
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XX, NO.Y, MONTH YEAR 1

Robust Recovery of Shapes with Unknown

Topology from the Dual Space

Chen Liang, Student Member, IEEE, and Kwan-Yee K. Wong, Member, IEEE,

Abstract

In this paper, we address the problem of reconstructing object surface from silhouettes. Previous works by

other authors have shown that, based on the principle of duality, surface points can be recovered, theoretically, as

the dual to the tangent plane space of the object. In practice, however, the identification of tangent basis in the

tangent plane space is not trivial given a set of discretely sampled data. This problem is further complicated by

the existence of bi-tangents to the object surface. The key contribution of this paper is the introduction of epipolar

parameterization in identifying a well-defined local tangent basis. This extends the applicability of existing dual

space reconstruction methods to handle fairly complicated shape without making any explicit assumption on the

object topology. We verify our approach with both synthetic and real-world data, and compare it both qualitatively

and quantitatively with other popular reconstruction algorithms. Experiment results demonstrate that our proposed

approach produces more accurate estimation, whilst maintains reasonable robustness towards shapes with complex

topologies.

Index Terms

Reconstruction, duality principle, tangent envelope, epipolar parameterization, surface extraction

I. INTRODUCTION

S ILHOUETTES are the profiles of objects in the images. They offer rich information about the shape

of the objects, and can often be extracted reliably. Reconstruction algorithms based on silhouette

information are often capable of producing relatively complete 3D models.

Each silhouette defines a family of planes tangent to the object surface. Granted enough viewpoints

with good coverage around an object, the families of tangent planes from all the images form a tangent
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plane space, which is a dual representation of the object surface. Previous works such as [1] and [2] have

demonstrated theoretically how points on the primal surface can be recovered from such a dual space

sampled from the silhouettes. Due to the existence of singularities and irregularities in the dual space of

complicated shapes, however, the major difficulty involved in such a dual space reconstruction method is

how to obtain a reliable tangent basis in the dual space.

In this paper, we contribute to the literature by utilizing the epipolar parameterization in identifying

reliable tangent basis on the dual surface. It allows us to overcome the aforementioned difficulties and

arrive at a closed-form solution without the need of searching in the dual space. We focus on more

complicated and generic shapes which challenge previous dual space approaches. We also analyze in

detail common extreme cases of shapes, such as creases and self-occlusions, and the ways to handle

them. As shown in the experiments, our method is generic and practical for robustly reconstructing rather

complicated objects.

This paper is organized as follows. In Section II, previous related works are assorted and reviewed.

In Section III, we briefly cover the background of the dual space theory and epipolar parameterization.

In particular, we show the reason for introducing the latter, and how in theory it strengthens the current

dual space approach. Section IV deals with the recovery of contour generators in practice. Extreme cases

encountered in a variety of shapes are analyzed in detail. In Section V, we introduce an algorithm to

extract a surface from the recovered contour generators, which also preserves the topology observed from

the silhouettes. Results of both qualitative and quantitative experiments are shown in Section VI, as well as

comparisons with existing approaches for reconstruction from silhouettes. Finally, Section VII concludes

this paper with discussions.

II. PREVIOUS WORKS

Volumetric representations are simple yet robust, and have been extensively used in reconstruction

from silhouettes. The concept of volumetric description was first seen in [3], where Martin and Aggarwal

rasterized the space into parallelogram structure. This was later developed into representing the object

by volumetric intersection of the viewing cones. OcTrees (Oct-Trees) [4] is one of the most popular

representations utilized for this procedure. In [5], Potmesil reconstructed OcTrees from arbitrary viewpoints
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under perspective projection. Subsequent variations of the OcTree [6], [7], [8] allow faster yet more

accurate approximation to the object surface. The major advantage of volumetric approaches is their

robustness, especially when no assumption is made on the topology of the object. However, a common

problem shared by these volumetric methods concerns with their accuracy. The trade off for achieving

a better reconstruction precision is to decrease the size of spatial partition, resulting in a tremendous

increment in complexity of the reconstructed 3D models.

Instead of using volume, the intersection of the viewing cones can also be implemented as polygonal

intersection, which results in one or more polyhedra formally known as the visual hull [9]. An early

attempt of direct polygonal intersection was made in [10]. In [11], the polygonal visual hull was used to

initialize a triangular spline surface which was subjected to further refinement. However, direct intersection

of generalized viewing cones is neither efficient nor numerically stable. In [12], Lazebnik et al. derived

a topological description of the contour generators for weakly calibrated cameras. This description has

facilitated the computation of the visual hull polyhedron. Unfortunately, such an approach does not extend

to object with non-zero genus. This method was later extended in [13] to more complicated objects.

Matusik et al. [14] proposed an efficient algorithm for computing the polyhedral visual hull directly

from silhouettes. Their algorithm is capable of generating visual hull mesh in real time in the case

of a few cameras. As the number of camera increases, however, their method may still suffer from

numerical instability. The authors of [15] and [16] turned to sampling visual rays instead of polygons

from silhouettes. These visual rays were pruned by the viewing cones to form viewing edges, which

were subsequently joined together to form the visual hull mesh. In a separate attempt, Cheung et al.

[17] adopted color information to pinpoint the tangent points to the surface along each viewing edge.

Most of the aforementioned approaches, which approximate the visual hull with polyhedrons, outperform

the volumetric approaches in terms of accuracy and computation complexity, yet many of them maintain

comparable robustness regarding objects with complex topologies.

As for objects with smooth surface, a more precise estimation of surface points can be achieved by a

differential analysis on the deformation of the apparent contours. In [18], Cipolla and Blake demonstrated

that the curvature and depth of the contour generator points can be recovered, provided that the camera

motion is known. Vaillant and Faugeras [19] showed that the contour generator corresponding to a view
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can be computed from a triplet of views. Later, Boyer and Berger [20] gave a closed-form solution for

the depth along a visual ray by fitting an osculating quadratic to its two epipolar correspondences. With

sufficient (and well-distributed) viewpoints, these approaches, which estimate the differential structure,

can give high quality estimation of the surface points, especially for smooth objects. However, few of

them share similar robustness as the volumetric approaches regarding objects with complicated topologies.

Some early attempts to recover the shape of an object from its tangent envelope can be found in [21] and

[22]. Both algorithms are limited to orthogonal projection only. In [1], the authors introduced the concept

of recovering object surface from its dual space. This work has led to a new insight into the duality theory

and its applicability to the reconstruction problem. The proposed approach fits algebraic surface patch to

a local tangent space resulting from space partitioning. These fitted patches are then resampled for higher

order surface fitting. Such an approach requires rather careful tuning of several inter-related parameters,

which becomes increasingly difficult as the complexity of the object surface increases. Recently, Brand

et al. [2] generalized the dual space reconstruction problem into tangent estimation on the dual surface.

Under this framework, a point on the object surface could be independently estimated from its dual space

neighbors linearly. However, the ambiguity of matching points between successive contour generators still

poses an issue for tangent basis estimation, hence their method may still be affected by singularities and

ill distribution of the dual space points.

In this paper, we extend the dual theory for surface reconstruction and present a complete and practical

framework for recovering object surface from silhouettes. Particularly, our framework aims at robustly

recovering more complex surfaces without explicit knowledge of their topologies.

III. THEORETICAL FRAMEWORK

We denote a scalar value using italic font r, a vector or vector-valued function using bold font as r or

r(s, t), respectively. The homogeneous form of a vector is denoted as r̃. The derivative of a function is

denoted by subscription rs(s, t). The dual counterpart (defined later) of a vector or vector-valued function

is denoted by asterisk r∗.
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A. Existing Dual Space Theory and Possible Problems

The dual theory introduced in [1] and [2] tackles the problem of reconstructing the original surface r

from the tangent plane space sampled from silhouettes with known projection matrices P. An example

illustrating the sampling of tangent planes from silhouettes is given in Fig. 1. Each silhouette defines a

family of tangent planes, and the locus of the tangent points corresponds to the contour generator for that

particular viewpoint. A collection of viewpoints gives rise to a space of tangent planes in R3, of which

the envelope is the original object surface. Based on the principle of duality, these tangent planes are

equivalent to points on the dual surface r∗.

Normal:
( )N s

Tangent
plane: ( )r* s

Silhouette
point: ( )w s

Image
plane

Visual ray: ( )p s

Camera center: O

Surface
point: ( )r s

Fig. 1. The back-projection of a tangent line on the silhouette is a plane r∗ passing through the camera center O and tangents to the object

surface. The locus of the tangent points is the contour generator for viewpoint O

In [2], the authors showed that the unknown surface r can be recovered by estimating the tangent planes

on the dual surface r∗, which is formally put as:

r̃(s, t) ∝ [̃r∗s(s, t), r̃∗t (s, t), r̃∗(s, t)]⊥. (1)

where r̃(s, t) is a point on the original surface; r̃∗(s, t) is the tangent plane at r̃(s, t), which is also a

point on the dual surface; r̃∗s(s, t) and r̃∗t (s, t) form a tangent basis on the dual surface at r̃∗s(s, t). For the

mathematical proof of this theory, please refer to [2] and [23]. Note that this theory is based on assuming

r and r∗ to be regular. The non-regular cases involving singularities and discontinuities will be discussed

later in Section IV of this paper.
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(a) (b) (c)

Fig. 2. Surface and its dual; (a) Original object; (b) Points on the dual surface; (c) Pedal surface [24]; The discretely sampled tangent

planes correspond to an unorganized point cloud in the dual space and it is nearly impossible to directly recover a local parametric form of

the dual surface.

The key challenge of applying this theory in practice is how to reliably obtain the tangent basis vectors

r̃∗s(s, t) and r̃∗t (s, t). This originates from the fact that the dual surface is sampled from a discrete set of

viewpoints, and no well-defined local parametric form is available. Among the two tangent basis vectors

to be estimated, r̃∗s(s, t) is, as also shown in [2], intuitively computed from successively sampled tangent

planes along the same silhouette. Unfortunately, it is not trivial to compute r̃∗t (s, t) because, unlike r̃∗s(s, t),

the point-wise connectivity across contour generators of different views is not as apparent.

Spatial proximity in the dual space was exploited in [2] to qualify neighbor points required for estimating

r̃∗t (s, t). They sought nearby dual space points among those sampled from successive views to reduce the

risk of picking bad neighbors. This is because points sharing the same tangent plane (bi-tangent points)

are mapped to a single point in the dual space, and the dual surface crosses itself at these singularities.

Another practical reason for distance measure in the dual space being unreliable is the evil distribution of

the dual space points, despite the fact that they originate from tangents uniformly sampled from silhouettes

(see the example given in Fig. 2). The distribution can also be perturbed by changing a few user-specified

parameters, such as the chosen origin of the original surface, the sampling density, etc. Therefore, the

reliance on spatial proximity in the dual space makes the dual space approach vulnerable to singularities

and evil-distribution of the dual space points, preventing it from dealing with more complicated shapes

in practice.

On the other hand, if we consider the regular case of a locally smooth parametric surface, the mapping
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from the original space to the dual space is simply the tangent operation. This implies we can infer

the neighborhood information in the dual space from that of the original space. Although we have no

prior knowledge about the actual 3D structure of the original surface, it is still possible to define a local

parameterization of the original surface. Epipolar parameterization is such a tool tailored for this purpose.

B. Epipolar Parameterization

Epipolar parameterization is naturally defined for an object observed by a moving camera. It is a local

parameterization and requires no prior knowledge of the 3D structure of the object surface. Let us consider

the same setting as that defined in Section III-A. As the camera moves, the contour generator sweeps

over the visible surface of the object. Assume the object surface is C2 continuous, the object surface can

be locally represented as:

r(s, t) = O(t) + λ(s, t)p(s, t) (2)

While the geometric interpretation of the spatial curve r̃(s, t0) is the contour generator curve observed at

time t0, the interpretation of the spatial curve r̃(s0, t) is not uniquely defined. Epipolar parameterization

[18] gives a natural definition to the spatial curve r̃(s0, t), by defining the tangent vector of this curve to

be in the direction of the visual ray:

rt(s, t)× p(s, t) = 0. (3)

This definition is particularly useful when t takes discrete values, i.e., there is only a finite number of

cameras/viewpoints. For a point lying on a contour generator, its neighboring points along the t-parameter

are defined as the “epipolar correspondences” of this point (for the sake of simplicity, we abuse the term

“epipolar correspondences” by referring the correspondent point of a contour generator point found on the

neighboring contour generator as in “epipolar correspondence”, whereas their projections on the images

are the actual epipolar correspondence to each other). They are given by the intersection between the

neighboring contour generators and the epipolar planes. An example is given in Fig. 3. πt+ is the epipolar

plane defined by O(t0), O(t0 + ∆t) and the point r(s0, t0). The epipolar correspondence r(s0, t0 + ∆t) is

the intersection between the plane πt+ and the contour generator r(s, t0 + ∆t), i.e., they satisfy:
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w( , )s t + tΔ0 0

w( , )s t - tΔ0 0

O( )t - tΔ0

O( )t0 O( )t + tΔ0

r( , )s t + t0 Δ0

r( , )s t - tΔ0 0

r( , )s t0 0

π t+

π
t-

w( , )s t + tΔ0 0

Fig. 3. Epipolar correspondences for a point on the image planes of the neighboring cameras.

p(s0, t0)× p(s0, t0 + δt) · (O(t0 + ∆t)−O(t0)) = 0, (4)

where

p(s0, t0) ∝ r(s0, t0)−O(t0), and

p(s0, t + ∆t) ∝ r(s0, t0 + ∆t)−O(t0 + ∆t).

The epipolar correspondences can be identified purely on the image planes without knowing the 3D

structure of the original surface. We do this by locating the projections of the matching points as

intersections between the silhouettes and the epipolar lines. In above example, the projection of r(s0, t0 +

∆t) on the silhouette w(s, t0 +∆t) is the intersection between the epipolar line and the silhouette. Similar

argument applies to πt−, r(s0, t0 −∆t) and w(s0, t0 −∆t).

IV. RECOVERY OF THE SURFACE POINTS

We extract the silhouettes from images using active B-splines [18]. Each silhouette consists of one or

multiple closed cubic B-Splines:

w(s) =
∑

i

Bi(s)xi, (5)
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where Bi(s) are the cubic B-spline basis functions and xi are the control points. The tangent lines along

each B-spline can be easily computed as:

l̃(s) = ((
∑

i

Ti(s)xi)
>
,−

∑
i

Ti(s)xi •
∑

i

Bi(s)xi)
>
, (6)

where

Ti(s) =
∂Bi(s)

∂s

 0 −1

1 0


There are several advantages of using B-spline representation as well. Most importantly, it grants a

closed-form solution for intersecting epipolar lines with silhouettes. For the cubic B-Spline we used, this

is equivalent to solving an order 3 polynomial equation. In this way, we do not need to sample every

silhouette before estimating surface points, but rather, each surface point is estimated independently. This

has also decoupled the accuracy of estimation from the pre-defined sampling density, and simultaneously

guaranteed the estimation accuracy for whatever sampling density set. Last but not least, we can achieve

sub-pixel accuracy with B-spline representation, which further boosts the estimation accuracy.

A. Identify Tangent Basis via Epipolar Parameterization

In Section III-A, we mentioned that surface point estimation can be converted to tangent basis estimation

in the dual space. The key challenge involved is the estimation of r̃∗t (s, t), and this is where the epipolar

parameterization serves its purpose.

Let r(s, t) be the point we want to estimate. The projection of this point on the silhouette is w(s, t).

The tangent line at w(s, t) back-projects to r̃∗(s, t). To obtain the neighbors of r̃∗(s, t), we firstly need

to locate their duals in the original space, namely, the neighbors of r̃(s, t). At this stage, we have no

knowledge about the depth of r̃(s, t) and its neighbors, however, by using epipolar parameterization (see

Section III-B), we can identify the projections of these neighbors on the silhouettes in the neighboring

images. Along the s-parameter curve, the projections of r̃(s ± ∆s, t) are simply w(s ± ∆s, t). Along

the t-parameter curve, the projections of r̃(s, t±∆t) are found along the silhouettes on the neighboring

images. They can be computed as the intersections between the epipolar lines of w(s ±∆s, t) with the

silhouettes at time t±∆t. Knowing w(s±∆s, t) and w(s, t±∆t), we can back-project the tangent lines
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at these points to obtain r̃∗(s ±∆s, t) and r̃∗(s, t±∆t), which can be used to approximate r̃∗s(s, t) and

r̃∗t (s, t), and finally r̃(s, t) can be estimated using equation (1).

Note for the case when r̃∗s(s, t0) vanishes, which is often characterized by inflections or line segments

on the silhouettes, we can incorporate the direction of the visual ray at this point as an additional linear

constraint. This is because the visual ray is conjugate to the contour generator [25]. Since similar constraint

has also been exploited in [2], this will not be discussed in details here. In fact, this constraint is always

incorporated in the actual implementation, as it imposes minimal additional computational cost upon our

tangent estimation kernel, which is also linear in its nature.

The above epipolar parameterization based approach naturally extends to more complicated situations,

such as when a silhouette consists of multiple curves or non-convex curves. These situations are typical for

those objects with complex shape and topology. In these situations, there are usually multiple intersections

between the epipolar line and the silhouettes. A few simple strategies can be adopted to pinpoint the

actual epipolar match, including similarity of the normal between r̃∗(s, t) and r̃∗(s, t±∆t)1, and ordering

constraint [26]. Once the correct epipolar match is secured, we can proceed the rest of the steps to obtain

r̃(s, t) in the same way as described earlier. In the worse case, no proper epipolar match can be found on

the silhouette, and most of the time, this is due to self-occlusions. The way to handle such a case will be

discussed in Section IV-B.4.

The merit of the above approach over direct search in the dual space is the geometric interpretation it

offers for r̃∗(s, t±∆t) - they correspond to surface points r̃(s, t±∆t) in the original space that are actually

close to r̃(s, t). With this guarantee, the choosing of r̃∗(s, t±∆t) is robust to not only singularities in the

dual space but also shape variation of consecutive silhouettes (such as change of topology), which is often

observed in more complicated objects. We will see quantitatively in Section VI-A that the deficiency of

directly searching in the dual space becomes quite evident as the complexity of the object to be recovered

increases.
1The normal similarity constraint is also adopted in [2] in the process of estimating the tangent basis vectors.
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B. Extreme Cases

While epipolar parameterization gives a sufficiently good tangent basis most of time, the parameteri-

zation itself does have several known extreme cases, such as those studied in [27]. Although these cases

usually affect only a small portion of the surface points to be estimated, we introduce some special

techniques to handle them to further increase the robustness of our algorithm.

The extreme cases are most likely encountered when recovering complicated objects, include creases,

frontier points, cusps, T-junctions and self-occlusions. Some of these cases, such as creases and frontier

points can be handled by minor tweaking of our epipolar parameterization based algorithm, while others

might need more sophisticated schemes or to incorporate additional information.

1) Creases (sharp edges): A crease on the surface causes discontinuity of the local tangents (Fig. 4(top-

left)). This case often happens when the observed object has sharp edges, such as polygonal objects. The

silhouette curve produced by a crease over time is equivalent to the projection of a stationary spatial curve.

One advantage of the epipolar parameterization is that it unifies the treatment of silhouette produced by

rigid spatial curve and by smooth surface [28]. Intuitively, a point on the crease can be treated as having

infinite curvature along the direction of the visual ray. The surface normal at this point is similarly chosen

to be perpendicular to the direction of the visual ray as in the smooth surface case. In this way, the dual

space points produced at different time corresponding to this point do not degenerate and the 3D position

of this point can hence be estimated. Experiments of surface with creases can be found in Section VI-B.

2) Frontier points: The epipolar parameterization breaks down at frontier points [29] which leads to

degenerate tangent basis. While the frontier points themselves can be recovered by a direct triangulation

instead (Fig. 4(top-right)), the epipolar match may be ambiguous for the point in proximity of the frontier

points. In practical, the projection of the frontier points on the silhouette can be located by locating tangent

point of the epipolar line to the silhouette [30], and the ambiguity of the epipolar match can be resolved

by applying the ordering constraint (with respect to the projection of frontier points). This is similar to

what have been done in [31]. In the example given by Fig. 4, the bottom figures show a portion of the

silhouettes at time t and t + ∆t. At time t + ∆t, the normal at w1 and w2 are very similar and they both

qualify as the potential epipolar match for the point w(s, t) (on silhouette at time t) corresponding to

the lower epipolar line. However, since we know which side of the frontier point that w(s, t) is on, the
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frontier point f

O( )t

O( )t+Δt

O( )t

O( )t+Δt

r( )s, t

r ,( )s t+Δt

projection of the
frontier point f

w

projection of the
frontier point f

w1

w2

Image of time t Image of time t + tΔ

Fig. 4. (top-left) An example of a crease on object surface; (top-right) An example of frontier points; (bottem-left) At time t, a point w

near the frontier points is to be matched to a point on silhouette of time t + ∆t (bottem-right); The ambiguity of choosing either w1 or w2

as the correct epipolar match for w can be resolved by enforcing the ordering constraint.

correct epipolar match should be the one (either w1 or w2) on the same side of point f .

In actual implementation, this can be done easily with minimal assumption. As the camera is calibrated,

the image of frontier points can be easily tracked by their curve parameter on the silhouettes (represented

by closed B-splines). It is rather easy to maintain that the positive direction of the normals on B-spline

(see Equation IV) is consistently facing outside (or inside). Assuming that the successive cameras have

similar orientation, which is mostly the case for a sequence of images acquired by a moving camera, the

order of points near frontier points should also be consistent with the parametric direction of the B-splines.

3) Cusps and T-junctions: Cusps and T-junctions are both characterized by abrupt ending of the apparent

contours. A cusp occurs on the apparent contour when the viewing ray direction coincides with the tangent

vector of the contour generator (Fig. 5(left)). Except for the occluded branch (dotted line in the figure), we

usually have no problem to recover the surface points near the cusp in the regular case. T-junctions, on the

other hand, are caused by occlusion (Fig. 5(middle)). The dotted line on the surface does not project onto

the silhouette, so that their positions cannot be recovered. What is worse, the contour generator points
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projecting onto the proximity of the T-junction (the thin line in Fig. 5(right)) are not always recoverable

too. This is because their correct epipolar matches may dwell on the “invisible” part of the apparent contour

or are completely occluded. To mitigate this problem, we can approximate their positions from nearby

recovered contour generator points (the bold line in Fig. 5(right)). Take the Fig. 5(right) for example, we

first computed the weighted average of the contour generator points corresponding to A and B. Then we

pick the point along the visual ray of C which is closest to the weighted average as the approximated

position we wanted.

O( )t
O( )t+Δt

r( )s, t

r( )s, t+Δt

supposed
projection
of ( )r s, t+Δt ,
but not
"visible"

recoverable
under regular
case

recoverable
under regular
case

in need of
interpolation

a cusp

T-junction

"invisible
part" - not

on the
silihouette

A

B

C

occluded branch

O( )t

Fig. 5. (left) An example of a cusp; (middle) an example of a T-junction; (right) The proper epipolar match for points in proximity of a

T-junction may not be visible on the silhouettes of neighboring cameras, and this leads to low quality or even wrong estimation.

4) Self-occlusions: Major occlusion can happen when the surface topology becomes more complicated.

The configuration shown in Fig. 6 represents a typical situation. The image of a surface point A can be

seen on the silhouette at time t. However, its true epipolar correspondence on the surface at time t + ∆t

is occluded, or lies on the internal contour [25] if the object is transparent. Hence we cannot find its

correspondence on the silhouette at time t + ∆t. In practice, we have to decide the true epipolar match

among the intersections between epipolar lines and silhouettes. Since we have no assumption on the

topology of the object observed, it is very difficult to tell whether the best choice among these intersections

represents the true epipolar correspondence. In the example shown in Fig. 6, it may well be mistaken that

the image of point B on the silhouette at t + ∆t is the true epipolar correspondence.

Incorrect epipolar match leads to low quality estimation. In the worse case, the point will fly out of

the true surface. To identify wrong epipolar correspondence caused by occlusions, we can consider the

symmetry of epipolar matching, similar to the criterion adopted in classic stereo matching: if the true
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internal contour (not
on the silhouette)

A

O( )t
O( )t+Δt

image of A

true epipolar
match for A

image of B,
bad epipolar
match

epipolar
line

epipolar
line

true epipolar
match for B

contour
generator
at time t

contour
generator at
time t+Δt

B

at time t at time t+Δt

Fig. 6. Self-occlusion on the surface leads to incorrect epipolar correspondence. (left) surface point A and B lie on the same epipolar plane

spanned by camera O(t) and O(t + ∆t); (middle) the epipolar match for point B is visible on the silhouette at time t, which is different

from the image of A - this information is later used when evaluating the symmetry of epipolar matching; (right) a potential good epipolar

correspondence of A is occluded on the silhouette at time t + ∆t, thus B may be mistakenly qualified as the epipolar match of A due to

their similar normals. This type of wrong matching can be identified by considering symmetry of epipolar matching.

epipolar correspondence of a surface point A is B, then the converse is also true. We illustrate symmetry

of epipolar matching also by the example in Fig. 6: suppose A is the surface point we want to estimate

(on the contour generator of time t), we follow the steps under the normal circumstance by projecting it

into the epipolar line at time t + ∆t, and choose the best suited epipolar match r̃(s, t + ∆t) (B in above

example) using the criteria described earlier. As an additional step, we also intersect the epipolar line for

r̃(s, t + ∆t) with the silhouette at time t and choose the best suited epipolar match. If the best epipolar

match for B is A reciprocally, B can be qualified as the proper epipolar match; if it is not the case, just

as in the above example, we can conclude that no proper epipolar match exists.

With insufficient information for determining the epipolar match at time t + ∆t, r̃(s, t) cannot be

estimated by the dual space approach directly. There are several possible fallbacks. One possible choice

would be applying the method introduced in [15]: the position of r̃(s, t) along its visual ray can be

localized to a smaller range which is consistent with all silhouettes. In our implementation, we simply

skipped the points failing the symmetric matching test. Doing this has little impact on the shape of the

reconstructed model if there are abundant viewpoints with good observation coverage, which is usually

the case if we tend to reconstruct more complicated objects.
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C. Summary

A brief outline of our algorithm, together with the proposed counteracts performed for extreme cases,

is given in Algorithm 1.

Algorithm 1 Recovery of the Surface Points
1: Initialize point array r̃(s, t)

2: for ith silhouette w(s, ti) do

3: for jth point w(sj , ti) on the silhouette do

4: Determine the epipolar match w(sj , ti±1)

5: if the symmetric epipolar match for w(sj , ti±1) is w(sj , ti) then

6: Back-project to get the tangent planes r̃∗k at and in the vicinity of w(sj , ti) and w(sj , ti±1)

7: Compute the weighted tangent (̃r∗∗(sj , ti)) of r̃∗k satisfying the visual ray (w(sj , ti)) constraint as well

8: if r̃∗∗(sj , ti) projects inside all silhouettes then

9: r̃(sj , ti)← r̃∗∗(sj , ti)

10: else

11: r̃(sj , ti)← *PENDING*

12: end if

13: else

14: r̃(sj , ti)← *NULL*

15: end if

16: end for

17: for each point r̃(sj , ti) equals *PENDING* do

18: Interpolate r̃(sj , ti) using r̃(sj−m, ti), r̃(sj+n, ti). and the visual ray constraint, where m and n are bounded minimum

possible integers that both r̃(sj−m, ti) and r̃(sj+n, ti) have already been estimated

19: end for

20: end for

V. EXTRACTION OF THE SURFACE

The result of the earlier estimation is a set of points lying on the contour generators, and each point is

coupled with the tangent plane at that point. This means that the surface normal at each point is known.

Unfortunately, these points are not distributed uniformly. This is due to the fact that the sampling density

along each contour generator can be set arbitrarily high, while the density across the contour generators
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is limited by the number of distinct viewpoints. Direct triangulation, in this case, results in ill-formed

triangles. On the other hand, unlike the case of unorganized point cloud, we do know the connectivity

of points along the same contour generator, as well as the the spatial order of the contour generators.

We therefore propose a simple but robust method for extracting the surface using the connectivity and

ordering information available.

A. Slicing the contour generators

The proposed way for surface extraction is built on a slice based re-sampling method, and it targets

at producing more evenly distributed mesh grids. The earlier computed contour generators are now re-

sampled by parallel slicing planes. Each slicing plane contains the intersections between the contour

generators and that plane. The normal of each resampled point is interpolated from the normals of the

adjacent points along the same contour generator. For a better visual effect, these slices are made parallel

to the plane maximally spanning all the camera centers.

(a) (b) (c) (d)

Fig. 7. Forming topologically correct 2D polygons; (a) resampled points on a slice; the shaded area is the cross section of the visual hull

on the slice, which is unknown; (b) initial single polygon; the red dotted edges are those violating the projection test; the black dash line

represents the first decision plane to separate the points into two groups, each forms a sub-polygon; (c) the sub-polygon on the left hand

side, which still contains edges violating the projection test, is further separated into two sub-polygons; (d) the final result after topology

correction.

Once the re-sampled points on each slice are obtained, we proceed to connect these points and form

topologically correct 2D polygons. To do this, these points are linked together according to their spatial

order. Of course, for complex shapes, a single polygon may not reflect the real topology of the original

object. We correct the topology of this single polygon by separating it into smaller polygons (see the

example given in Fig. 7). The first step involved is to conduct a projection test against all silhouettes for

every polygonal edge. An edge violating the projectiong test would partially project outside at least one
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silhouette, say the ith silhouette. We then choose an arbitrary point on this edge which projects outside

silhouette i, and link it with the corresponding camera center Oi to create a separation plane. The plane

divides the points of the initial single polygon into two groups, each resembles a new sub-polygon which

better complies with the true topology suggested by the silhouettes. This process is repeated until no more

edge violates the projection test. The final result is a set of sub-polygons that fully conform to the true

topology observed.

We perform the topology correction for every slice. An example of slices with their topology corrected

is given in Fig. 8.

Fig. 8. 2D polygons on the slicing planes generated from the David turn-table sequence.

Note that if we link the contour generator points on each slice directly, we result in a shape generally

smaller than the visual hull volume. This becomes apparent if fewer viewpoints are available. To create

a better visual effect, we fit a smooth second order parametric curve on the slicing plane replacing long

edges of the polygons on each slice.

B. Generating final surface

The final object surface is extracted from the polygons on each slicing plane using some well-established

method. We borrow and modify a method described in [32]. The surface normal at each vertex is simply

the interpolated normal from the previous slicing step (see Section V-A).

The overall algorithm outline for extracting the surface from the contour generator points is given

below:
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Algorithm 2 Extracting object surface
1: for each contour generator Γi do

2: for each connected segment along Γi do

3: if has intersection p with slicing plane πk then

4: add p to πk along with the interpolated normal

5: end if

6: end for

7: end for

8: for each slicing plane πk do

9: correct topology and do sorting for the points on πk

10: fit smooth curve if user specified

11: generate surface triangles with points on πk−1

12: end for

13: map texture for each triangle

VI. EXPERIMENTS

A. Comparison with naı̈ve dual space approach

In the following set of experiments, we compare our approach (epipolar approach) with the naı̈ve

approach. The goal of the comparison is to see quantitatively how much the epipolar parameterization

can stabilize the tangent basis estimation.

The two approaches are based on the same implementation except for one key aspect, that is, how

the dual space neighbors along the t direction are located. To be fair, we feed exactly the same sets of

silhouettes to both implemented approaches and the sampling rate (so do the sampled points) are also

the same on each silhouette. Both approaches estimate r̃∗s(s, t) by taking finite difference using tangent

planes at successively sampled points on the same silhouette. For r̃∗t (s, t), our approach locates the dual

space neighbors on two immediate neighbor views using the criteria described in Section IV-A, where as

the naı̈ve approach searches for the dual space neighbors in tangent space sampled from the silhouettes

on the same two views. Based on the idea presented in [2] for estimating r̃∗t (s, t), we pick those points

lying close to r̃∗(s, t) in dual space as the neighbors. With collected neighbors, both approaches use the

same weighted tangent kernel to estimate the surface points. Finally, the estimated points are projected
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onto every silhouette, and points falling outside any silhouette are marked as invalid.

We have tested the algorithms over a set of sequences ranging from simplest shapes to objects with

richer details and non-zero genus. The comparison result in the form of valid estimation ratio is shown

in Fig. 9. The first four sequences (vase, cube, cylinder and cat) are based on synthetic models and the

images are simply the duplications of OpenGL’s rendering buffer. The remaining sequences are real world

image sequences.

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Vase Cube Cylinder Cat Head Jefferson Roman Dinosaur Tennis boy Girl and

Teddy

Epipolar Approach

Naive Approah

Fig. 9. The comparison between the epipolar approach and the naı̈ve approach on the same set objects of various complexity. The vertical

axis shows the ratio of the number of points projected inside all the silhouettes to the total number of points estimated. Higher percentage

means more valid estimations and less erroneous estimations.

Both algorithms perform equally well for simple shapes such as vase (Surface of Revolution), cube

and cylinder. There is, however, a significant decline in the valid ratio for the naı̈ve approach as the

complexity of the object increases. On the other hand, our approach performs reasonably well even for

rather complicated objects given sufficient number of viewpoints.

B. Comparison with other approaches

We have also compared the result of our approach with a typical volumetric approach [8] (denoted as

OcTree later) and a polygonal approach [16] (denoted as EPVH later). The OcTree approach is a variation
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of [6], which extracts silhouettes up to sub-pixel accuracy by using B-spline Snake. The EPVH approach

has been implemented as a library available at http://www.inrialpes.fr/movi/people/Franco/EPVH/.

We compared the accuracy of reconstruction in terms of average distance (error) from the reconstructed

points to the ground truth surface. To achieve this, we rendered some known parametric or implicit surfaces

on the screen. Since we knew the size of the rendering buffer and viewpoints, we could form the intrinsic

and extrinsic matrices easily. The rendering results were captured as image sequences together with the

computed camera matrices. We show below the reconstruction error for three categories of surfaces,

namely, smooth surfaces (a surface of revolution (SOR)), non-smooth surfaces (a unit cube) and surface

with complex topology (a knot surface) (see Fig. 10). For each surface, we performed the reconstruction

using the two earlier mentioned approaches and our approach. We also adjusted the sampling density of

each algorithm in order to maintain a similar number of reconstructed points. We gradually increased the

number of images used for reconstruction and compared its impact over the three approaches.

Fig. 10. Examples of known surfaces (upper row) and the reconstruction results of our approach (lower low): a surface of revolution swept

by a 2D B-spline (left), a unit cube (middle), and a knot surface produced from known 3D B-spline (right).

Our algorithm performed significantly better than OcTree and EPVH regarding the smooth surface



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XX, NO.Y, MONTH YEAR 21

(see Fig. 11(top-left)). This result is readily foreseeable since OcTree uses parallelepiped-shaped cells to

approximate the object surface, while EPVH conservatively approximates the surface as the visual hull.

In order to achieve higher accuracy, both OcTree and EPVH requires more images.

Both our approach and EPVH performed reasonably well for non-smooth surface (see Fig. 11(top-

right)) given enough images. Our approach performed significantly worse when the number of image was

too few (less than 10) due to the fact that our approach is essentially a differential approach.
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Fig. 11. Average distance of the reconstructed points from the ground truth surface - (top-left) SOR sequence; (top-right) Cube sequence;

(bottom) Knot sequence.

As for a surface with very complex topology, when the number of images is too few, our approach

produced a significant number of low quality estimations. This is largely due to the fact that with many

self-occlusions, too few images leads to incorrect epipolar matching, which greatly affects the quality of

the estimation. This situation becomes lessened when more images are adopted (see Fig. 11(bottom)).
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C. Real World Data

We acquired image sequences of real world objects using an electronic turntable, and the cameras were

calibrated using the method described in [30]. The purpose of using turntable sequence is solely for the

sake of easy camera calibration. In theory, the proposed algorithm should work as long as an ordered

image sequence is provided and the camera travels in a relative smooth path (see Fig. 12). This condition

is usually satisfied by video sequence captured by digital video recorders.

The Roman Soldier sequence (Fig. 13) consists of 36 colored images, each of size 800×600 and

the results are shown from novel viewpoints, including the reconstructed contour generator curves, the

extracted surface mesh and the shaded surface.

Fig. 12. Cat sequence: our proposed algorithm works as long as an ordered sequence with relative smooth camera path is provided; (left)

The viewpoints and the original object - a 3D cat model; (right) The reconstructed cat model using our proposed algorithm.

The Girl and Teddy sequence consists of 20 images and has a fairly complex topology. We visually

compared the result of the OcTree algorithm with that of our approach (Fig. 14). By adjusting sampling

density, we made both algorithms to produce a similar number of triangles (near 10k). The reconstruction

results were registered with one of the silhouette and juxtaposed on each side of that silhouette. The surface

are extracted from the OcTree using marching cube algorithm and are slightly smoothed for removing

the bumpy effect. While maintaining the similar number of triangles, our method produced points on the

surface. Consequently the final mesh perceivably better resembled the original object.

The David sequence also consists of 20 images. The results and auxiliary data, such as the recovered

points on the contour generators and the resampled slices, are shown in (Fig. 15). The result of some

more real world sequences are shown in Fig. 16, including a Tennis Boy sequence, a Jefferson statuette
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Fig. 13. Roman Soldier sequence; (top) 6 images from the original sequence; (left) reconstructed contour generator curves; (middle)

reconstructed surface mesh; (right) shaded reconstructed surface.

Fig. 14. Girl and Teddy sequence; (from left to right) surface generated by OcTree/Marching Cube (10095 triangles); smoothed OcTree

model removed the bumpy effect, as well as some shape details; original silhouette; surface generated by our approach (9982 triangles),

more consistent with the silhouette compared with the smoothed OcTree model.
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sequence and a Statuette of Liberty sequence. All these sequences consist of 20 images captured on an

electronic turn-table.

Fig. 15. David sequence; (top) 8 images from the original sequence; (middle) reconstructed final surface; (bottom) auxiliary data, including

recovered points on the contour generators and resampled slices.

VII. CONCLUSION

We have presented in this paper a novel approach for recovering object surface from silhouettes. Our

algorithm is motivated by the principle of duality which makes use of the symmetric relationship exhibited
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Fig. 16. More experiments on real world data; (top) Images from the original sequence; (left) Tennis boy sequence; (middle) Jefferson

statuette sequence; (right) Statuette of liberty sequence.

between the object surface and its tangent plane space sampled from the silhouettes. A crucial problem

is how to identify reliable tangent basis in the dual space in the presence of singularities and evil point

distributions, which is almost inevitable for fairly complex shapes captured with finite viewpoints. We bring

in the epipolar parameterization to solve this problem which results in significant robustness regarding

objects with complex topologies. For extreme cases that we may possibly encounter, we have analyzed

their nature in detail and proposed counteracts. These have granted our algorithm the ability to cope with

fairly complex shapes.
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