocks per
column. Without loss of generality, assume π(i) = i ; then the (k + 1)-IRS can be constructed as follows. The vertex
labeling L is such that L(ri,l) = (i − 1)(k + 4) + l for each row vertex ri,l ∈ R; L(a) = n(k + 4) + 1; and
L(c j,h) = n(k +4)+1+ ( j −1)(2n(k +4)+1)+h for each column vertex c j,h ∈ C . That is, the vertices are ordered
in such a way that each Ri ⊂ R forms one interval, each C j ⊂ C forms one interval, and so do R and C themselves;
vertex a is in the middle and adjacent to the last vertex rn,k+4 of R and the first vertex c1,1 of C , as depicted below.

R1︷ ︸︸ ︷
r1,1 . . . r1,s

R2︷ ︸︸ ︷
r2,1 . . . , r2,s . . .

Rn︷ ︸︸ ︷
rn,1 . . . rn,s︸ ︷︷ ︸

R

a

C1︷ ︸︸ ︷
c1,1 . . . c1,t

C2︷ ︸︸ ︷
c2,1 . . . c2,t . . .

Cn︷ ︸︸ ︷
cn,1 . . . cn,t︸ ︷︷ ︸

C

.
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Because each Ri under labeling L forms a single interval, for each column j ,

N (L , Γ (C j )) = N

(
L ,

⋃
M[i, j]=1

Ri

)
= N

(
π, {i

∣∣ M[i, j] = 1}
)

= the number of consecutive 1’s blocks in the j th column of M

6 k.

For a similar reason and because of the symmetry of M , for each row i , we have

N (L , Γ (Ri )) = N

(
L ,

⋃
M[i, j]=1

C j

)
= N

(
π, { j

∣∣ M[i, j] = 1}
)

= the number of consecutive 1’s blocks in the i th row of M

6 k.

Concerning the arc labeling I for all-shortest-path IRS, for each arc e = 〈u, v〉, there are only two alternatives:
setting I (u, v) to S(u, v) or to S(u, v) + u. For different arcs, we make the choice that would guarantee each arc
receiving not more than k + 1 intervals, as follows.

Vertex a: Let I (a, ri,l) = S(a, ri,l) = {ri,l} and I (a, c j,h) = S(a, c j,h) = {c j,h}. Obviously each of them receives
one interval. At other vertices, we will use self-enclosing intervals.

Vertex ri,l : For arc 〈ri,l , a〉, let I (ri,l , a) = S(ri,l , a) + {ri,l} = {a} + R + C − Γ (Ri ) = V − Γ (Ri ); then
N (L , I (ri,l , a)) 6 N (Γ (Ri )) + 1 6 k + 1. For arc 〈ri,l , c j,h〉, let I (ri,l , c j,h) = S(ri,l , c j,h) + {ri,l} =

{c j,h} + Γ (C j ); then N (L , I (ri,l , c j,h)) 6 1 + N (Γ (C j )) 6 k + 1.
Vertex c j,h: Similarly, let I (c j,h, a) = S(c j,h, a) + {c j,h} = V − Γ (C j ) and I (c j,h, ri,l) = S(c j,h, ri,l) + {c j,h} =

{ri,l} + Γ (Ri ); then each of these two types of arcs receives at most k + 1 intervals.

The only if part of the lemma is proved.
Suppose conversely that G admits an all-shortest-path (k + 1)-IRS, 〈L , I 〉. Consider a permutation π on

{1, 2, . . . , n} induced from L such that

π(i) < π( j) ⇐⇒ min{L(v)
∣∣ v ∈ Ri } < min{L(v)

∣∣ v ∈ R j }.

We need only to justify that, for every 1 6 j 6 n, N (π, {i
∣∣ M[i, j] = 1}), the number of blocks in the j th column

of M , after the rows have been permuted using π , is not more than k.
For 1 6 i 6 n, let min Ri denote the minimal vertex in Ri , i.e., L(min Ri ) = min{L(ri,l)

∣∣ ri,l ∈ Ri }. If
M[i1, j] = 1 and M[i2, j] = 1, and the two vertices min Ri1 and min Ri2 belong to the same interval of

⋃
M[i, j]=1 Ri

under L , then in the matrix M , which is permuted according to π , the two rows i1 and i2 must belong to the same
block of consecutive 1’s. Thus we have N (π, {i

∣∣ M[i, j] = 1}) 6 N (L ,
⋃

M[i, j]=1 Ri ) = N (L , Γ (C j )). So we need
only to prove that N (L , Γ (C j )) 6 k for every 1 6 j 6 n.

We first show that for any column j , N (L , Γ (C j )) 6 k + 3. Otherwise, there would be some j such that
N (L , Γ (C j )) > k + 3. Consider the interval number N (L , I (ri,l , c j,h)) on an arc 〈ri,l , c j,h〉 at a vertex ri,l ∈ Γ (C j ).
I (ri,l , c j,h) is either S(ri,l , c j,h) or S(ri,l , c j,h) + {ri,l}. If it is S(ri,l , c j,h), then

N (L , I (ri,l , c j,h)) = N (L , {c j,h} + Γ (C j ) − {ri,l}) > N (L , Γ (C j )) − 2 > k + 1.

If it is S(ri,l , c j,h) + {ri,l}, then

N (L , I (ri,l , c j,h)) = N (L , {c j,h} + Γ (C j )) > N (L , Γ (C j )) − 1 > k + 2.

Both cases imply that under the labeling L the edge (ri,l , c j,h) must receive more than k + 1 intervals, contradicting
that 〈L , I 〉 is a (k + 1)-IRS for G.

We now prove that for any column j , N (L , Γ (C j )) 6 k. Supposing that it is not the case, then there must be a
j such that N (L , Γ (C j )) > k + 1. In this case, we can show that there exist an ri,l ∈ Γ (C j ) and a c j,h ∈ C j such
that the arc 〈ri,l , c j,h〉 at vertex ri,l receives at least k + 2 intervals, contradicting that L is a vertex labeling of the
(k + 1)-IRS.
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Since |C j | = 2n(k + 4) + 1 = 2|R| + 1 > 2|Γ (C j )| + 1, and each ri,l ∈ Γ (C j ) is adjacent to not more than two
vertices of C j (with respect to the order defined by the labeling L), there must be a vertex c j,h ∈ C j such that L(c j,h)

is adjacent to no labels of the vertices in Γ (C j ). In the set S(ri,l , c j,h) = {c j,h}+Γ (C j )−{ri,l}, under the labeling L ,
c j,h itself has to form a single interval. If I (ri,l , c j,h) is S(ri,l , c j,h) + {ri,l}, then the interval number of arc 〈ri,l , c j,h〉

is

N (L , I (ri,l , c j,h)) = N (L , {c j,h} + Γ (C j )) = 1 + N (L , Γ (C j )) > k + 2,

which is a contradiction. If I (ri,l , c j,h) is S(ri,l , c j,h), by further selecting an appropriate ri,l from Γ (C j ) we can
arrive at another contradiction. Because there are at least k + 4 vertices in Γ (C j ) and all of the vertices of Γ (C j ) are
distributed among the N (L , Γ (C j )) 6 k + 3 intervals, there must be an interval [L(ri,l), L(ri ′,l ′)] of Γ (C j ) having at
least two vertices. Selecting the boundary vertex ri,l in this interval, we have N (L , Γ (C j ) − {ri,l}) = N (L , Γ (C j )).
Hence the number of the intervals assigned on edge (ri,l , c j,h) is

N (L , I (ri,l , c j,h)) = N (L , {c j,h} + Γ (C j ) − {ri,l})

= 1 + N (L , Γ (C j ) − {ri,l}) = 1 + N (L , Γ (C j ))

> k + 2,

which is a contradiction. The if part of the lemma is proved. �

It is easy to see that the above transformation can be performed in polynomial time. By the NP-completeness of
k-C1BS for every fixed k > 2, the next theorem follows.

Theorem 1. Given a network G, the problem of deciding if there exists an all-shortest-path k-IRS for G is NP-
complete for every fixed k > 3.

Note that, in the only if part of the proof of Lemma 1, the (k + 1)-IRS for G derived from the permutation of the rows
of M is linear. Thus, the following holds.

Theorem 2. Given a network G, the problem of deciding if there exists an all-shortest-path k-LIRS for G is NP-
complete for every fixed k > 3.

In the transformation, if we make each Ri contain 2k + 7 vertices and each C j contain 2n(2k + 7) + 1 vertices, we
would be able to find one of the intervals of Γ (C j ) under L containing at least three vertices. Selecting an intermediate
vertex from such an interval, a vertex ri,l ∈ Γ (C j ) can be found satisfying N (L , Γ (C j ) − {ri,l}) = N (Γ (C j )) + 1.
Note that in all-shortest-path SIRS, the arc labeling L is identical to S. By a similar argument one can show that there
exists an all-shortest-path strict (k + 2)-IRS for G if and only if there exists a permutation for M leading to at most k
consecutive 1’s blocks per column.

Theorem 3. Given a network G, the problem of deciding if there exists an all-shortest-path k-SIRS (k-SLIRS) for G
is NP-complete for every fixed k > 4.

4. NP-completeness for global compactness

Flammini et al. in [4,5] proved that the all-shortest-path global k-IRS and SIRS problems are NP-complete in the
weighted graph. In this section we strengthen their results to cover unweighted graphs and extend them to global k-
LIRS and SLIRS. We obtain these results by a transformation from the Hamiltonian path problem. The transformation,
presented in Section 4.1, is simple, but the correctness proof, presented in Sections 4.2 and 4.3, is not.

4.1. Transformation from Hamiltonian path

Let G = (V, E), where V = {v1, v2, . . . , vn} and E = {e1, e2, . . . , em}, be an instance of the Hamiltonian path
problem. We construct a graph G = (V, E), as follows (see Fig. 2): Every vertex vk and every edge ei of G become
vertices of G, in which vertex ei is linked to the two vertices vk , vh corresponding to the edge ei = (vk, vh) in G; in
order to force the optimal solution to be such that the labels of the vertices in E would not be adjacent to each other
nor to the labels of those in V , m + 1 cliques B0, B1, . . . , Bm are added to G, and each ei is linked to a specific vertex
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Fig. 2. The transformation graphG = (V,E) (each Bi is a clique of size r − 1, and the thick line between bi, j and Bi represents the edges between
bi, j and all vertices of Bi ).

in Bi−1 and a specific vertex in Bi ; finally, a special vertex a is added to link with all the other vertices so that the
shortest path between any pair of vertices is at most 2. Formally, let r = 13m + n − 1, we have

V = {a} + B + E + V, where

B =

⋃
06i6m

Bi with

B0 = B0 + {b0,r }; Bm = {bm,0} + Bm;

Bi = {bi,0} + Bi + {bi,r } for 0 < i < m;

Bi = {bi, j
∣∣ 0 < j < r} for 0 6 i 6 m;

E = E A + EB B + EB E + EEV , where

E A = {(a, u)
∣∣ u ∈ V, u 6= a};

EB B = {(bi, j , bi,k)
∣∣ 0 6 i 6 m, j 6= k};

EB E = {(bi,r , ei+1)
∣∣ 0 6 i 6 m − 1} ∪ {(ei , bi,0)

∣∣ 1 6 i 6 m};

EEV = {(ei , vk)
∣∣ ei = (vk, u)}.

For various types of arcs, e, in the constructed G, S(e) is summarized in Table 2, in which the arcs are classified
into three classes; each class is further divided into several types. Note that the notation ei is multi-purpose—we use
it to refer to an edge ei = (vk, vh) in graph G, a vertex in graph G, and sometimes the set {vk, vh}, depending on the
context it appears. For example, the “ei ” in “vk ∈ ei ” refers to a set of two vertices. For vk ∈ V , we use Γ (vk) to
denote the set of those vertices ei ∈ E which are linked to vk in G; take v3 in Fig. 2 for instance, Γ (v3) = {e2, e3, em};
clearly, Γ (vk) = {ei

∣∣ vk ∈ ei }, and the degree of vk in G, dG(vk) = |Γ (vk)| = dG(vk) − 1 (because in G, vk is
linked to a).

4.2. The NP-completeness

It is easy to see that for a graph G = (V, E) with |V | = n and |E | = m, the corresponding graph G = (V, E) can
be constructed in polynomial time of m, n. We need to prove that G has a Hamiltonian path if and only if G supports
an all-shortest-path IRS (SIRS, LIRS, SLIRS, respectively) with global compactness K , where K is determined by G
and the variant of IRS.

We refer to a vertex labeling L for G as normal if it labels the members of B + E consecutively in the following
order (or the reversed).

B0b0,r e1b1,0 B1b1,r e2b2,0 B2b2,r e3b3,0 B3b3,r . . . em−1bm−1,0 Bm−1bm−1,r embm,0 Bm . (1)

In the above, the vertices of each Bi and each Bi are labeled consecutively by the normal labeling.
We first claim that the optimal global compactness of G for all-shortest-path IRS (SIRS, LIRS, SLIRS) can always

be reached with a normal vertex labeling, as expressed in the following lemma.

Lemma 2. For any vertex labeling L on V, there is a normal vertex labeling L ′ on V such that N (L ′) 6 N (L).
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Table 2
S(e) for arcs e in G = (V,E) ({b0,0)} = {bm,r)} = φ)

Class Arc e Scope S(e) Number of arcs

I

(a, u)
u ∈ V
u 6= a

{u} (r + 1)(m + 1) + m + n − 2

(bi j , bik )

bi, j ∈ Bi
bi,k ∈ Bi
bi, j 6= bi,k

{bi,k } (r2
− r)(m − 1) + 2(r − 1)2

II

1

(bi,0, bi,r ) 0 < i < m {bi,r , ei+1} m − 1

r − 1

(bi,r , bi,0) 0 < i < m {ei , bi,0} m − 1
(ei , bi,0) 0 < i 6 m {bi,0} ∪ Bi ∪ {bi,r } m
(ei , bi−1, r) 0 < i 6 m [{bi−1,0} ∪ Bi−1 ∪ {bi−1,r }] m

2
(bi,0, a) 0 < i 6 m V− [{ei , bi,0} ∪ Bi ∪ {bi,r }] m
(bi,r , a) 0 6 i < m V− [{bi,0} ∪ Bi ∪ {bi,r , ei+1}] m

3
(bi,0, ei ) 0 < i 6 m {bi−1,r , ei } ∪ ei m
(bi,r , ei+1) 0 6 i < m {ei+1, bi+1,0} ∪ ei+1 m
(ei , a) 0 < i 6 m V− [{bi−1,r , ei , bi,0} ∪ ei ] m

4
(ei , vk ) vk ∈ ei {vk } ∪ Γ (vk ) − {ei } 2m
(vk , a) 1 6 k 6 n V− [{vk } ∪ Γ (vk )] n
(vk , ei ) vk ∈ ei {bi−1,r , ei , bi,0} ∪ ei − {vk } 2m

III
1

(bi, j , bi,0)
0 < i 6 m
0 < j < r

{ei , bi,0} (r − 1)m

(bi, j , bi,r )
0 6 i < m
0 < j < r

{bi,r , ei+1} (r − 1)m

2 (bi, j , a)
0 6 i 6 m
0 < j < r

V− [{bi,0} ∪ Bi ∪ {bi,r ] (r − 1)(m + 1)

The proof of this lemma is deferred to the next subsection. With this lemma, we can consider only normal vertex
labeling L of G. In the rest of this subsection, we always assume L to be normal, and let l be the number of vertices
ei = (vk, vh) ∈ E ⊂ V such that vk and vh receive adjacent labels under L . We have the following facts.

Fact 1: l 6 n − 1, and the equality holds only if the graph G = (V, E) contains a Hamiltonian path.
Fact 2: Any arc e of Class I has a single vertex in its S(e); thus independently with any vertex labeling, it always

receives a single interval. Let s = (r + 1)(m + 1) + m + n − 2 + (r2
− r)(m − 1) + 2(r − 1)2, the number

of the arcs in Class I, then the arcs of Class I contribute a total of s intervals.
Fact 3: Under L , each arc of Class II.1 or III.1 receives a single interval. Thus the arcs of Class II.1 and III.1 totally

yield t = 4m − 2 + 2(r − 1)m intervals.
Fact 4: Under L , the labels of vertices of E are pairwise separated, and none of them is adjacent to the labels of

v ∈ V ; also, labels of vertices of V are not adjacent to L(bi,0) or L(bi,r ).

To arrive at the NP-completeness, we need the following lemma.

Lemma 3. There is an integer K such that G = (V, E) contains a Hamiltonian path if and only if the transformation
graph G = (V, E) constructed from G supports an all-shortest-path global K -IRS (SIRS, LIRS, SLIRS, respectively).

Proof. By Lemma 2, we can restrict our attention to normal labelings only. The idea is to show that under any normal
labeling L , the total number of intervals of G is f (m, n) − g(l), where f and g are strictly increasing polynomial
functions. Thus, by Fact 1, we can conclude that G has a Hamiltonian path if and only if G supports an all-shortest-
path IRS of global compactness K = f (m, n) − g(n − 1). We have counted the interval numbers contributed by
Classes I, II.1 and III.1. For other arcs, we need to consider the differences among IRS variants.

Let us consider SIRS first. Note that SIRS allows circular intervals, which means N (L , V−U ) = N (L , U ). Under
L , we have in

Class II.2, 2m intervals, one per arc.
Class II.3, 9m − 3l intervals, because by Fact 4, each arc receives 1 + N (L , ei ) intervals, totally 3 × t

∑
0<i6m(1 +

N (L , ei )) = 3(m + 2(m − l) + l) = 9m − 3l.
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Class II.4,
∑

16k6n d2
G(vk) + 4m + n intervals, because

N (L , S(ei , vk)) = N (L , {vk} ∪ Γ (vk) − {ei }) = dG(vk), and the total number of intervals contributed
by arcs from E to V is

∑
ei ∈Γ (vk )

dG(vk) =
∑

16k6n d2
G(vk);

N (L , S(vk, a)) = N (L , V − [{vk} ∪ Γ (vk)]) = |{vk} ∪ Γ (vk)| = dG(vk) + 1, and there are∑
16k6n(dG(vk) + 1) = 2m + n intervals on arcs from V to vertex a;

N (L , S(vk, ei )) = N (L , {bi−1,r , ei , bi,0} ∪ ei − {vk}) = 2, and so 2m arcs from V to E contribute 4m
intervals.

Class III.2 , (r − 1)(m + 1) intervals, one per arc.

Thus, the total number of intervals for G under normal labeling L is

s + t + 2m + 8m − 3l +

∑
16k6n

d2
G(vk) + 4m + n + (r − 1)(m + n)

=

∑
16k6n

d2
G(vk) + s + t + (r − 1)(m + n) + 14m + n − 3l.

Let
K =

∑
16k6n

d2
G(vk) + s + t + (r − 1)(m + n) + 14m + n − 3(n − 1),

then G = (V, E) admits an all-shortest-path SIRS of global compactness K if and only if l > n − 1 and G = (V, E)

contain a Hamiltonian path. The lemma for SIRS is proved.
Now consider IRS, for which we can use self-enclosing intervals to reduce the number of intervals needed.

Nevertheless, under normal labeling, using self-enclosing intervals can only help those arcs 〈vk, a〉 of Class II.4—
by assigning I (vk, a) = S(vk, a) + {vk} = V − Γ (vk), the number of intervals on each arc 〈vk, a〉 is reduced by one.
Compared with SIRS, IRS can save totally and exactly n intervals. Setting K to be n less than the K for SIRS, we can
claim the same result for IRS. So the lemma for IRS is proved.

For LIRS or SLIRS, if U involves no complement operation with respect to V, then N (L , U ) has the same value
as for IRS or SIRS. N (L , V−U ) can be N (L , U )− 1, N (L , U ), or N (L , U )+ 1, corresponding to 2, 1, or 0 vertices
respectively in U with label 1 or |V|. That is, calling v ∈ V a terminal vertex, if L(v) = 1 or |V|, then for LIRS or
SLIRS we have

N (L , V − U ) = N (L , U ) + 1 − the number of terminals in U . (2)

We need to analyse which vertices of V may possibly be labeled as terminals by an optimal normal labeling L .
Since L is normal, by (1), the two terminal vertices can only come from B0 ∪ Bm ∪ V ∪ {a}, and at most one of

them comes from B0 ∪ Bm . Hence we can assume that the two terminals come from B0 ∪ V ∪ {a}. According to (2),
for a vertex v that is qualified to be a terminal, there must be as many subsets S(e) = V − U as possible for v in U .
From Table 2, all the subset S(e)’s involving a complement operation take the form V − U with a /∈ U ; thus vertex a
can be excluded. So, we can assume that the two terminals come from B0 ∪ V and at most one of them comes from
B0. Further analysis needs a closer look at those S(e)’s that are computed in the form V − U with U ∩ (B0 ∪ V ) 6= φ.
They are:

S(ei , a) = V − ({bi−1,r , ei , bi,0} ∪ ei ) for 0 < i 6 m,

S(vk, a) = V − ({vk} ∪ Γ (vk)) for 1 6 k 6 n,

S(b0,r , a) = V − (B0 ∪ {b0,r , e1}), and

S(b0, j , a) = V − (B0 ∪ {b0,r }) for 0 < j < r.

There are r = 13m + n − 1 subset S(e)’s taking the form V − U such that U intersects with B0 but not V (the last
two of the above). The other m + n subset S(e)’s take the form V − U such that U intersects with V but not B0. Of
course, to save more intervals, one (and the only one) terminal should be from B0. Without loss of generality, we can
assume it to be b0,1. For any vk ∈ V , there are dG(vk) subsets S(ei , a) = V − U and one subset S(vk, a) = V − U
such that vk ∈ U , i.e., vk appears in dG(vk) + 1 subset U ’s of the required form. So the other terminal should be the
one with maximum degree in G. Let that be vh ; then dG(vh) = ∆ = max{dG(vk)

∣∣ vk ∈ V }.
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There are 3m + n + (r − 1)(m + 1) arcs e in G whose S(e) involves the complement operation. From
the above analysis, we are sure that among these arcs, there are exactly r + ∆ + 1 arcs for SLIRS (r + ∆
arcs for LIRS, resp.) receiving the same number of intervals as they do in SIRS (IRS, resp.); each of the other
3m + n + (r − 1)(m + 1) − (r + ∆ + 1) arcs (3m + n + (r − 1)(m + 1) − (r + ∆) arcs, resp.) receives one
more interval than it does in SIRS (IRS, resp.). Thus, let K be 3m + n + (r − 1)(m + 1) − (r + ∆ + 1) larger than
the K we have determined for SIRS (resp. 3m + n + (r − 1)(m + 1) − (r + ∆) larger than the K we have determined
for SIRS), we conclude that the lemma statement is true for SLIRS (LIRS). �

By Lemma 3, we have the following theorem.

Theorem 4. Given a network G and an integer K , the problem of deciding if there exists an all-shortest-path IRS
(SIRS, LIRS, SLIRS, respectively) for G with global compactness of at most K is NP-complete.

4.3. The proof of Lemma 2

The proof consists of two steps. The first step is to argue that any vertex labeling L on V can be converted into a
labeling L ′ which is not worse than L in terms of overall number of intervals used and which labels each Bi with a
single interval.

Arcs of Class I can be excluded from calculating the overall interval number because each of them, independent of
the vertex labeling, always receives a single interval. For any arc e belonging to the other two classes, either Bi ⊆ S(e)
or Bi ⊆ V − S(e). So, given any vertex labeling L , the labeling L ′ is obtained from L by compacting all the labels of
the vertices in Bi in a unique interval and leaving unchanged the relative order of the labels of all the other vertices.
This yields a scheme requiring an overall number of intervals at most equaling to that of the scheme using L (i.e.,
N (L ′) 6 N (L)). Hence in the following we restrict our attention only to such a vertex labeling, which we call bounded
labeling.

The next step is to show that any bounded vertex labeling L can be converted into a normal vertex labeling L ′

which is no worse than L . This would complete the proof of Lemma 2. To do this, we need the following definitions.

Definition 9. Suppose L is a vertex labeling on V. We call a subset U ⊆ B ∪ E a normal set with respect to L (or say
L is locally normal with respect to U ) if L labels the vertices of U consecutively of the order of a normal labeling. We
call U a maximal normal set if U is normal, but for any U ′

⊃ U , U ′ is not. If U is normal, we use MaxNorm(L , U )

to denote the maximal normal superset set of U , i.e., MaxNorm(L , U ) ⊇ U and MaxNorm(L , U ) is maximal normal.
Since a normal set U forms a single interval under L , we also call U a normal interval.

The idea is to show that, for any bounded labeling L on V, if MaxNorm(L , B0) 6= B ∪ E , then we can repeatedly
augment MaxNorm(L , B0) by applying a change to L . The change is to “move” MaxNorm(L , B0) to merge with some
other maximal normal set without bringing in extra intervals, to eventually obtain a labeling L ′ which is not worse
than L , satisfies MaxNorm(L , B0) = B ∪ E , and therefore is normal. The movement operation on L is defined below.

Definition 10. Suppose U ⊆ V and L assign to U a single interval with u ∈ U as one of the two endpoints of
the interval, W ⊆ V and L assign to W a single interval with an endpoint w ∈ W , and U ∩ W = φ. Then
Move(U, W, u, w) is the operation on L that moves the interval U to be next to the interval W , making u adjacent to
w but leaving the relative order of the vertices in U unchanged (or reversed in order to make u and v adjacent). The
new vertex labeling L ′ as a result is denoted by Move(L , U, W, u, w).

Fig. 3 shows an example of the Move(U, W, u1, w1) operation which needs to reverse U first. Note that if
Move(U, W, u1, wl) or Move(U, W, uh, w1) is performed, the operation will not reverse U . The following lemma
says that such a change causes at most one more interval.

Lemma 4. Let L be a vertex labeling on V, under which U ⊆ V forms a single interval with an endpoint u ∈ U,
W ⊆ V forms a single interval with an endpoint w ∈ W , U ∩ W = φ, and L ′

= Move(L , U, W, u, w); then
N (L ′, X) 6 N (L , X) + 1 for any subset X ⊆ V.

Proof. (refer to Fig. 3) Suppose L labels V of the order of

. . . , y1, u1, u2, . . . , uh, y2, . . . , z1, w1, w2, . . . , wl , z2, . . .
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Fig. 3. Move(U, W, u1, w1) on L to get L ′.

in which, U = {u1, u2, . . . , uh} and W = {w1, w2, . . . , wl}. Without loss of generality, assume u = u1 and w = w1.
Then, we consider the three sets: {y1, u1}, {uh, y2}, and {z1, w1}. Only in the case that at least two of the three sets are
subsets of X can the movement Move(L , U, W, u, w) break two intervals of X into four broken fragments and thus
possibly make N (L ′, X) at least larger than N (L , X) by two. On the other hand, if this happens, then we have the
following (referring to Fig. 3).

• If only two of the three sets are subsets of X , then two of the four broken fragments will be merged into one;
for examples, if both {y1, u1} and {uh, y2} are subsets of X , then the broken fragment containing y1 and the one
containing y2 would be merged into one interval of X under L ′; if one of {y1, u1} and {uh, y2}, say {y1, u1}, and
{z1, w1} are subsets of X , then the broken fragment containing u1 and the one containing w1 will be merged into
one interval of X under L ′.

• If the three sets are all subsets of X , then L ′ will merge the broken fragment containing y1 with the one containing
y2, the one containing u1 with the one containing w1, and the one containing wh with the one containing z1.

In summary, if the movement breaks i intervals of X into 2i fragments, then it will also merge i −1 pairs of the broken
fragments. Thus, we have N (L ′, X) 6 N (L , X) + 1. �

Now we can proceed to the second step of the proof. Let L be a bounded vertex labeling on V, suppose
U = MaxNormal(L , B0) 6= B ∪ E , and assume b0,1 ∈ B0 and u ∈ U be the two endpoints of U under L . Then
u can only be ek , or bk,0, or some v ∈ Bk , say bk,1, or bk,r .

1. u = ek : Under L , ek is adjacent to bk−1,r but not bk,0. Let W = MaxNormal(L , {bk,0}) with endpoints bk,0; the
following depicts one of the possible cases of V under L .

. . . B0b0,r e1b1,0 B1 . . . Bk−1bk−1,r ek︸ ︷︷ ︸
U=MaxNormal(L ,B0)

x . . . Bs . . . y bk,0 Bkbk,r ek+1 . . . w︸ ︷︷ ︸
W=MaxNormal(L ,{bk,0})

z . . . Bt . . . .

We make ek and bk,0 adjacent to form a larger normal interval U ∪ W under labeling L ′
=

Move(L , U, W, ek, bk,0). We have N (L ′, {ek, bk,0}) = 1 = N (L , {ek, bk,0}) − 1, a reduction by one interval
on each arc 〈bi, j , bi,0〉 of Class III.1 with i = k and 0 < j < m. For any other arc e of Class III, we have
N (L ′, S(e)) 6 N (L , S(e)) because this movement does not change the adjacency between bi,r and ei+1 or among
bi,0, Bi and bi,r . Hence the overall number of intervals for arcs of Class III is reduced by r − 1 = 13m + n − 2
which equals the number of arcs in Class II. Therefore, N (L ′) 6 N (L) by Lemma 4.

2. u = bk,0: Bk is not adjacent to bk,0 under L. Let W = MaxNormal(L , Bk) with endpoint bk,1 ∈ Bk . By
L ′

= Move(L , U, W, bk,0, bk,1) we make bk,0 and bk,1 adjacent and merge U and W into a larger normal interval
U ∪W . We have N (L ′, {bk,0}∪ Bk ∪{bk,r }) = N (L , {bk,0}∪ Bk ∪{bk,r })−1, one interval less on each arc 〈bk, j , a〉

(of Class III.2) for 0 < j < r . For any other arc e of Class III, we have N (L ′, S(e)) 6 N (L , S(e)) because this
movement does not change the adjacency between ei and bi,0 or between bi,r and ei+1. Hence, as argued in the
above case, MaxNormal(L ′, B0) = U ∪ W and N (L ′) 6 N (L).

3. u = bk,1: Bk is not adjacent to bk,r . Let W = MaxNormal(L , {bk,r }) with endpoint bk,r . Similar to the previous
case, Move(U, W, bk,1, bk,r ) makes Bk adjacent to bk,r and produces a larger normal interval U ∪W under labeling
L ′

= Move(L , U, W, bk,0, bk,1). In the same manner, this movement saves at least r − 1 intervals overall on all
arcs of Class III. Thus L ′ is not worse than L and is closer to a normal labeling than L .

4. u = bk,r : bk,r is not adjacent to ek+1. Let W = MaxNormal(L , {ek+1}). We can argue similarly as in the first case
that Move(U, W, bk,r , ek+1) makes a larger normal interval U ∪W under labeling L ′

= Move(L , U, W, bk,r , ek+1),
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reducing the number of intervals by r − 1 on arcs 〈bk, j , bk,r 〉 and introducing no additional intervals on the other
arcs of Class III.

Thus MaxNormal(L ′, B0) = U ∪ W and N (L ′) 6 N (L), and the proof of Lemma 2 is complete.

5. Discussions

We have proved that to recognize networks that admit all-shortest-path k-IRS (k-SIRS) for every k > 3 (k > 4)
is NP-complete for unweighted graphs, and of course also for weighted graphs. Our transformation takes advantage
of the symmetry of the matrix in the NP-complete problem k-C1BS. For general binary matrices, Booth and Lueker
[2] gave a linear algorithm for k = 1; Goldberg et al. [10] proved NP-completeness for every fixed k > 2; Flammini
et al. [5] showed the same for general k even if the matrices are restricted to each row having not more than k blocks
of consecutive 1’s (although that is not stated explicitly in their paper). If we apply our transformation to an arbitrary
binary m by n matrix, a graph will be constructed such that the matrix has not more than k blocks in each column and
not more than l blocks in each row if and only if the constructed graph supports an all-shortest-path (max{k, l} + 1)-
IRS ((max{k, l} + 2)-SIRS). Thus, the transformation can start from an instance of Flammini’s NP-complete problem
in [5] to prove the NP-completeness of all-shortest-path k-IRS (and its variants) for general (but not constant) integer
k.

The results of this paper clearly imply that the optimization problem of determining the minimal k such that a given
network supports an all-shortest-path k-IRS (or its variants) is NP-hard. They also imply that we cannot in polynomial
time approximate the compactness of IRS (SIRS) within a ratio of less than 4/3 (5/4), unless P = NP.

For the global compactness, we have strengthened the NP-completeness results of [5] to cover the unweighted
graph and the linear cases. Note that, while no approximation algorithms have been proposed to approximate the edge
compactness within constant ratios (to the best of our knowledge), a 2.25-approximation algorithm for the global
compactness of IRS and a 1.5-approximation algorithm for the global compactness of SIRS have been designed [5].

Some remaining open problems: What is the time complexity when k = 1, 2 (k = 2, 3) for all-shortest-path k-IRS
(k-SIRS)?
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