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ABSTRACT 

 
This chapter studies the joint link scheduling and topology control problems in wireless sensor 
networks. Given arbitrarily located sensor nodes on a plane, the task is to schedule all the wireless 
links (each representing a wireless transmission) between adjacent sensors using a minimum 
number of timeslots. There are two requirements for these problems: first, all the links must 
satisfy a certain property, such as that the wireless links form a data gathering tree towards the 
sink node; second, all the links simultaneously scheduled in the same timeslot must satisfy the 
SINR constraints. This chapter focuses on various scheduling algorithms for both arbitrarily 
constructed link topologies and the data gathering tree topology. We also discuss possible 
research directions. 
 
INTRODUCTION 
 
Cross-layer design of wireless ad-hoc and sensor networks has received increasing attention in 
the past several years (Goldsmith & Wicker, 2002). Most of these work focused on the interplay 
among the physical, MAC and network layer, resulting in various joint designs of power control, 
modulation and coding, link scheduling and routing. Very few of them, however, have considered 
joint design with topology control. Topology control (Gao et al., 2008; Santi, 2005) is the strategy 
to tune the sensors’ transmitting powers so that the sensor nodes collectively can maintain a 
certain global topology such as connectivity. The goal in topology control is to minimize the 
sensors’ power consumption while trying to provide sufficient network capacity. Topology 
control plays a very important role in wireless sensor networks: first, the packets are sent via 
radio transmissions by which there must be a connected topology (or other topologies, such as t-
spanner) to guarantee that the information collected at each sensor can be forwarded to the other 
sensors; second, since all the sensor nodes are power limited, energy efficiency is a fundamental 
challenge in sensor networks; third, a high throughput capacity can ensure the collected 
information to be more quickly sent to the sink nodes, which is crucial in many critical sensor 
applications. The higher throughput capacity achieved by topology control in wireless sensor 
networks can be realized by reducing the network’s interferences (Wattenhofer et al., 2001), the 
degree of which is generally considered to be directly related to the sensor network’s maximum 
node degree (Wang & Li, 2003). Such interference degree, as well as the other graph-based 
interference models developed later by many other researchers (Schmid & Wattenhofer, 2006), 
however, can not accurately reflect the actual capacity gains of wireless sensor networks in reality. 
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For example, it has been shown that low node degree does not necessarily mean low interference 
degree (Burkhart et al., 2004), and a higher graph-based interference degree does not necessarily 
mean lower network capacity (Hua & Lau, 2008). In this chapter, we study two related joint link 
scheduling and topology control problems, the goal of which is to minimize the number of 
timeslots used to schedule all the wireless links (transmissions) in any given topology or a 
specifically constructed topology. Here the number of timeslots used corresponds to the 
reciprocal of the network capacity.  
 
SYSTEM MODEL AND PROBLEM DEFINITIONS 
 
System Model 
We have the following assumptions: (1) All the stationary wireless sensors are arbitrarily located 
on a plane, and each sensor is equipped with an omni-directional antenna; (2) we assume a single 
channel and half-duplex mode, which means each sensor can not send to or receive from more 
than one node, nor to receive and send at the same time; (3) the link capacity is fixed, which 
means increasing the transmission power only increases its transmitting range but not its capacity; 
(4) time is slotted with equal durations; (5) we assume the signal-to-interference-plus-noise ratio 
(SINR) model is applied, which is a popular model approximating the physical reality of signal 
transmission in a wireless network. The SINR model is more realistic than the graph-based 
interference models, which also makes our link scheduling problems much more challenging. 

The SINR ratio at the receiver of a link i can be represented as (Gupta & Kumar, 2000):      
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       (The SINR model) 

where ip denotes the transmission power of link i’s transmitter si ; in  is the background noise at 
link i’s receiver ri ; iig and ijg are the link gain from si to ri , and that from link j’s transmitter sj  to ri , 
respectively; Q denotes the number of simultaneous transmissions with link i; β is the SINR 
threshold which is larger than or equal to 1. Here the numerator ⋅ii ig p means the received power 
at ri . In the denominator, ⋅ij jg p means the attenuated power of jp at ri and it is regarded as the 

interference power for link i, thus 1,= ≠ ⋅∑Q
j j i ij jg p means the accumulated interferences caused by 

all the other simultaneous transmissions. Since we do not consider fading effects and possible 
obstacles in wireless transmissions, the link gain can be represented by an inverse power law 
model of the link length, i.e., 1 / ( , )α=ii s rg d i i and 1/ ( , )α=ij s rg d j i . Here (,)d  is the Euclidean 
distance function, andα is the path loss exponent which is equal to 2 in free space, and varies 
between 2 and 6 in urban areas.  

     We define a non-negative ×Q Q  link gain matrix ( )= ijH h  such that /β= ⋅ij ij iih g g , for ≠i j , 
and 0=ijh , for =i j . We also define a noise vector ( )η η= i  such that /η β= ⋅i i iin g . With these 
definitions, we can rewrite the SINR inequality as 1 η== ⋅ +∑Q

ji ij j ip h p . By using a vector-matrix 
notation, the above inequality becomes η≥ +P HP , or ( ) η− ≥I H P . If there is only one 
transmitting link, i.e., no interferences from other links, the SINR model degenerates into the 
SNR (Signal to Noise Ratio) model, which is shown below: 

( , )αβ≥ ⋅ ⋅i i s rp n d i i                            (The SNR model) 
Obviously, the SNR model defines the minimum power of link i’s transmitter si to use such that 
the receiver ri can successfully decode the packet. We now define the spectral radius ( )ρ H  of the 
H matrix as ( ) max | ( ) |ρ λ= i

i
H H  where ( )λi H stands for the ith eigenvalue of H. Let ir and jc  
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represent the ith row sum and jth column sum of H, and we have: = ∑ ji ijr h and = ∑ ij ijc h . Now 
according to (Andersin et al., 1996), we know the matrix H is a non-negative irreducible matrix. 
Also by compiling the propositions proposed in (Pillai et al., 2005, Zander, 1992b), we have the 
following useful properties of the H matrix: 
Property 1: ( )ρ H increases when any entry of H increases. 
    Since ( , ) / ( , )α αβ= ⋅ij s r s rh d i i d j i , we can see that ( )ρ H can be reduced by either reducing the 
threshold value β , the length of any links or by selecting the links which can result in larger 

( , )s rd j i values. 
Property 2: min( ) ( ) max( )ρ≤ ≤i ii i

r H r ; min( ) ( ) max( )ρ≤ ≤j jj j
c H c . 

Property 3:  1( ) 0−− >I H  if and only if ( ) 1ρ <H .     
Property 4: The power vector * 1( ) η−= − ⋅P I H  is Pareto-optimal in the sense that * ≥P P  
component-wise for any other nonnegative P satisfying ( ) η− ≥I H P .  
 
Problem Definitions 
 
In this chapter, we study two closely related joint link scheduling and topology control problems. 
The first (MLSAT) is for given arbitrary link topologies, and the second (MLSTT) is for forming 
a data gathering tree topology. Note that, from the following problem definitions, we can easily 
see that if the tree topology has been constructed, MLSTT becomes a special case of MLSAT. 
The MLSAT problem is a prominent open problem (Locher, Rickenbach & Wattenhofer, 2008). 
However, as we will see, how to construct the tree topology plays a very important role in the 
scheduling length. In addition, for the two problems, we assume each link has one packet to be 
transmitted. In this case, we can take the totally used timeslots T (the scheduling length) as the 
frame length, which means that the scheduling sequence will be repeated in the subsequent 
frames, i.e., , , + ⋅=i t i t k TX X ( 0 < ≤t T ; k is a positive integer; ,i tX equals 1 if link i transmits in 
timeslot t and 0 otherwise). 
     Problem MLSAT (Minimum Frame Length Link Scheduling for Arbitrary Topologies):  

Given n links which are arbitrarily constructed over arbitrarily located sensors on a plane, 
assign each link’s transmitting sensor a power level and a timeslot, such that all the links 
scheduled in the same timeslot satisfy the SINR constraints and the number of timeslots used is 
minimized. 
      Problem MLSTT (Minimum Frame Length Link Scheduling for a Data Gathering Tree 
Topology): 

Given n sensors arbitrarily located on a plane, connect these sensors to form a data gathering 
tree towards the sink such that the number of timeslots used to schedule all the constructed links 
under the SINR model is minimized.  
 
Examples 
 
We give some examples to illustrate the MLSAT and the MLSTT problems. The example in 
Figure 1 has nine arbitrarily constructed links over ten arbitrarily located nodes on a plane. The 
MLSAT problem is to assign each transmitting node a power level and a timeslot such that the 
minimum number of timeslots to successfully schedule all these nine links is achieved, i.e., each 
transmitting node will be able to send a packet to its receiver. Due to the half-duplex constraint, 
only the set of links which do not share a common node can be potentially scheduled in the same 
timeslot. This set of links must form a matching. Then, due to the SINR model, only those links 
that satisfy the SINR constraints can successfully send a packet to their receivers. In order to 
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minimize the total timeslots, we may try to schedule as many links as possible in each timeslot. 
This, however, means more cumulative interferences which could make all the links fail to 
transmit in the worst scenario. In addition, the aggregated interferences 
( 1, 1, ( / ( , ))α

= ≠ = ≠⋅ =∑ ∑Q Q
j j i j j iij j j s rg p p d j i ) are directly related to the transmission powers and the 

geometric distribution of the senders and receivers. 
      For the MLSTT problem, the links are not already given. Figure 2 shows two different ways 
to connect the sensors as a tree towards the sink node. The left side is a tree constructed via the 
nearest component connector algorithm presented in (Fussen, 2004), and the right side is 
constructed by a minimum spanning tree algorithm. By our discussion about interferences in the 
last paragraph, different ways of connecting the nodes may result in different scheduling lengths. 
In tackling the MLSTT problem, the scheduling strategy must be jointly considered with the 
topology construction algorithm. 
      We will give further examples in the following to elucidate our link scheduling problems 
under the SINR model. 

 

Figure 1: (left) Ten arbitrarily located nodes in a plane; (right) Nine arbitrarily constructed links 
over the ten nodes. 

 

Figure 2: (left) A data gathering tree by the nearest component connector algorithm; (right) A 
data gathering tree by the minimum spanning tree algorithm. 
 
THE FOUR FACTORS THAT IMPACT THE SCHEDULING LENGTH 
 
In this section, we discuss the four factors that have a significant influence on the scheduling 
length of our scheduling problems. 
 
Power Assignment Strategies Make a Difference 
 
We give a pair-wise transmission example in Figure 3(a). According to (Hua&Lau, 2006), we 
have the following two facts. 
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FACT 1: Based on the SINR model, if we employ constant power assignment, then in order to 
ensure simultaneous wireless transmissions ( , )s rx x and ( , )s ry y , the following two inequalities 
must hold: 1/( , ) ( , )αβ> ⋅s r s rd y x d x x and 1/( , ) ( , )αβ> ⋅s r s rd x y d y y . 
FACT 2: Based on the SINR model, if we employ linear power assignment, then in order to 
ensure simultaneous wireless transmissions ( , )s rx x and ( , )s ry y , the following two inequalities 
must hold: 1/( , ) ( , )αβ> ⋅s r s rd y x d y y and 1/( , ) ( , )αβ> ⋅s r s rd x y d x x . 

 

Figure 3: Two pair-wise transmission examples 
     So for the two transmissions in Figure 3(a), if we employ constant power assignment, we must 
guarantee 1/( , ) ( , )αβ> ⋅s r s rd x y d y y for simultaneous transmissions. Since 1β ≥ , this inequality 
does not hold and the two transmissions can not be simultaneously scheduled. Similarly, if we 
employ linear power assignment, we must guarantee 1/( , ) ( , )αβ> ⋅s r s rd y x d y y , and this 
inequality does not hold either; so the two transmissions can not be simultaneously scheduled. 
      Although both constant and linear power assignment can not concurrently schedule the two 
links, there does exist a power assignment that can simultaneously schedule these two 
transmissions. For example, if we set 4, 2, 1, 80α β= = = = =i j xn n p and 3150=yp , we can 
compute the SINR values for transmissions ( , )s rx x and ( , )s ry y . Since 

4 4(80 /1 ) / (1 3150 / 3 ) 2.001 2= + >�xSINR and 4 4(3150 / 4 ) / (1 80 / 2 ) 2.051 2= + >�ySINR , we 
can see that these two links can be scheduled in the same timeslot. 
      From this example, we can conclude that, in order to minimize the total scheduling length, 
picking the right power assignment strategy is of paramount importance. 
  
Link Topologies Make a Difference 
 
Link topology refers to the geometric distributions of all the senders and receivers of the wireless 
links. We take the two of the links in Figure 3(b) as an example. Also according to (Hua&Lau, 
2006), we have the following fact. 
FACT 3: Based on the SINR model, for any pair-wise wireless transmissions ( , )s rx x and ( , )s ry y , 
if we have 2/( , ) ( , ) ( , ) ( , )αβ⋅ ≤ ⋅ ⋅s r s r s r s rd x y d y x d x x d y y , then there does not exist any power 
assignment strategy that can simultaneously schedule the two links. 
     For example, for the two links in Figure 3(b), if we set 4α = and 2β = , then since 

2/ 2/4( , ) ( , ) 3 3 9 ( , ) ( , ) 2 2 4 11.31αβ⋅ = ⋅ = < ⋅ ⋅ = ⋅ ⋅ �s r s r s r s rd x y d y x d x x d y y , we can see that there 
are no power assignment strategies that can schedule the two links in the same timeslot. 
      From this example, we can see that, in a joint link scheduling and topology control algorithm, 
we must construct a topology that can avoid as many as possible of these pair-wise wireless links 
that cannot be simultaneously transmitted. In other words, we must find a topology that can take 
full advantage of power control to schedule as many links as possible in every timeslot. 
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Length Diversities Make a Difference 
 
The link topology shown in Figure 4 has a length diversity of 1. This link topology is called a 
parallel link array and is borrowed from (Baccelli et al. 2006). We now give a theorem which 
states that this link topology can be scheduled in a constant number of timeslots. 
     THEOREM 1: The parallel link array given in Figure 4 can be scheduled in m timeslots 
where m is a constant that satisfies 1/(2 / ( 1)) ααβ α≥ −m . 
     PROOF: In each timeslot, as shown in Figure 4, we just pick all the links where each pair of 
nearby links has equal horizontal separation distance =d mh . If we can prove that all of these 
links can be successfully scheduled in one timeslot, we can then deduce that the total links can be 
scheduled in m timeslots. So we need to prove that all the links we pick in each timeslot do satisfy 
the SINR constraints. 
     Suppose we use constant power assignment, i.e., all the simultaneously scheduled links 
employ the same transmission power P. The SINR value for every link i scheduled in the same 
timeslots is: 

2 2 /2

/ /
(2 / (( 1) )) (2 / ( )) / 2 (1 / )

α α α

α α α α α α α α= ≥ =
+ ⋅ + + ⋅ ⋅ ⋅ + ⋅∑ ∑ ∑i

i i i
k k k

P h P h mSINR
n P k m h n P k m h n m h P k  

     Suppose the transmission power α α⋅ ⋅� iP n m h . Then due to a standard Riemann Zeta 
Function, the above SINR inequality becomes 

( 1)
2 (1 / ) 2

α α

α

α
α

⋅ −
≥

⋅ ⋅∑
�i

k

m mSINR
k  

      So as long as 1/(2 / ( 1)) ααβ α≥ −m , we have β≥iSINR . This completes the proof. 
 

 

Figure 4: Parallel link array with equal lengths and equal horizontal separation distances. (Solid 
circles mean the transmitters, the arrows mean the receivers) 

 

Figure 5: Co-centric exponential node chain (all the links’ senders and receivers are located on 
the same line with link i’s sender’s coordinate as ( )( , )−− i 12 0  and link i’s receiver’s coordinate 

as ( )( , )−i 12 0  (i is from 1 to n).  
      Another link topology is given in Figure 5, whose length diversity equals n which is the 
number of the links. We call this link topology co-centric exponential node chain and it was first 
used in (Moscibroda et al. 2007). We set the path loss exponent 3α = , the background 
noise 0=in and the threshold 2β = . The best heuristic link scheduling algorithm so far employs 
a novel nonlinear power assignment strategy for this link topology, which is presented in 
(Moscibroda et al. 2007); it can schedule all of these n links in (log )O n timeslot. Here we need to 
point out that, considering arbitrary power assignment strategy, no better upper bound or any 
lower bound of this link topology’s scheduling length is known. 
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      From the above, we can see that, for a set of links, the length diversity of the link topology 
plays a very important role in the scheduling length. Since the links which have constant length 
diversity can be scheduled in constant scheduling length, we can conclude that the smaller the 
length diversity of the link topology, the smaller the scheduling length it tends to have. So for the 
joint link scheduling and topology control algorithm, we should try to construct a link topology 
which has smaller length diversity. In addition, for link topologies which have large length 
diversity, such as the co-centric exponential node chain, a good power assignment strategy 
together with a clever scheduling algorithm is necessary for minimizing the scheduling length.   
 
 
The Scheduling Policies Make a Difference 
 
We consider the co-centric link topology again. We set the path loss exponent 3α = and the 
threshold 2β = . Now according to Fact 3, for any two nearby links, i.e., link i and link i+1, there 
are no power assignment strategies that can schedule the two links in the same timeslot. Suppose 
now we employ a kind of link removal based scheduling algorithm: First, we try to schedule all 
the links in the same timeslot; if failure we then choose in each timeslot to remove either the link 
with the longest length or the link with the shortest length. We repeat these steps until all links 
have been scheduled. By using this kind of algorithm, we can see that only one link can be 
scheduled in each timeslot and thus the scheduling length is n. As we have mentioned earlier, 
there is a clever algorithm given in (Moscibroda et al. 2007) that can schedule all links in 
time (log )O n . This algorithm works as follows: Let iL denote the set of links whose 
lengths id satisfy 12 2 +≤ <i i

id , then the algorithm schedules all the links in the link set i 

(
/log 1

log
0

−

+
=
U

n n

i k n
k

L ) where 0 log 1≤ < −i n in one timeslot. By using their nonlinear power assignment, 

it can be shown that the algorithm can schedule all of these links in one timeslot while satisfying 
the SINR constraints. Thus all the links can be scheduled in (log )O n timeslots. 
      From the example, we can see that designing an efficient scheduling algorithm is the key to 
our link scheduling problems. We also need to reiterate the important point that the link 
scheduling algorithm should be jointly designed with the power assignment strategies. For 
example, according to Theorem 2 in the following, we can see that, if we employ either constant 
or linear power assignment, there does not exist any scheduling algorithm that can schedule all 
the links in an efficient manner. 
      THEOREM 2: By using either constant or linear power assignment, no matter what kind of 
scheduling policies we propose, all the links in the link topology given in Figure 5 can only be 
scheduled in n timeslots, i.e., only one link can be scheduled in each timeslot. 
       PROOF: According to Fact 1 and Fact 2, there are no scheduling policies that can make any 
two links in Figure 5 schedulable in the same timeslot. This finishes the proof.    
 
 
HEURISTIC ALGORITHMS FOR MLSAT 
We begin this section with the hardness analysis of the MLSAT problem. If we do not allow power 
control, the MLSAT problem was first proven NP-hard in (Goussevskaia et al. 2007) by using a 
reduction from the partition problem. Very recently, by assuming that the maximum allowable power 
is bounded or the available powers are bounded, Völker et al. (2009) proved that the MLSAT 
problem is also NP-hard even with power control. For arbitrary power levels, the hardness of the 
MLSAT problem with power control is still unknown. But for a special case, even with power control, 
Fu et al. (2009) proved that the minimum length link scheduling problem with arbitrary traffic 
demands with consecutive transmission constraints is NP-hard. Consecutive transmission constraints 
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mean that each link must be consecutively scheduled. Thus we have to turn to heuristic algorithms to 
tackle the MLSAT problem. All the existing heuristics for MLSAT can be largely classified as either 
a top-down or a bottom-up approach. In a top-down approach, the heuristic would first try to pick the 
maximal number of links (a matching) which do not violate the half-duplex constraint, and then find 
a maximal link independent set which does not violate the SINR constraints by removing one link at 
a time. This process will continue until all links have been scheduled. In a bottom-up approach, the 
heuristic would pick each link incrementally to see if the union of the selected links satisfies the half-
duplex and SINR constraints; if not, the link is discarded. This process continues until it finds a 
maximal link independent set, and until all the links have been scheduled. Since the top-down 
approach is based on removing one link at each step, it can also be called a link removal based 
scheduling approach; similarly, since the bottom-up approach is based on incrementing one link at 
each step, it can also be called a link incremental based scheduling approach. Based on Property 3, 
since all the heuristic link scheduling algorithms reduce the problem of finding whether there are 
positive power assignments that satisfy the SINR constraints to the spectral radius checking problem, 
the time complexities of these algorithms are dominated by the matrix eigenvalue computation. The 
time complexity for the ×n n matrix eigenvalue computation and matrix inversion problem is 3( )O n  
(Pan & Chen, 1999). 

Top-Down Approach 
The first link removal based scheduling algorithm called SRA (Step-wise Removal Algorithm) is 
proposed by Zander (1992a). For a set of non-adjacent links, this algorithm defers the link which has 
the maximum value max( , )i ir c . The rationale behind this algorithm is based on Property 2, i.e., the 
spectral radius of the link gain matrix is bounded by the maximum value of the row sum ir or the 
column sum ic . So the SRA algorithm aims to minimize the upper bound of the spectral radius in 
each removal step. Note that the CSCS (Combined Sum Criterion Selection) algorithm presented in 
(Fu et al., 2008) is actually the same as SRA. Instead of minimizing the upper bound of the spectral 
radius, the Step-wise Optimal Removal Algorithm (SORA) proposed by Wu (1999) defers the link 
whose removal can minimize the spectral radius directly in each step. However, different from SRA 
which needs only ( )O n eigenvalue computations, SORA needs 2( )O n eigenvalue computations. Zander 
(1992b) proposed another algorithm called LISRA (Limited Information Stepwise Removal 
Algorithm). In this algorithm, assuming all the links employ the same transmission powers, the link 
with the minimum SINR value is excluded in each step. SMIRA (Step-wise Maximum Interference 
Removal Algorithm) (Lee et al.,1995) would compute for each link the larger interference value 
between the received cumulative interferences from other links and the interferences it caused to all 
the other links, and then it postpones the link which has the largest interference value. For each link 
in the WCRP algorithm proposed by Wang et al. (2005), the algorithm first computes a so-called 
MIMSR (Maximum Interference to Minimum Signal Ratio) value, and then all the links whose 
MIMSR values exceed some pre-determined threshold are removed in each step. Also for the set of 
non-adjacent links, the heuristic algorithm in (Das et al., 2005) discards the link with the maximum 
row sum value ir in the link gain matrix. 

      Having covered the link removal algorithms for non-adjacent links, we now turn to the algorithms 
for the set of arbitrarily constructed links. To our current knowledge, the two-phase link scheduling 
algorithm in (Elbatt & Ephremides, 2002) is the first solution to the joint link scheduling and power 
control problem for ad-hoc networks. In the first phase, this algorithm uses a separation distance to 
find a “valid” link set, which is also a subset of some maximal matching of the original links. Here, 
the larger the separation distance, the fewer the number of links in the “valid” link set found. In the 
second phase, this algorithm tries to find an “admissible” link independent set satisfying the SINR 
constraints by using the LISRA algorithm in each link removal step. A variation of the two-phase 
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link scheduling algorithm has been presented in (Li & Ephremides, 2007). This algorithm first 
defines a link metric which is a combination of the link’s queue length and the number of blocked 
links (the number of links sharing either a transmitter node or a receiver node of the current link). 
Then it finds a maximal matching by greedily selecting a link with the longest queue length and the 
fewest blocked links (the lowest link metric value). There are two differences between the two-phase 
scheduling and its variation algorithm: the first is that the variation algorithm sets the separation 
distance value as zero, which means it tries to find a maximal matching but not a subset; the second 
difference is that, in order to find an admissible link independent set, the variation algorithm defers 
the link with the largest link metric, i.e., the link with the shortest queue length and the maximum 
number of blocked links.  

The ISPA (Integrated link Scheduling and Power control Algorithm) algorithm in (Behzad & 
Rubin, 2007) first constructs a generalized power-based interference graph, which is very similar to 
the pair-wise link conflict (infeasible) graph proposed in (Hua & Lau, 2008 & 2006). The subtle 
difference between the two interference models is that the power-based interference graph takes 
maximum allowable power into account. Note that the links in this graph form a subset of some 
maximal matching of the original links. Then, by using the minimum degree greedy algorithm 
(MDGA), the ISPA algorithm finds a maximal number of links which satisfy the SINR constraints 
pair-wisely. Third, they use the SMIRA algorithm as the pruning method to find a maximal number 
of links that satisfy the SINR constraints. Fourthly, in a “maximality stage” they try to find more 
links to be added to the link independent set. 

     Different from all the previously mentioned link removal based scheduling algorithms, the 
Algorithm A in (Kozat et al., 2006) first defines each link’s effective interference as the 
corresponding column sum ( ic ) in the link gain matrix, and then it finds a maximum matching of the 
links directly instead of finding a maximal matching or even a subset of the maximal matching. If the 
maximum matching does not satisfy the SINR constraints, the link with the maximum effective 
interference is discarded in each link removal step. This process is repeated until all links have been 
scheduled. 

Bottom-Up Approach 
As mentioned earlier, the bottom-up approach is based on scheduling each link incrementally. The 
main difference between the top-down and bottom-up scheduling approaches is that, for a set of non-
adjacent links, the top-down approach always consists of two phases, i.e., the link matching searching 
phase (either a maximum matching, a maximal matching or even just a matching) and the link 
removal based scheduling phase. The bottom-up approach, however, can directly schedule the links 
one by one without first finding a link matching. So we can largely classify the bottom-up approach 
into two categories: matching based scheduling and non-matching based scheduling. We will first 
study the non-matching based algorithms since most state-of-the-art link incremental based 
scheduling algorithms directly schedule the links one by one without first finding a link matching. 

Non-Matching Based Algorithms 
The first polynomial time approximated link scheduling algorithm called GreedyPhysical is given in 
(Brar et al., 2006). This algorithm, however, is designed for random networks, which means that the 
approximation bound can not be generalized to arbitrarily constructed links. Moreover, the algorithm 
does not use packet-level power control, which means that all the links in the same timeslot employ 
the same transmission powers. Since this algorithm is designed for links with arbitrary link demands, 
which means different links may have a different number of packets to be transmitted, it can be easily 
applied to the unit link demand case; the algorithm first sorts all the links in the decreasing order of 
their interference numbers. The interference number of a link refers to the number of links which do 
not share a common node with the current link and can not be concurrently scheduled with it under 
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the SINR model. The algorithm then greedily schedules these links, from the link with the largest 
interference number to the link with the fewest interference number.  
     Since the algorithm GreedyPhysical is only an approximation for random networks, Hua & Lau 
(2008) have given the first polynomial time approximate algorithm for arbitrary link topologies, i.e., 
solving the MLSAT problem. This algorithm is based on the exponential time exact scheduling 
algorithm for MLSAT. To the best of our knowledge, this is also the first nontrivial exponential time 
exact algorithm for MLSAT. By taking advantage of the inclusion-exclusion principle which has 
been successfully applied in exact graph coloring algorithms, the authors have devised an * (3 )nO  time 
algorithm called ESA_MLSAT which is also a bottom-up based scheduling algorithm. In addition, if 
exponential space is allowed, the time complexity can be reduced to * (2 )nO . Here the * ( )⋅O notation is 
used to suppress the poly-logarithmic factor. With these exact scheduling results, the approximation 
algorithm first partitions all the links into ( / log )O n n groups, and then uses the exact scheduling 
algorithm ESA_MLSAT in each group. It can thus achieve a polynomial time approximation with an 
approximation factor ( / log )O n n . 
     The Primal Algorithm proposed in (Borbash & Ephremides, 2006) is designed originally for some 
kind of “superincreasing” link demands, which means when we sort the link demands in a non-
increasing order, each link with a higher demand is greater than or equal to the sum of all the links 
with lower demands. This algorithm first finds the link with the largest link demand, and then all the 
other links which can be pair-wisely scheduled with the current link under the SINR model. After 
that the algorithm schedules these two link sets with the duration of the link with a lower link demand. 
And then the algorithm checks how many packets have not been transmitted for the link with the 
largest link demand and schedules this single link packet by packet. The algorithm repeats these steps 
until all the packets have been transmitted. The authors of this paper have shown that this polynomial 
time greedy algorithm is optimal for these ‘superincreasing’ link demands. We can adapt the 
algorithm to arbitrary link demands by first sorting the links in a decreasing order of their traffic 
requirements, and then picking each link in order using the bottom-up approach. Obviously, this 
method can not guarantee the optimal scheduling length for cases with arbitrary link demands.    
     Also designed for arbitrary link demands, the IDGS (Increasing Demand Greedy Scheduling) 
algorithm presented in (Fu et al., 2008) first sorts the links in an increasing order of their link 
demands; and then in each timeslot it picks the link with the lowest link demand, and then it switches 
to pick the links in a reversed order, i.e., selecting the link with the highest link demand using a 
bottom-up approach. 
     We now introduce the two non-matching based scheduling algorithms proposed in (Li & 
Ephremides, 2007). The simplified scheduling algorithm first sorts the links in an increasing order of 
their link metrics, and then picks each link in order while giving it a power level which is the smaller 
value of its linear power assignment (a power assignment proportional to its link length to the power 
of the path loss exponent) and its maximum allowable power level. If any SINR constraints are 
violated then it defers it to the next timeslot. The second joint link scheduling and power control 
algorithm (JSPCA) behaves similarly to the simplified scheduling algorithm with the difference that 
the former one assigns the power levels with the values calculated from the Pareto-optimal power 
vector *P (Property 4) rather than the pre-determined power assignments. Compared with the two-
phase link removal algorithm and the simplified scheduling algorithm, the authors have shown that 
the JSPCA algorithm can greatly improve the network performance in terms of throughput and delay. 
The link scheduling and power control algorithm (LSPC) proposed in (Ramamurthi et al., 2008) first 
constructs a conflict graph based on the node-exclusive interference model (links sharing a common 
node can not be concurrently scheduled), and then sorts the links either in an increasing order or in a 
decreasing order of the node degrees. Finally it schedules the links in order using the bottom-up 
approach. Note that if we employ the increasing order and if we do not consider a backlogged system 
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(without considering the links’ queuing lengths), the LSPC algorithm becomes the same as the 
JSPCA algorithm introduced in (Li & Ephremides, 2007).  

For the throughput maximization problem for single hop links, i.e., to compute the maximum 
number of packets transmitted on these links in a fixed frame length, Tang et al. (2006) first 
formulated it as a mixed integer linear programming (MILP) problem, and then they relaxed it as a 
linear programming problem. In order to generate a link’s ordering for the proposed serial linear 
programming rounding algorithm (SLPR), the authors also relaxed the SINR requirement. By solving 
the linear programming problem, they sort the links in a decreasing order of the fractional values of 
the scheduling variables. Finally the greedy SLPR algorithm incrementally schedules these links 
using the bottom-up approach. The intuitive idea of this link ordering is that, the larger the fractional 
value of the scheduling variable calculated from the relaxed SINR model, the higher the probability 
of this link satisfying the original SINR requirement. Note that although this is a polynomial time 
algorithm, it suffers from an extremely high worst case computational complexity 8( )⋅ LPMO n , where 
n is the number of the links and LPM is the number of binary bits required to store the data.  

We now introduce another class of non-matching based scheduling algorithms which feature a 
kind of nonlinear power assignment. This power assignment can overpower the short links, which 
means that on one hand, compared with constant power assignment, long links can use larger powers; 
on the other hand, short links can receive relatively larger power compared with linear power 
assignment. The nonlinear power assignment is first introduced in an algorithm for the MLSTT 
problem (Moscibroda & Wattenhofer, 2006) and has subsequently been used for the MLSAT 
problem. In (Moscibroda, Wattenhofer & Zollinger, 2006), by using the nonlinear power assignment, 
the authors study the relationship between the graph-based interference model which is called the in-
interference degree and the SINR model. The in-interference degree of a node stands for the number 
of other transmitters whose transmission ranges cover this node. And the largest in-interference 
degree of a node is called the in-interference degree of the topology. This chapter concludes that the 
scheduling length of the MLSAT problem is upper bounded by the product of the in-interference 
degree of the topology and the square of the logarithmic function of the number of the links. From 
this, we can see that a lower in-interference degree greatly shortens the scheduling length. In a later 
paper (Moscibroda, Oswald & Wattenhofer, 2007), the authors propose a low disturbance scheduling 
algorithm called LDS. This algorithm can generate a poly-logarithmic scheduling length for a 
topology with low disturbances. Here low disturbance is characterized by a parameter 
called ρ − disturbance which can also be regarded as the density of the links’ distribution. For a 
link’s ρ − disturbance , the algorithm first computes the number of other links’ transmitters (receivers) 
located in the current link transmitter’s (receiver’s) range (the link’s length divided by the 
value ρ which is greater than or equal to 1), and then the larger value is the link’s ρ − disturbance . The 
maximum ρ − disturbance of all the links becomes the ρ − disturbance of the topology. With this 
parameter, the authors prove that the scheduling length of the MLSAT problem is upper bounded by 
the ρ − disturbance of the topology multiplied by the product of the square of the logarithmic function 
of the number of the links and the square of the ρ value. From this, we know that a sparse link 
topology with a lower ρ − disturbance can significantly reduce the scheduling length. 

 
Matching Based Algorithms 
In this section, we discuss some link incremental scheduling algorithms which are based on either a 
link matching or a superset of a link matching. 

The Algorithm B proposed in (Kozat et al., 2006) is originally designed for minimizing the total 
power consumption, but it can be adapted for the minimum frame length link scheduling problem 
with a few modifications. Similar to Algorithm A given in the same paper which uses a top-down 
approach, the Algorithm B first finds a maximum matching of the unscheduled links; second, it sorts 
all the links in the maximum matching in a decreasing order of their effective interferences; third, the 
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algorithm can then be adjusted to pick each link in order using the bottom-up approach. The authors 
have shown that Algorithm B can schedule more links in a timeslot than the top-down approach 
based Algorithm A. 

Recently, Hua (2009) introduced a maximum directed cut based scheduling framework called 
MDCS. The fundamental differences between this framework and all the other state-of-the-art 
scheduling algorithms lie in two aspects: the MDCS framework uses a maximum directed cut which 
also contains a maximum matching as the building block for each phase’s scheduling; and in each 
scheduling phase, the MDCS framework employs a link incremental based scheduling algorithm with 
novel scheduling metrics. We borrow an illustrative example (c.f. Figure 6) from Hua (2009) to 
briefly explain the rationale behind MDCS. First, we notice that finding a maximum matching in the 
bottom up based scheduling algorithms is preferred to finding a maximal matching or even just a 
matching. The reason is that, compared with the maximal matching or just a matching, the maximum 
matching can offer more potential links that can be scheduled in the same timeslot. Second, we can 
see that adding more links in the maximum matching can offer more potential links to be scheduled 
in the same timeslot. Since there may be more than one maximum matching, this step can be taken as 
diversifying the maximum matching found. For example, in the following example, there are 3n+1 
links and any maximum matching consists of n+1 links. Here we suppose the found maximum 
matching is composed by link 1 and links from links 2n+2 to 3n+1. Now we can add links from links 
2 to n+1 to this maximum matching. Thus if any link in the added links can be concurrently 
scheduled with the links in the found maximum matching, there will be fewer links in the subsequent 
scheduling phases which could lead to much fewer timeslots to schedule all the links. The problem 
then is how to add the non-matched links to the maximum matching. Examining the link gain matrix 
H, we can see that if adding a link to the maximum matching can make a link’s transmitter (receiver) 
become another link’s receiver (transmitter), the denominator of some element of the link gain matrix 
would become infinity which is very undesirable for any scheduling or removal metrics built upon 
the elements of the link gain matrix. So the problem boils down to finding the maximum directed cut 
upon a maximum matching. Also taking Figure 6 as an example, the found maximum directed cut 
comprises the maximum matching consisting of link 1 and links from links 2n+2 to 3n+1 and all the 
other links excluding link n+1. For more details of this maximum directed cut based scheduling 
framework and the various scheduling metrics, please refer to (Hua, 2009).  

 
Figure 6: An Example for the MDCS Scheduling Framework 

 
 
ALGORITHMS INEFFICIENCY ANALYSES 
 
In this section, we give some inefficiency results for both top-down and bottom-up based link 
scheduling algorithms.  

THEOREM 3: The following top-down based link scheduling algorithms have a worst case lower 
bound of ( )Ω n : the two phase scheduling algorithm (Elbatt & Ephremides, 2002), the variation of the 
two phase scheduling algorithm (Li & Ephremides, 2007),  the ISPA algorithm (Behzad & Rubin, 
2007), the Algorithm A (Kozat et al., 2006) and the heuristic link scheduling in (Das et al., 2005).  
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PROOF: Since the two phase scheduling algorithm and the ISPA algorithm use LISRA and 
SMIRA as their link removal algorithms respectively, the inefficiency results of the two link removal 
algorithms (Theorem 5.2 in (Moscibroda, Oswald & Wattenhofer, 2007)) can be directly applied here. 
For the other three scheduling algorithms, we can make use of the co-centric exponential node chain 
given in Figure 5. We can set the path loss exponent 3α = , the background noise 0=in and the 
threshold 2β = . For the variation of the two phase scheduling algorithm, since all the links have the 
same number of blocked links (zero), the links removed in each step are link 1 to link n-1, so only 
one link (link n) can be scheduled in the first timeslot. These removal steps will be repeated in the 
following n-1 timeslots.  For the Algorithm A and the heuristic link scheduling, since they either use 
the link gain matrix column sum or row sum as their link removal metrics, the links removed in each 
step are either in an increasing order of their links’ lengths or in a decreasing order of their links’ 
lengths. However, both orders will result in ( )Ω n scheduling lengths. This completes the proof. 

THEOREM 4: The two bottom-up based link scheduling algorithms, i.e., the simplified 
scheduling algorithm in (Li & Ephremides, 2007) and the GreedyPhysical algorithm in (Brar, Blough 
& Santi, 2006), have a worst case lower bound ( )Ω n . 

PROOF:  We make use of the co-centric exponential node chain. Since all the links form a 
matching, the algorithm can schedule the links in a decreasing order of their lengths. So depending on 
the value of maximum allowable transmission power, the corresponding power assignments can be 
either linear power assignments, constant power assignments, or the long links employing constant 
power assignments while the remaining short links would employ linear power assignments. By 
using the inefficiency results of both constant and linear power assignments (Theorem 3.1 and 3.2 in 
(Moscibroda & Wattenhofer, 2006)) or Theorem 4.1 in (Hua & Lau, 2006), we can complete the 
proof for the simplified scheduling algorithm. Similarly since the GreedyPhysical algorithm does not 
employ packet-level power control, which means that all the links in the same timeslot use the same 
transmission powers (the links in different timeslots may use different powers), Theorem 4.1 in (Hua 
& Lau, 2006) can be directly applied here. This completes the proof for the GreedyPhysical 
algorithm. 

PROPOSITION 5: Let’s suppose there is a link topology whose pair-wise link conflict 
(infeasible) graph (Hua & Lau, 2008) is as shown in the following figure, then any link incremental 
scheduling algorithms in the order of [1..n] will result in a scheduling length of ( )Ω n . However, a 
much fewer or even a constant number of timeslots is possible if we schedule the links in the upper 
and lower parts of this conflict graph respectively. This can be realized by the step-wise least 
discarded link incremental scheduling algorithm called SLDIA proposed in (Hua, 2009). This 
algorithm incrementally schedules the link whose addition in the current link independent set can 
discard the fewest number of links in the remaining links. 

 
Figure 7: A Pair-wise Link Conflict (Infeasible) Graph 

From this proposition, we have the following three corollaries. 
COROLLARY 6: The link incremental scheduling algorithms which use the node degree in the 

pair-wise link conflict graph as the scheduling metric has a worst case lower bound of ( )Ω n . 
COROLLARY 7: Since all the links have unit link demand in MLSAT, the link incremental 

scheduling algorithms which use the link demands as a scheduling metric, such as the Primal 
Algorithm in (Borbash & Ephremides, 2006) and the IDGS algorithm in (Fu, Liew & Huang, 2008), 
have a worst case lower bound of ( )Ω n . 
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COROLLARY 8: Let’s further suppose all the links in this link topology have the same number 
of blocked links, then the link incremental scheduling algorithms which use the number of blocked 
links as the scheduling metric, such as the JSPCA algorithm in (Li & Ephremides, 2007) and the 
LSPC Algorithm in (Ramamurthi et al., 2008), have a worst case lower bound of ( )Ω n . 
 
JOINT TOPOLOGY CONSTRUCTION AND LINK SCHEDULING FOR MLSTT 
 
In this section, we review some joint topology construction and link scheduling algorithms for the 
MLSTT problem. The first algorithm for this problem is given in (Moscibroda & Wattenhofer, 2006) 
in the context of fulfilling the connectivity property of all the arbitrarily located nodes on the plane. If 
we remove the last step of this algorithm, i.e., adding the links from the sink node to all the other 
nodes, this algorithm can be directly used for MLSTT. Since this algorithm employs the nonlinear 
power assignment and is targeted for narrow band networks, we call it NPAN. The NPAN proceeds 
in phases, where each phase comprises all the links in the nearest neighbor forest constructed over the 
sink nodes of the links in the previous phase. Here the sink node means the node with no outgoing 
links. This scheduling algorithm partitions the links in each phase into different groups based on the 
links’ lengths, and then it incrementally schedules each link in the selected groups with the nonlinear 
power assignment. Since there are (log )O n groups in each scheduling phase (n is the number of the 
nodes) and there are (log )O n phases, by combining the scheduling length of each group which is 
bounded by 2(log )O n , the total scheduling length is 4(log )O n . In a follow-up paper (Hua & Lau, 
2006), the authors have studied how the wide-band networks would affect the poly-logarithmic 
scheduling length. They prove that, for a wide-band network with processing gain m, the scheduling 
length can be reduced to 3(log( / ) log )⋅O n m n . This result shows that a higher processing gain can 
greatly shorten the scheduling length, especially when ( )= Θm n . In addition, the paper also points out 
that the poly-logarithmic scheduling length is achieved at the expense of total power consumption 
which is an exponential function of the number of the nodes. Now if we do not schedule the links in 
each phase but rather to schedule the links when the tree topology has been constructed 
after (log )O n steps, the scheduling length can be reduced to 3(log )O n . This result is derived from the 
paper (Moscibroda, Wattenhofer & Zollinger, 2006) which proves that the scheduling length for 
arbitrary topologies is bounded by the in-interference degree of the topology times 2(log )O n , and the 
in-interference degree of the iteratively constructed tree topology is (log )O n . By using a slightly 
different nonlinear power assignment in (Moscibroda, 2007), the scheduling length has been further 
reduced to 2(log )O n . In this chapter, the algorithm first iteratively constructs the tree through the 
nearest component connector algorithm (Fussen, 2004) which is almost the same as the nearest forest 
connection algorithm. Second, the algorithm partitions all the links in constant number of groups 
based on the links’ lengths. The final result is reached since the scheduling length for each group 
is 2(log )O n . We call this scheduling algorithm NPAN-IPSN07. Here we take note that the results of 
(Hua & Lau, 2006) can be easily extended to all these follow-up nonlinear power assignment based 
scheduling algorithms. 

Instead of iteratively connecting all the arbitrarily located nodes with either the nearest forest 
connection algorithm or the nearest component connector algorithm, Hua (2009) has recently 
proposed another joint topology construction and link scheduling algorithm based on first 
constructing a minimum spanning tree. The algorithm does not use nonlinear power assignment 
based scheduling algorithms but rather the proposed maximum directed cut based scheduling 
framework (MDCS).   
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ALGORITHMS COMPARISONS 
 
In this section, we compare the scheduling lengths generated by various link scheduling algorithms 
for both the MLSAT and MLSTT problems introduced in this chapter. 
 
Comparisons of algorithms for MLSAT 
First we show how the arbitrary link topologies are generated. For any n arbitrarily located nodes in a 
2000×2000 m2 plane, we randomly select a link’s transmitter and receiver subject to the constraint 
that they are different nodes on the plane. We then repeat this process until a number of n different 
links (either with different transmitters or receivers) have been constructed. So in this topology 
construction some nodes may not be used (Figure 8 is an example). In this simulation, we set the path 
loss exponent 4α = and the threshold 2β = . In fact we have also tested all the scheduling algorithms 
for the other ( , )α β  values. Since the arbitrarily generated link topology is a very dense link topology 
(c.f. Figure 8), if we choose a smallerα value or a larger β value, all of the scheduling algorithms can 
schedule at most one link in each timeslot which would make performance comparison impossible. 
However for some other ( , )α β values which either have a largerα value or a smaller β value, all the 
algorithms behave similarly with the 4α = and 2β = setting. So we only give the simulation results 
for the ( 4, 2)α β= = case. We implemented seven bottom-up based scheduling algorithms: the 
MDCS scheduling framework (Hua, 2009), the adjusted Algorithm B (Kozat, Koutsopoulos & 
Tassiulas, 2006), the GreedyPhysical algorithm in (Brar, Blough & Santi, 2006) with packet level 
power control, the JSPCA algorithm in (Li & Ephremides, 2007), the LSPC algorithm in 
(Ramamurthi et al., 2008), the LDS algorithm in (Moscibroda, Oswald & Wattenhofer, 2007) and the 
first fit based link increment scheduling algorithm. Here by first fit based link incremental scheduling 
algorithm, we mean that we just greedily schedule the links in its unsorted order with the bottom up 
approach. In addition, in order to differentiate from the JSPCA algorithm, the LSPC algorithm 
employs a decreasing order of the number of blocked links to incrementally schedule the links. Note 
that for the LDS algorithm, since its scheduling length relies on the parameter ρ , we have tested 
different ρ values and find that LDS can achieve the shortest scheduling length when 1ρ =  , so we 
set 1ρ =  in our simulation. We also implement one top-down based scheduling algorithm which uses 
the link removal algorithm SORA. This algorithm first finds a maximum matching in each 
scheduling phase; then it employs SORA as the link removal algorithm. The reasons we use SORA 
as a representative for top down based link removal algorithms are: first, the simulation results in 
(Wu, 1999) have shown that, compared with SRA and SMIRA, SORA has the lowest outage 
probability and a better throughput capacity; second, for the co-centric exponential node chain 
topology, our own simulation result shows that the SORA algorithm can schedule it with the number 
of timeslots no more than that by the nonlinear power assignment based link scheduling algorithm 
given in (Moscibroda, Oswald & Wattenhofer, 2007); third, compared with all the other link removal 
based scheduling algorithms which have worst case lower bound ( )Ω n where n is the number of the 
links, the scheduling length lower bound for the SORA algorithm is still unknown. Note that, we 
have tested these scheduling algorithms over ten sets of link topologies with the number of links 
ranging from 20 to 110. And for each set of topology, we compute the average scheduling length 
over 10 different instances. In addition, for all the scheduling algorithms except LDS, we use the 
Pareto-optimal power assignment with no maximum allowable power limitations. This assumption, 
however, can be removed if we set the same maximum allowable power for all the scheduling 
algorithms. 
     The final scheduling results can be seen in Figure 9. Now we can sort these eight scheduling 
algorithms in an increasing order of their scheduling lengths: MDCS, the adjusted Algorithm B, 
LSPC, first fit, JSPCA, SORA, the adjusted GreedyPhysical with power control and LDS. We have 
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the following observations from this ordering. (1) In matching based link scheduling algorithms, 
adding more links to the maximum matching in each scheduling phase can significantly reduce the 
scheduling length.  This can be seen from the scheduling lengths of MDCS, the adjusted Algorithm B 
and the matching based link removal algorithm SORA. (2) Matching based link scheduling 
algorithms greatly outperform the non-matching based link scheduling algorithms in terms of their 
scheduling lengths. This can be seen from the scheduling lengths of Algorithm B and the other four 
non-matching based scheduling algorithms (LSPC, first fit, JSPCA and GreedyPhysical). This 
observation is further strengthened by the result that even the matching based link removal algorithm 
SORA can generate fewer scheduling lengths than the non-matching based link incremental 
scheduling algorithms (the adjusted GreedyPhysical and LDS). (3) Compared with the top down and 
bottom up based scheduling algorithms, especially for all the matching based link scheduling 
algorithms, link incremental scheduling algorithms can greatly reduce the scheduling lengths 
compared with the link removal algorithms. This can be seen from the scheduling lengths of the 
algorithms MDCS, the Adjusted Algorithm B, LSPC, first fit, JSPCA and SORA. (4) The Fail First 
principle which corresponds to first selecting the link with the largest scheduling metric value 
outperforms the Succeed First principle which corresponds to first selecting the link with the smallest 
scheduling metric value. This is supported by the results from LSPC and JSPCA. (5) Since our 
generated arbitrary link topologies bear large ρ − disturbance  values (Figure 8 is an example 
whose ρ − disturbance value could be as large as the number of links when 1ρ = ), the low 
disturbance scheduling (LDS) generates the longest scheduling lengths (it almost schedules one link 
in each timeslot!). Since both the tree topologies shown in Figure 10 have much 
smaller ρ − disturbance values, we will see how LDS performs in these sparse link topologies in the 
next section. 

 
Figure 8: An arbitrary link topology example with 20 links constructed over 20 nodes 
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      Figure 9: Comparisons of scheduling lengths over arbitrary link topologies with different 
algorithms 

 
Comparisons of Algorithms for MLSTT 
 
All the nodes are also arbitrarily located in a 2000×2000 m2 plane and we set the path loss 
exponent 4α = and the threshold 20β = . The reason for setting a much higher threshold value here is 
that the constructed tree topologies (c.f. Figure 10) are sparse link topologies, while the arbitrary link 
topologies (c.f. Figure 8) are dense link topologies. If we use largerα values or smaller β values, then 
all the scheduling algorithms will generate almost the same very short scheduling lengths which 
would make the comparisons impossible. On the other hand, we have also tested the scheduling 
algorithms for other smallerα values or larger β values, and all the scheduling algorithms behave 
similarly with the setting 4α = and 20β = . So we omit these similar simulation results here. In Figure 
10, the left side is a tree topology iteratively constructed by the nearest component connector (NCC) 
algorithm while the right side is a minimum spanning tree constructed over the same node set. 
Besides the MDCS scheduling framework and the LDS algorithm, we also implement the NPAN-
IPSN07 algorithm which is currently the fastest nonlinear power assignment based link scheduling 
algorithm which can schedule the NCC-tree (tree constructed with NCC algorithm) in time 2(log )O n  
(Mosciborda, 2007). And since the in-interference degree of a MST topology can be ( )O n , we can not 
use the NPAN-IPSN07 algorithm to schedule the links in the MST topology since the SINR 
constraints may not be satisfied. So for the MST topology, we apply the MDCS and the LDS 
scheduling algorithms, and for the NCC tree, we can also apply the NPAN-IPSN07 algorithm. But 
for the NPAN-IPSN07 algorithm, we must pay attention to the background noise value in since the 
scheduling length is also dependent on this parameter. Note that, in this algorithm, when the 
background noise ( 2) / (2 ( 1))α β α< − ⋅ −in , the SINR constraints can not be guaranteed by the 
proposed nonlinear power assignment (the reason is that the SNR model must be satisfied). So in this 
simulation, we set all the in to have the same value which is a little bit larger 
than ( 2) / (2 ( 1))α β α− ⋅ − since we have found that a much larger in value can greatly increase the 
scheduling length. 



 18

      The scheduling results are shown in Figure 11. From this figure we have the following 
observations: (1) the MST topology always yields much shorter scheduling lengths no matter which 
scheduling algorithm is used; (2) combined with Figure 4, for the MST and NCC tree topologies 
having much lower ρ − disturbance values, LDS generates shorter scheduling lengths; although the 
reduction is not that significant, the reduction of scheduling lengths with MDCS is huge; (3) for both 
MST and NCC tree topologies, the MDCS algorithm always achieves the shortest scheduling lengths; 
(4) for NCC tree, compared with the NPAN-IPSN07 algorithm, MDCS achieves a much shorter 
scheduling length. 

.  
Figure 10: Different tree topologies over the same set of nodes (Left: iterative nearest component 
connector construction; Right: minimum spanning tree construction) 
 

 

Figure 11: Comparison of scheduling lengths over different tree topologies with different 
algorithms 

 
CONCLUSIONS  
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This chapter reviews all the state-of-the-art polynomial time link scheduling algorithms under 

the SINR model. We have studied these algorithms through theoretical analyses as well as using 
simulation. We can draw some conclusions from the results. First, for both dense and sparse link 
topologies, the maximum directed cut based scheduling framework MDCS significantly 
outperforms all the other state-of-the-art link scheduling algorithms in terms of scheduling length. 
Second, our results show that connecting all the nodes (sensors) on a plane with the minimum 
spanning tree topology can greatly shorten the scheduling lengths, which means that the data 
gathering speed can be significantly increased. Third, matching based scheduling algorithms help 
reduce the scheduling length compared with non-matching based scheduling algorithms. Fourth, 
link incremental based scheduling algorithms can greatly shorten the scheduling length compared 
with link removal based scheduling algorithms. Moreover, the time complexities of link 
incremental based scheduling algorithms are much lower than those of link removal based 
scheduling algorithms (Kozat, Koutsopoulos & Tassiulas, 2006).  

There are many open problems in this research area that warrant further attention and 
investigation. Here we could only touch upon a small subset of them. For more open problems, 
please refer to (Hua & Lau, 2006, 2008, Hua, 2009 & Hua et al., 2009a,2009b). 

 First, instead of assuming each link having one packet to transmit, we can study the general 
minimum length link scheduling problem with arbitrary traffic demands over the links. Although 
the hardness of the MLSAT problem under power control has been proven to be NP-hard (Fu et 
al., 2009), the general minimum length link scheduling problem without consecutive transmission 
constraints is still open.  

Second, although there are some approximated algorithms for either the MLSAT problem or 
the general minimum length link scheduling problem (Goussevskaia et al., 2009, Halldorsson & 
Wattenhofer, 2009), all their approximation ratios are obtained with the assumption of no power 
control. So it seems necessary to study approximation algorithms under power control. 
Furthermore, it would be interesting to study whether there are some inapproximability results for 
the minimum length link scheduling problems. 

 Third, although a polynomial time approximation algorithm for MLSAT has been proposed in 
(Hua & Lau, 2008), it is a centralized algorithm. A localized/distributed algorithm, where each 
sensor only has limited knowledge of the whole network, is necessary for sensor networks that 
may experience many changes dynamically. For example, we may want a sensor node to decide 
its transmission power locally while guaranteeing higher throughput capacity and lower power 
consumption. 

Fourth, for the asymptotic upper bound of the scheduling length of the MLSTT problem, our 
simulation results and analyses have shown that the currently fastest 2(log )O n  bound 
(Moscibroda, 2007) can be further reduced, which needs a novel scheduling algorithm. Moreover, 
a non-trivial lower bound is also needed. 

Fifth, it will be interesting to consider more layers of the sensor networks, such as the 
networking layer. For example, a joint link scheduling, topology control and routing solution with 
a much shorter provable scheduling length can be very challenging (Chafekar et al., 2007). 

Sixth, it will also be interesting to consider other joint link scheduling and topology control 
problems. For example, we can consider the minimum frame length link scheduling problem for 
either a k-connected topology or a t-spanner topology. 

Seventh, for a small number of links, it is possible to design some efficient exact algorithms 
for either the MLSAT or the general minimum length link scheduling problems. These problems 
can be formulated as a set covering problem (Hua & Lau, 2008) or as a set multi-covering 
problem (Hua et al., 2009a, 2009b). 
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Finally, it should be worthwhile to take the packets’ arriving rates into account (i.e., stochastic 
network) when trying to solve the joint link scheduling and topology control problems (Joo, Lin 
& Shroff, 2008).  
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KEY TERMS & DEFINITIONS 
 
Wireless Link:  A wireless transmission comprised by a source node (transmitter) 
and a destination node (receiver). 
 
SINR Model: A specific interference model which is dependent on the so called 
signal-to-interference-plus-noise-ratio (SINR). In this model, we say that a link i 
has been successfully scheduled if and only if the power received by the link’s 
receiver ri from its corresponding transmitter si is at least a factor β higher than the 
sum of the received powers from the other concurrently scheduled links’ 
transmitters plus the background noise ni . Here the received power attenuates 

with distance, i.e., it equals to the transmitted power divided by the distance 
between the sender and receiver to the power of the path loss exponentα .   
 
Link Independent Set: A set of links which can be concurrently scheduled 
under the SINR model. 



 24

 
Constant (Uniform) Power Assignment: If all the concurrently scheduled links 
employ the same transmission power, we call it a constant (uniform) power 
assignment. 
 
Linear Power Assignment: If each link in the concurrently scheduled links 
employs the transmission power which is proportional to the corresponding link’s 
length (the distance from the transmitter to the receiver) to the power of the path 
loss exponent, we call it a linear power assignment. 
 
Length Diversity: A notion to describe the number of magnitudes of lengths in a 
set of links {1,..., }=N n . In particular, the length diversity of N is: 

 ( ) |{ | : log( ) }|⎢ ⎥= ∃ ∈ =⎣ ⎦iid N m i N d m  ( iid is the length of link i) 

 
Nonlinear Power Assignment: We use ({ })d i to denote the length diversity of all the 
links{ }i scheduled in the same timeslot. And we sort the links in a non-increasing order of 
their lengths. Then we assign theτ value (the power scaling exponent) to each link 
(1 ({ })τ≤ ≤ d i ), and the lower the length magnitude of the links, the higher the τ value. In 
particular, the links with the lowest length magnitude have the highestτ value of ({ })d i , 
and the links with the highest length magnitude have the lowestτ value of 1. Then if the 
link i uses the transmission power ( ) ( )ατ= ⋅ip f dii  , we say it is a nonlinear power 
assignment. Here f is a function of the parametersα , β , ni and the number of the links. 
 
Pareto-Optimal Power Assignment: According to Property 4 of the link gain matrix H, 
if we set the transmission powers based on the power vector * 1( ) η−= − ⋅P I H , we call it a 
Pareto-optimal power assignment. 
 
Topology Control: Adjustment of the links’ transmission powers so that these 
links fulfill a network-wide property, such as connectivity, low interference and 
capacity improvement. 
 


