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Abstract. This paper studies the problem of light estimation using a
specular sphere. Most existing work on light estimation assumes distant
point light sources, while this work considers an area light source which is
estimated in 3D space by reconstructing its edges. An empirical analysis
on existing methods for line estimation from a single view is carried out,
and it is shown that line estimation for a single view of a sphere is an
ill-conditioned configuration.
By considering a second identical sphere, a closed form solution for single
view polygonal light estimation is proposed. In addition, this paper also
proposes an iterative approach based on two unknown views of just a
single sphere. Experimental results on both synthetic and real data are
presented.

1 Introduction

The calibration of light sources plays an important role in both computer graph-
ics and computer vision. For instance, combining computer-generated models
with the real world, as in augmented reality, requires known light positions for
realistic rendering. Many computer vision techniques make the common assump-
tion of distant point light sources, which conveniently reduces the complexity in
modeling the image formation and allows a simple light source position estima-
tion. As an example, consider the classic shape from shading (SfS) technique
that recovers the 3D shape of an object by relating the intensity values to the
normal vectors and light source direction. Motivated by the possibility that SfS
could be extended to deal with area light sources, this paper studies the problem
of recovering polygonal area light sources from images of a specular sphere.

There exists a relatively large amount of research dealing with distant point
illuminant estimation, and many early results were published in the context
of SfS [1–3]. A survey of those and related methods can be found in [4]. Other
related work on light estimation includes a method developed by Yang and Yuille
[5] which estimates light directions from a Lambertian sphere by locating the
occluding boundary of light sources. Their method was extended by Zhang and
Yang [6] who introduced the concept of critical points which have their normal
vectors perpendicular to the light direction. Later Wang and Samaras [7] further
extended this method and estimated light from a single view of an object with
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known geometry by a robust minimization of a global error. Wong et. al. [8]
introduced a method for recovering both the light directions and camera poses
from a single sphere of unknown radius. In addition to the estimation of light
directions, Takai et. al. [9] proposed a method for estimation of near point light
sources and ambient light from a single image. This is achieved by employing a
pair of reference spheres as light probes.

Because of the relative high complexity involved in estimating area light
sources, the literature in this field is rather sparse. In [10], Debevec estimated
global illumination in the context of augmented reality without assuming specific
types of light source, but did not estimate parameters such as distance and size
of the illuminants.

In this paper an area light source is recovered from an image of the specular
highlight it produces on a sphere. Unlike Zhou and Kambhamettu’s method
[11] which uses an iterative approach for estimating area light sources from
specularities observed on two spheres, this paper provides a closed form solution
by treating an area light source as a polygon in 3D space composed of a set
of lines. Such lines are independently determined as the intersections of the
reflection rays. We call this type of light source a polygonal light source.

There exists previous work on estimating a line from a single view. Lanman
et. al. [12] formulated the problem and solved it in theory, but practical results
remained inaccurate. In [13], the authors solved their inaccurate line estimation
by carefully estimating all parameter of their system. In this paper it will be
shown that even with ground truth calibration, single view line estimation from
a single view of a sphere cannot be accurately solved. A closed form solution of
two spheres is therefore proposed. This paper also develops an iterative approach
based on two unknown views of just a single sphere. The rotation relating the
two unknown views can be estimated by assuming a rectangular light source.

A related paper by Gasparini and Sturm [14] also utilizes 3D lines in non-
central images. In their interesting work, a system that deals with the structure
from motion problem for general camera models is proposed.

The rest of the paper is organized as follows. Section 2 considers the problem
of line estimation from a single view. In the first part of this section, a theoretical
description for the estimation is given, while the second part provides empirical
results which show that single view line estimation is an ill-conditioned problem.
Knowing that a single view of a single sphere is insufficient, Section 3 formulates
the problem for (a) a single view of two spheres and (b) two views of a single
sphere. Experimental results on both synthetic and real data are shown in Section
4, followed by conclusions in Section 5.

2 Line estimation from a single view

Consider a pinhole camera viewing a line L. Together with the camera center
the line defines a plane. Any line lying on this plane will project to the same line
on the image, which makes line reconstruction from a single view ambiguous.
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Instead of considering the image l of the line, let us now consider an image
ls of the line L formed by its reflection on a sphere. While l is a 2D line, ls will
in general be a curve. The viewing lines defined by the back-projection of the
points on ls will intersect the sphere and reflect according to the law of reflection.
The resulting rays, which we call reflection rays will intersect L. In contrast to
the case of a pinhole camera viewing a line, the reflection rays will not meet at
a single point, and this enables line reconstruction from a single view.

Proposition 1. The reflection rays constructed from an image of the reflection
of a line L on a sphere will intersect two lines, namely the line L and a line A
passing through the sphere center and the camera center.

Proof. Let us denote the back-projection of a point x ∈ ls as the viewing line V
and its reflection on the sphere with center S as the reflection lineR. The viewing
line will leave the camera center C, pass through the point x, and intersect the
sphere at a point P . Let V and R be the unit vectors in the directions of the
viewing line and the reflection line respectively. The law of reflection states
that the incident angle must be equal to the reflection angle, and the reflection
direction is therefore given by R = (2N · V )N − V , where N is the unit normal
vector at point P . The reflection line R passes through P in the direction R and
will, by construction, intersect the line L at some point L. All the reflection rays
constructed in such a way will intersect the line L.

To show the intersection with the other line, note that the lines V, R and
N are coplanar, where N is defined as the line from S in direction N . As the
camera center C is on V and the sphere center S is on N , it follows that the
line A from the camera center C to the sphere center S also lies on the same
plane as V, R and N , and making an angle of γ = 180− (α+ β) with R, where
α = 6 (N ,R) and β = 6 (A,N ) (see Fig. 1). This applies to all reflection rays
and it follows that any reflection ray R will intersect A and L. ut
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Fig. 1. The image of a line L on a sphere with center S is determined by reflected
viewing rays R which will intersect two lines, the line L and a line A passing through
S and camera center C.
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In 1874, Schubert published his work Kalkül der Abzählenden Geometrie in
which he showed that the number of lines intersecting four arbitrary lines will be
zero, one, two or infinite [15]. Unless the four lines lie on a doubly ruled surface
(single sheet hyperboloid, hyperbolic paraboloid or plane), they will not produce
infinite intersecting lines [14, 16]. Therefore in the general case the reflection rays
in our system will intersect at most two lines, and under a degenerate case the
reflection rays lie on a doubly ruled surface and produce infinite intersecting lines.
In practice the degenerate case can easily be detected, because the reflection
rays will produce a Plücker hyperplane matrix with a nullspace larger than two
dimensions.

Corollary 1. Reconstruction of a line from its reflection on a sphere becomes
possible by solving for the two lines intersecting its reflection rays and selecting
the one which does not pass through the camera center.

2.1 Line intersection in Plücker space

In order to formulate line intersections algebraically, we adopt the 6-vector
Plücker line coordinates representation for directed lines in P 3[17]. Two points
P = (px, py, pz, 1) and Q = (qx, qy, qz, 1) define a line L as

L = (l0, l1, l2, l3, l4, l5)
= (pxqy − qxpy, pxqz − qxpz, px − qx, pyqz − qypz, pz − qz, qy − py). (1)

With this notation, lines in P 3 are mapped to homogeneous points L = (l0, l1, l2, l3, l4, l5)
or hyperplanes L = (l4, l5, l3, l2, l0, l1) in 5 dimensional Plücker coordinate space.

A major advantage of this representation is the simplicity of the incidence
operation. Given two lines A and B, the incidence operation is the inner product
between the homogeneous Plücker representation of line A and the hyperplane
Plücker representation of line B

A · B = a0b4 + a1b5 + a2b3 + a3b2 + a4b0 + a5b1. (2)

Since the inner product will be zero for intersecting lines, solving for n lines
I1, I2, ..., In that intersect m given lines L1,L2, ...,Lm is equivalent to finding
the n-dimensional nullspace of a matrix formed by the Plücker hyperplane rep-
resentations of the given lines:

Mx =


L1

L2

...
Lm

x = 0. (3)

Finding the set of lines x that map M to a null vector, implies that for each
row i the inner product Li · x equals zero. Given the m reflection lines from
the previous section and the task of finding the n = 2 intersecting lines, we
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can simply solve for those lines by finding the nullspace of the matrix M with
singular value decomposition

M = UΣV T =

 u11 · · · u1m

...
...

um1 · · · umm




σ1

. . .
σ6

0 · · · 0
...

...
0 · · · 0


v11 · · · v16...

...
v61 · · · v66


T

. (4)

For n = 2, M is a rank four matrix and will span a two dimensional subspace that
can be parameterized by the two points a = (v15, · · · , v65) and b = (v16, · · · , v66),
which correspond to the two smallest singular values σ5 and σ6. Fortunately not
all points on the 5-dimensional line L(t) = at + b are 3-dimensional lines, but
just those lines A that satisfy

A · A = 0. (5)

Teller and Hohmeyer[18] were the first to formulate and solve this problem by
intersecting the line L(t) with all points that satisfy (5). This produces the
quadratic equation

(a · a)t2 + 2(a · b) + (b · b) = 0, (6)

for which the two real roots correspond to the two intersecting lines.
As a result of proposition 1, the nullspace of matrix M will in general be two

dimensional. In practice nearly coplanar reflection lines will result in a nullspace
with higher dimensions. Due to numerical instabilities, incorrect solutions will
likely be selected. An empirical analysis has been performed which considers this
problem and is described in the next section.

2.2 Empirical Analysis

In order to study the feasibility of the theoretical formulation above, we analyze
synthetically generated images empirically. A specular sphere reflecting a line
was rendered using an OpenGL Shading Language program. The reflected line
light source was detected by thresholding and subsequent Bezier spline curve fit-
ting, which allowed sub-pixel-accurate sample points for computing the reflection
lines. As we are dealing with synthetic data, all camera and sphere parameters
are readily available and the reflection lines can be determined. One practical
concern about the theoretical formulation in Section 2 is the numerical instabil-
ity in the case of nearly coplanar reflection lines. Coplanar reflection lines are
undesirable because all lines on that plane will intersect the reflection lines and
as a result the nullspace selection will be unstable. We use the average angle
that lines make with a best fitting plane, as a planarity measurement.

In the first experiment we rendered a synthetic sphere of radius Sr = 1 and
center S = (0, 0, 0)T with a synthetic camera. Without loss of generality, let the
camera be located at C = (0, 0,−5)T pointing in the negative z-direction and a
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Fig. 2. This plot shows the plane fitting error against the viewing angle. A linear
relationship between this angle and the planarity measurement can be identified, with
better results for larger angles.

line be positioned parallel to the x-axis piercing the y-axis at L = (0,−5, 0). Let
A be the vector from S to C and B the shortest vector from S to the line light
source. The distance |A| between the camera center and the sphere center as
well as the distance |B| between the line and the sphere center is kept constant
at 5 units, while the camera is being rotated around the x-axis in 10 degree
intervals. Let us define the angle 6 (A,B) as the viewing angle. Fig. 2 plots
the plane fitting error against this viewing angle. A linear relationship between
the viewing angle and the planarity measurement can be identified, with better
results (smaller error) for larger viewing angles.

Fig. 3 plots the plane fitting error while translating the light source along
y-axis (left) and translating the camera center along z-axis (right) with constant
viewing angle. These plots show a strong relationship between light and camera
distances to the plane fitting error. Shorter distances between sphere center and
light produce least coplanar reflection rays compared to larger distances. The
opposite is true for distances between sphere center and camera center.

The synthetic experiments above show that the coplanarity of the reflection
rays depends on the two distances |A| and |B| as well as the viewing angle. An
increase in the plane fitting error can be observed with large viewing angles,
small light distances and relatively large camera distances. This is undesirable
for line reconstruction as it prevents robust single view line estimation from
spherical reflections under general conditions. Apart from this, the experiments
in this section show that the reflection lines are often close to coplanar, with a
maximum plane fitting error of about 3 degrees, which is insufficient for accurate
line estimation in practical situations.

3 Estimation of a Polygonal Light Source

In this section, we apply the theoretical formulation developed above for the
problem of polygonal light source estimation by treating the light source as a
polygon composed of a set of lines. Each line in the set will be independently
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Fig. 3. Plots for plane fitting error while translating the light source along the y-axis
(left) and translating the camera center along the z-axis (right) with constant viewing
angle.

reconstructed and a polygon will be calculated from the reconstructed lines. It
has been shown in the previous section that in practice a line cannot be uniquely
reconstructed from a single view of a single sphere, and setups with an additional
sphere or an additional view are considered.

In the following, two procedures that estimate polygonal light sources given
just the intrinsic camera parameters K are considered. Section 3.2 introduces
a closed form solution given a single view of two spheres of the same radius,
while Section 3.3 introduces an iterative approach based on two unknown views
of a single sphere. Both of the methods require a known translation between
the camera center C to the sphere center S. For this reason a solution [8] for
estimating the sphere center from its silhouette is described in the following
section.

3.1 Where is the sphere?

The sphere silhouette, being a conic, can be represented by a 3x3 symmetric
matrix Csil, given by

Csil = (PQ∗sP
T)∗

= (KKT − (KS/Sr)(KS/Sr)T)∗, (7)

where Q∗s denotes the dual to the quadric Qs, which represents the sphere with
center S and radius Sr. Here the pinhole camera is given as P = K[ I 0 ].

In order to recover the sphere center C from Csil, the effect of K is first
removed by normalizing the image using K−1. The conic Csil will be trans-
formed to a conic Ĉsil = KTCK in the normalized image. This conic Ĉsil can
be diagonalized into

Ĉsil = MDMT = M

a 0 0
0 a 0
0 0 b

MT, (8)
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where M is an orthogonal matrix whose columns are the eigenvectors of Ĉsil,
and D is a diagonal matrix consisting of the corresponding eigenvalues. The
matrix MT defines a rotation that will transform Ĉsil to the circle D with radius
r =

√
− b

a centered at the origin. This transformation corresponds to rotating
the camera about its center until its principle axis passes through the sphere
center. The distance d between the camera center and sphere center is given as

d = Sr

√
1 + r2

r
. (9)

Finally, the sphere center can be recovered as

C = M [ 0 0 d ]T

= dm3, (10)

where m3 is the third column of M .

3.2 Two spheres and a single view

This section gives a solution for polygonal light estimation by introducing a
second, identical sphere into the scene. Two identical spheres for light estimation
have been utilized before [19]. In contrast to previous work, this section provides
a closed form solution. Note that the iterative method provided by Zhou et. al.
[19] gives no guarantee for convergence.

Firstly the relative locations of both identical spheres are estimated by the
method given in section 3.1. The reflecting rays R1, ...,Rm for the first sphere
and the reflecting rays R′1, ...,R′n for the second sphere will form the equation

Mx =



R1

...
Rm

R′1
...
R′n


x = 0. (11)

The reflection lines for a single sphere will be relatively coplanar. However, by
including the reflection lines from a second sphere, an intersecting line can be
determined, which corresponds to an edge of the light source. Repeating this
process for all sides of the polygonal light source results in n lines in space.
Correspondence for the n sides of the light source can be achieved easily because
the order of the edges will not change in the specular reflection.
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3.3 Two views of a single sphere

In the following method two images of a single sphere are taken from two distinct
viewpoints. Projection matrices for the two cameras can be written as

P1 = K1[ I C1 ]
P2 = K2[E C2 ], (12)

whereK1 andK2 are the two camera calibration matrices (assumed to be known)
and C1 and C2 are determined from the method described in Section 3.1. The
sphere center is the world origin and the first camera is chosen as a reference
view. The unknown 3x3 rotation matrix E is independent from the image Csil

of the sphere but can be determined from the specular reflection. This follows
from the fact that the location of the highlight on the sphere surface depends
on the cameras location as well as the light location.

Given the correct rotation matrix E, the reflection lines for both views corre-
sponding to an edge of the light source can be determined. Note that the resulting
reflection lines for a single view will be relatively coplanar, but by including the
reflection lines from the other view, an intersecting line can be determined which
gives an edge of the light source. This process is repeated for all edges of the
light source.

To solve for the unknown rotation, an optimization over the 3-dimensional
rotation space is performed using the cost

Ecost = w1αr + w2dr + k, (13)

where w1 and w2 are weight coefficients determined experimentally, αr is the
average angle between the reflection lines and dr the average distance between
them.

To add additional constraint on the rotation E, a rectangular light source is
assumed and k is a measurement of how rectangular the given lines {W,X ,Y,Z}
are, and is defined as

k = 6 (W,Y) + 6 (X ,Z)
+|6 (W,X )− 90|+ |6 (X ,Y)− 90|
+|6 (Y,Z)− 90|+ |6 (Z,W)− 90|. (14)

Instead of performing an optimization directly on the parameterized search
space, an initial global minimum is found by subdividing the search space. The
optimization is subsequently initialized with the global minimum of the subdi-
vision. This procedure avoids an early termination of the optimization in a local
minimum.

4 Experimental Results

The closed form solution of Section 3.2 and the iterative method of Section 3.3
for recovering a polygonal light source have been implemented. Experiments on
both synthetic and real data were carried out, and the results are presented in
the following sections.
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4.1 Synthetic Experiments

A synthetic experiment with a rectangular light source and (a) a single view
of two spheres and (b) two views of a single sphere has been performed. An
OpenGL Shading Language program has been written to model the specular
reflection of the polygonal light sources on the spheres. Both the silhouette of
the spheres and the edges of the specular highlight were extracted automatically
by thresholding and subsequent fitting of Bezier spline curves.

All ground truth data is available for the edges of the light source and esti-
mation errors can be calculated as the angle between the estimated edges and
ground truth edges. Their average was 3.77 degree for experiment (a) and 1.63
degree for experiment (b). The distance between those lines was used as a sec-
ond error measurement and their average was 0.079Sr for experiment (a) and
0.058Sr for experiment (b), where Sr is the radius of the sphere.

4.2 Experiments on Real Data

For the first experiment on real data, two identical plastic white cue snooker balls
were imaged from a single viewpoint. The spheres were put below a standard
rectangular fluorescent office lamp. The light source has a dimension of 270mm x
1170mm while the snooker balls’ diameter is 57mm. The intrinsic parameters of
the camera were obtained using Zhang’s camera calibration method [20]. Cubic
Bezier-spline snake was applied to extract the contours of the sphere in the
images, and conics were then fitted to these contours using a direct least squares
method [21]. Edges from the specular reflection of the rectangular light source
were picked and matched manually. One of the spheres is shown in a crop of
the image in Fig. 4(a), and Fig. 4(b) illustrates a synthetically generated view
of the sphere reflecting the estimated light source. We compared the size of
the estimation result with the specification of the light source and found an
approximate error of 13mm x 52mm for the 270mm x 1170mm light source.

Two views of a single sphere were taken in a second experiment. This time a
blue snooker ball was enlightened by a smaller rectangular desk light source with
a dimension of 68mm x 33mm. A crop of the image is shown in Fig. 4(c), and
Fig. 4(d) illustrates a synthetically generated view of the sphere reflecting the
estimated light source. In this case the estimation result had an error of 5mm x
3mm for the 68mm x 33mm light source.

5 Conclusion

This paper recovers a polygonal light source from the image of a specular sphere.
Its main contributions are

1. an empirical analysis, which shows that line estimation from a single view
of a single sphere is not possible in practice;

2. a closed form solution for recovering a polygonal light source from a single
view of two spheres; and
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(a) (b)

(c) (d)

Fig. 4. (a) A standard rectangular fluorescent office lamp is illuminating a plastic
white cue snooker ball. (b) A synthetically generated view of the sphere reflecting the
estimated light source for the two sphere single view case. (c) A blue snooker ball is
enlightened by a smaller rectangular desk light source. (d) The synthetically generated
view with estimated light source for the two view single sphere case.

3. an iterative approach for rectangular light source estimation based on two
views of a single sphere.

Experiments on both synthetic and real images show promising results. In future
research, we would like to study the possibility of extending SfS to handle the
more complex lighting conditions of a polygonal light source.
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