
 

  

Abstract—Multi-slice Computed Tomography (MSCT) is an 
important medical imaging tool that provides dynamic 
three-dimensional (3D) volume data of the heart for diagnosis of 
various cardiac diseases. Due to the huge amount of data in 
MSCT, manual identification, segmentation and tracking of 
various parts of the heart are very labor intensive and 
inefficient. In this paper, we introduce a semi-automatic method 
for robustly segmenting the endocardium surface from cardiac 
MSCT images. A level set approach is adopted to define a 
flexible and powerful interface for capturing the complex 
anatomical structure of the heart. A novel speed function based 
on clustering the image intensities of the region of interest and 
the background is proposed for use with the level set method. 
The method introduced in this paper has the advantages of 
simple initialization and being capable of segmenting the blood 
pool with non-homogeneous intensities. Experiments on real 
data using the proposed speed function have been carried out 
with 2D, 3D and 4D implementations of the level sets 
respectively, and comparisons in terms of computational speed 
and segmentation results are presented. 

I. INTRODUCTION 
o study the healthiness of a heart, various objective 
measurements, such as ejection fraction, ventricle blood 
volume, wall mass, wall motion and wall thickness over 

various phases of the cardiac cycle, might be required. 
Accurate and robust segmentation of the heart wall, 
especially the endocardium surface, is essential in 
determining the aforementioned measurements. 
Endocardium has a relatively complex anatomical structure, 
with various papillary muscles connecting between the heart 
wall and valves. Traditional 2D or 3D active contour methods 
are often not effective nor sufficient in modeling such a 
complicated sharp concave surface. The segmentation 
problem is also further complicated by the non-homogeneous 
distribution of contrast inside the blood pool of the heart 
chambers, making it virtually impossible to perform a 
successful segmentation using only a predefined range of 
intensity values. Besides, the huge amount of data in cardiac 
MSCT images would mean that tremendous and tedious user 
involvement is required in the initialization of the active 
contours. 

In this paper, we propose a semi-automatic 
clustering-based level set method to robustly segment the 
endocardium surface from cardiac MSCT images. A novel 

 
Qi Su and Kwan-Yee K. Wong are with the Department of Computer 

Science, The University of Hong Kong, Pokfulam Road, Hong Kong (phone: 
852-25878454; fax: 852-25598447;  e-mail: qsu@cs.hku.hk).  

George S. K. Fung is with the Department of Electrical and Electronic 
Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong 
(e-mail: skfung@eee.hku.hk).  

speed function based on clustering the image intensities of the 
region of interest and the background is proposed to leverage 
the level set method. The proposed speed function has been 
implemented to drive level sets of different dimensions and 
the segmentation results on real data are analyzed. 

II. RELATED WORK 
Digital image processing methods, such as active contours, 

B-spline snake and deformable templates have been exploited 
in the automation of medical segmentation. In recent years, 
level set method [1] has become a popular method due to its 
flexibility and capability in modeling complex structures. In 
[2], Paragios proposed a shape-driven level set method for 
segmenting the left ventricle based on a prior shape 
assumption. Other similar approaches using shape 
information with level sets include [3], [4] and [5]. In [6], 
Debreuve et al. introduced a level set method for segmenting 
the myocardial from SPECT images. An energy function of 
the level set equation was minimized by assuming a constant 
intensity approximation of the object and background 
regions. In [7], an intensity-based level set method was 
applied to a 2D+t cardiac cine-MRI data set for analyzing the 
deformations of the left ventricular myocardium. 

 Although the above mentioned methods report successful 
segmentation results in their problem settings, these methods, 
however, cannot be directly applied to the problem 
considered in this paper. First of all, the endocardium has an 
extremely complex surface and it is virtually impossible to 
provide a good shape prior for its segmentation using a 
shape-driven level set method. Besides, the blood pool region 
and surrounding regions have rather non-homogeneous 
intensity values. This will make any segmentation method 
based on the assumption of constant range of intensity value 
fail disgracefully. Finally, our targeted application is on the 
segmentation of the dynamic volume dataset of cardiac 
MSCT, which is a 3D+t dataset. It is important to study the 
performance of level set method for different dimensional 
domains.    

In this paper, we propose to use the level set method 
together with a novel clustering-based speed function for 
extracting the endocardium surface from cardiac MSCT 
images. Compared with other active contour approaches, 
level set is good at segmenting complex surfaces as the 
moving interface defined in level set can merge, split or even 
disappear during its evolution. Instead of using a constant 
range of intensities, we propose to use clusters of intensity 
values as a better representation of the non-homogeneous 
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blood pool region and surrounding anatomical structures, and 
derive a novel clustering-based speed function to drive the 
level set interface to the target surface.  

The semi-automatic clustering-based level set method has 
been implemented and applied to segment the endocardium 
from the MSCT data. The segmentation can be done by 
applying 2D, 3D and 4D level set methods to the individual 
2D CT image, 3D volume dataset of the MSCT images and 
4D dynamic volume dataset of the MSCT images, 
respectively. Ways to initialize the level sets of different 
dimensions are presented, and the amounts of user 
intervention, computational time involved, as well as the 
segmentation results are analyzed. 

III. LEVEL SET BASIC THEORY 
The level set theory was explained in details by Sethian in 

[1]. The main idea is to track the motion of the zero set 
interface as the level set function evolves.  

Let the moving interface be ( )tΓ  t ∈ [0, 1]. The level set 
function is set as  

( ) ,dφ = ±x  

where d is the distance between the point x and ( )tΓ , and the 
plus/minus sign is chosen depending on whether the point is 
outside/ inside the interface. For points on the interface, we 
have   

( ) 0.φ =x                                      (1) 
Applying chain rule to (1) gives 

| | 0,t Fφ φ+ ∇ =                             (2) 
where F is the speed of the interface point along its normal 
direction. At any time the evolving interface is given by   

( ) { | ( ) 0}.t φΓ = =x x  
The moving interface evolves under the effect of F. It 

expands when F is positive, while it contracts when F is 
negative. When F is equal to zero, the interface stops and 
gives the segmentation result. 

IV. INITIALIZATION 
Before the level set function begins to iterate, some prior 

information from the user is required. In our method, we need 
to sample the intensity values for the blood pool and the 
surrounding regions, and we also need to define an initial 
interface. 

A. Clustering the Intensity Values 
Our implementation allows users to sample intensities of 

the blood pool and the surrounding regions by drawing lines 
on the CT image. 

The clusters for the background and for the endocardium 
are constructed from the intensity samples using the K-Mean 
algorithm [8]. The mean intensities of the clusters Kio and Kib 

are obtained for the foreground and the background, 
respectively, where i = 1,…, n and n is the number of the 
clusters. The K-Mean method is initialized to have 32 clusters 
in our experiments. 

B. Initializing the Interface 
The main differences between the 2D, 3D and 4D level set 

methods are the input data and the initial interfaces.  
In 2D level set, a closed curve is used for the initialization 

of the initial interface. To accurately segment the target, 
including the holes inside the target, the 2D level set method 
requires the initial curve passing through all the parts of the 
target (see Fig. 1). Suppose there are 10 sets of volume data 
each with 100 images, the 2D level set would then require 
1000 different initial curves. The 2D approach therefore 
requires an extremely labour intensive initialization. 

In 3D level set, a closed surface is used for initializing the 
initial interface. In defining the initial surface, the user is only 

required to define a 2D initial curve in one image of the 
volume, and a 3D surface is then constructed by replicating 
and filling the 2D curve to the two neighboring images (see 
Fig. 2). Holes in the structure can be easily captured as the 
interface evolves and expands across the images within the 
volume. Holes segmented in one image can also be 
back-propagated to segment holes missed in the previous 
image during the evolution. Hence, as opposed to 2D level set, 
a simple curve enclosing the target structure can be used as 
the initial 2D curve. For the same data set mentioned, the 3D 
level set would then require only 10 different initial curves, 
one for each volume. 

In 4D level set, a closed 4D hyper-surface is used for the 
initialization of the initial interface. The whole 4D dynamic 

volume dataset can be process by one single 4D level set. In 
defining the initial hyper-surface, the user is only required to 
define a 2D initial curve in one image of the volume captured 
at the middle of the whole dynamic volume dataset. The 
initial 4D hyper-surface is then constructed and by replicating 
the 2D curve to the images of the middle volume by 

 
Fig. 1.  In the first row, the red curves are the different initial curves. 
The corresponding results using 2D level set method are shown in the 
second row. 

 

 
Fig. 2.  Left: The initial curve defined in one image is used to construct a 
3D surface in 3D level set. Right: The initial curve defined in one image is 
used to construct a 4D hyper-surface in 4D level set. 



 

replicating and filling the 2D curve to the images in the 
neighboring volumes (see Fig. 2). The level set interface 
evolves in both the spatial and time domains. For the same 
data set mentioned, the 4D level set would only require 1 
initial curve for the whole 10 volumes. 

C. Speed Function 
The speed function F controls the deformation of the 

interface and is the most import part of the level set method. 
To segment the non-homogeneous structure, a 
clustering-based speed function is introduced in this paper. It 
is defined as 

,d sF F F= +  
where Fd is related to the clusters of intensities, and Fs 
controls the smoothness of the interface.  

For every point x on the volume space, the distance from its 
intensity to the foreground clusters is defined as: 

[0, ]
min || ( )  ||o ioi n

d I K
∈

= −x
 

and the distance from its intensity to the background clusters 
is defined as: 

[0, ]
min || ( )  ||b ibi n

d I K
∈

= −x
 

where Kio and Kib are the mean intensities of the clusters. The 
term Fd is then defined as: 
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where ε  is a positive constant. 
Fd is designed to be positive when the intensity of the point 

is near to the target clusters and negative when it is close to 
the background clusters. Therefore, the level set interface will 
move inwards if it is located on the background and outwards 
if it is located within the target region. Eventually, the 
interface will stop and tightly surround the endocardium.  

V. RESULTS 
To test our method, a dynamic volume dataset of cardiac 

MSCT of a patient without cardiac disease was used. The 
dataset consists of 10 volumes which equally spaced over the 
phases of the cardiac cycle. Each volume has 91 CT images 
(i.e., with a total of 910 CT images). A contrast enhanced with 
saline tracer protocol was employed. The X-ray tube was set 
to 120kvp and the reconstructed resolution was 0.4mm × 
0.4mm × 0.6mm. A standard smoothing kernel was used to 
produce smooth mediastinum.  

The segmentation results of endocardium from the cardiac 
MSCT images using our proposed clustering-based 2D, 3D 
and 4D level set methods are shown in Fig. 3. Obviously, the 
segmentation results obtained from the 3D and 4D level set 
methods are much better than that from the 2D method, with 
more fine details being captured. Both methods can segment 
the complicate endocardium surfaces with concave part and 

holes.  
Table 1 shows some statistics on the initialization and 

computational times for the 2D, 3D and 4D level set methods. 
Here we assume it takes approximately 16 seconds to draws 
sampling lines and initial 2D curve on one CT image. If a 
complicate special curve is required, which is common in the 
2D level set method, it will often take longer than 16 seconds 
to complete the initialization. The 2D, 3D and 4D level sets 
require 910, 10 and 1 times of manual initialization 
respectively. From Table 1, it can be seen that the 2D method 
requires approximately 14,560 seconds to initializing 910 CT 
images. Since the level set only evolves in a 2D domain, the 
processing time is negligible. Although the total time 
(excluding file I/Os) spent by the 2D method is much less 
than the 3D and 4D methods, the heavy user involvement in 
initialization and missing details in the final segmentation 
result render the 2D approach not very useful nor practical. 
Both the 3D and 4D methods take around 60k seconds to 
process the whole 10 sets of volume data and produce similar 
segmentation results. However, the 4D method only requires 
initializing the level set once; it is more user-friendly than the 
3D method. Besides, the 4D method can, theoretically, 
capture more details than the 3D method as the level set can 
evolve in both the 3D spatial and time domains. 

VI. DISSCUSSION 
From Fig. 3, it can be observed that the proposed 

semi-automatic clustering-based level set methods can 
successfully segment the endocardium surface of the left 
ventricle. In particular, the concave surface part, which is 
caused by papillary muscle, can be segmented successfully. 

Our segmentation methods have integrated the advantages 
of level set theory and clustering algorithm which have the 
capability to i) segment the complex endocardium surface 
with extending papillary muscles, and ii) handle the 
non-homogenous CT number of blood pool region and the 
surrounding region in the cardiac MSCT images.  
Experimental results show that a 4D implementation of the 
level set can both reduce the time spent in manual 
initialization and improve the segmentation results.  

VII. CONCLUSION 
In this paper, we present a novel clustering-based level set 

method for segmenting endocardium from cardiac MSCT 

TABLE I 
PROCESSING TIME  

2D 3D 4D
Manual Initialization

(10 vol. of 91 images)
16s*910 

=14,560s 
16s*10
=160s 16s

Average 
Processing time

0.5s 
(per image) 

6250s
(per volume)

60,156s
(whole set)

Total Processing time
(10 vol. of 91images) 455s 62,500s 60,156s

Manual Initialization
+ Processing time 15,015s 62,660s 60,172s

 



 

images. The performance of the 2D, 3D and 4D level set 
methods are compared and analyzed. A novel speed function 
which exploits region cluster information is introduced to 
handle the complex endocardium surface with sharp concave 
structure and ensure robustness of our method. The 
multidimensional approach also significantly reduces the user 
involvement. Due to the flexibility of this approach, the 
algorithm is readily extendable to handle multiple cardiac 
anatomical structures and dynamic volumetric dataset. 
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Fig. 3. The first row shows the corresponding segmentation results using the 2D level set method. The second row shows the corresponding segmentation 
results using the 3D level set method. The third row shows the corresponding segmentation results using the 4D level set method.   


