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Abstract

Text-to-Image diffusion models have made tremendous progress over the past two
years, enabling the generation of highly realistic images based on open-domain
text descriptions. However, despite their success, text descriptions often struggle to
adequately convey detailed controls, even when composed of long and complex
texts. Moreover, recent studies have also shown that these models face challenges
in understanding such complex texts and generating the corresponding images.
Therefore, there is a growing need to enable more control modes beyond text
description. In this paper, we introduce Uni-ControlNet, a unified framework that
allows for the simultaneous utilization of different local controls (e.g., edge maps,
depth map, segmentation masks) and global controls (e.g., CLIP image embeddings)
in a flexible and composable manner within one single model. Unlike existing
methods, Uni-ControlNet only requires the fine-tuning of two additional adapters
upon frozen pre-trained text-to-image diffusion models, eliminating the huge cost
of training from scratch. Moreover, thanks to some dedicated adapter designs,
Uni-ControlNet only necessitates a constant number (i.e., 2) of adapters, regardless
of the number of local or global controls used. This not only reduces the fine-tuning
costs and model size, making it more suitable for real-world deployment, but also
facilitate composability of different conditions. Through both quantitative and
qualitative comparisons, Uni-ControlNet demonstrates its superiority over existing
methods in terms of controllability, generation quality and composability. Code is
available at https://github.com/ShihaoZhaoZSH/Uni-ControlNet.

1 Introduction

In recent two years, diffusion models [1–10] have gained significant attention due to their remarkable
performance in image synthesis tasks. Therefore, text-to-image (T2I) diffusion models [6, 7, 11–19]
have emerged as a popular choice for synthesizing high-quality images based on textual inputs. By
training on large-scale datasets with large models, these T2I diffusion models demonstrate exceptional
ability in creating images that closely resemble the content described in text descriptions, and facilitate

∗Corresponding Author, † Intern at Microsoft

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

https://github.com/ShihaoZhaoZSH/Uni-ControlNet


the connection between textual and visual domains. The substantially improved generation quality
in capturing intricate texture details and complex relationships between objects, makes them highly
suitable for various real-world applications, including but not limited to content creation, fashion
design, and interior decoration.

However, text descriptions often prove to be either inefficient or insufficient to accurately convey
detailed controls upon the final generation results, e.g., control the fine-grained semantic layout of
multiple objects, not to mention the challenge in understanding complex text descriptions for such
models. As a result, there is a growing need to incorporate more additional control modes (e.g.,
user-drawn sketch, semantic mask) alongside the text description into such T2I diffusion models.
This necessity has sparked considerable interest from both academia and industry, as it broadens the
scope of T2I generation from a singular function to a comprehensive system.

Very recently, there are some attempts [20–22] studying controllable T2I diffusion models. One
representative work, Composer [20], explores the integration of multiple different control signals
together with the text descriptions and train the model from scratch on billion-scale datasets. While
the results are promising, it requires massive GPU resources and incurs huge training cost, making
it unaffordable for many researchers in this field. Considering there are powerful pretrained T2I
diffusion models (e.g., Stable Diffusion [6]) publicly available, ControlNet [21], GLIGEN [23]
and T2I-Adapter [22] directly incorporate lightweight adapters (or extra modules) into frozen T2I
diffusion models to enable additional condition signals. This makes fine-tuning more affordable.
However, one drawback is that they need one independent adapter for each single condition, resulting
in a linear increase in fine-tuning cost and model size along as the number of the control conditions
grows, even though many conditions share similar characteristics. Additionally, this also makes
composability among different conditions remains a formidable challenge.

In this paper, we propose Uni-ControlNet, a new framework that leverages lightweight adapters to
enable precise controls over pre-trained T2I diffusion models. As shown in Table 1, Uni-ControlNet
can not only handle different conditions within one single model but also supports composable
control. By contrast, the existing methods fail to achieve this unified framework within one single
model. Besides, even for those methods that support composite control, they perform poorly in terms
of composability as illustrated in Section 4.

Unlike previous methods, Uni-ControlNet categorizes various conditions into two distinct groups:
local conditions and global conditions. Accordingly, we only add two additional adapters, regardless
of the number of local and global controls involved. This design choice not only significantly reduces
both the whole fine-tuning cost and the model size, making it highly efficient for deployment, but
also facilitates the composability of different conditions. To achieve this, we dedicatedly design the
adapters for local and global controls. Specifically, for local controls, we introduce a multi-scale
condition injection strategy that uses a shared local condition encoder adapter. This adapter first
converts the local control signals into modulation signals, which are then used to modulate the
incoming noise features. And for global controls, we employ another shared global condition encoder
to convert them into conditional tokens, which are concatenated with text tokens to form the extended
prompt and interacted with the incoming features via cross-attention mechanism. Interestingly, we
find these two adapters can be separately trained without the need of additional joint training, while
still supporting the composition of multiple control signals. This finding adds to the flexibility and
ease of use provided by Uni-ControlNet.

By only training on 10 million text-image pairs with 1 epoch, our Uni-ControlNet demonstrates
highly promising results in terms of fidelity and controllability. Figure 1 provides visual examples
showcasing the effectiveness of Uni-ControlNet when using either one or multiple conditions. To
gain further insights, we perform in-depth ablation analysis and compare our newly proposed adapter
designs with those of ControlNet [21], GLIGEN [23] and T2I-Adapter [22]. The analysis results
reveal the superiority of our adapter designs, emphasizing their enhanced performance over the
counterparts offered by ControlNet, GLIGEN and T2I-Adapter.

2 Related Work

Text-to-Image Generation is an emerging field that aims to generate realistic images from text
descriptions. To address this challenging task, various approaches have been proposed in the past
years. Early works [24–26] primarily adopted Generative Adversarial Networks (GANs) and were
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Figure 1: Visual results of our proposed Uni-ControlNet. The top and bottom two rows are results for
single condition and multi-conditions respectively.
Table 1: Comparisons of different controllable diffusion models. N is the number of conditions. We
define the fine-tuning cost as the number of times the model needs to be fine-tuned on N conditions.
As Composer is trained from scratch, both fine-tuning cost and adapter number are not applicable.
For T2I-Adapter, (+1) indicates that further joint fine-tuning is required on the N -based adapters
along with an additional fuser to achieve composable conditions.

Fine-tuning Composable Control Fine-tuning Cost Adapter Number

Composer % " - -
ControlNet " " N N

GLIGEN " % N N

T2I-Adapter " " N(+1) N(+1)

Uni-ControlNet (Ours) " " 2 2

often trained on specific domains. However, they faced two key challenges, i.e., training instability
and poor generalization ability to open-domain scenarios. Motivated by the success of GPT models
[27–30], recent works [31–34] have explored the use of autoregressive models for text-to-image
generation and train on web-scale image-text pairs, which start to show strong generation capability
under the zero-shot setting for open-domain scenarios. Another approach is the diffusion models
[6, 7, 11, 35–41], originally proposed by [1, 2]. Diffusion models comprise a forward process that
gradually adds noise to natural images and a backward process that learns to denoise them back
to generate clean output. They demonstrate stronger capability in modeling fine-grained structures
and texture details compared to autoregressive models. Recently, vast variants of diffusion models
have been developed, such as DALLE-2 [11], which uses one prior model and one decoder model to
generate images from CLIP latent embeddings. Another phenomenal T2I diffusion model is Stable
Diffusion (SD), which scaled up the latent diffusion model [6] with larger model and data scales,
and made the pre-trained models publicly available. In this paper, we use SD as a base model and
explore how to enable more control signals beyond the text description for pre-trained T2I diffusion
models in an efficient and composable way.

Controllable Diffusion Models are designed to enable T2I diffusion models to accept more user
controls for guiding the generation results. They have garnered increasing attention very recently.
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Figure 2: The overall framework of our proposed Uni-ControlNet.

Broadly speaking, there are two strategies for implementing controllable diffusion models: training
from scratch [20] and fine-tuning lightweight adapters [21, 22] on frozen pretrained T2I diffusion
models. In the case of training from scratch, Composer [20] trains one big diffusion model from
scratch to achieve great controllability for both single and multi-conditions. It obtains remarkable
generation quality but comes with huge training cost. In contrast, ControlNet [21], GLIGEN [23]
and T2I-Adapter [22] propose to introduce lightweight adapters (or extra modules) into publicly
available SD models. By only fine-tuning the adapters while keeping original SD models frozen, they
significantly reduce the training cost and make it affordable for the research community. However, all
the ControlNet, GLIGEN and T2I-Adapter utilize independent adapters for each condition, resulting
in increased fine-tuning cost and model size when handling increased number of conditions. Moreover,
GLIGEN does not support composite control over different conditions. And different adapters in
Multi-ControlNet [21], a version of ControlNet that allow composite control, are isolated from one
another, limiting their composability. By testing CoAdapter [22], which is jointly trained using
different T2I-Adapters, we find that it also exhibits inadequate performance in generating composable
conditions. Our proposed Uni-ControlNet follows the second line of fine-tuning adapters and is
much less expensive than Composer, while addressing the above limitations of ControlNet, GLIGEN
and T2I-Adapter. It groups conditions into two groups, i.e., local controls and global controls, and
only requires two additional adapters accordingly. Thanks to our newly designed adapter structure,
Uni-ControlNet is not only efficient in terms of training cost and model sizes, but also surpasses
ControlNet, GLIGEN and T2I-Adapter in controllability and quality.

3 Method

3.1 Preliminary

A typical diffusion model involves two processes: a forward process which gradually adds small
amounts of Gaussian noise onto the sample in T steps, and a corresponding backward process
containing learnable parameters to recover input images by estimating and eliminating the noise. In
this paper, we use SD as our example base model to illustrate how to enable diverse controls with
our Uni-ControlNet. SD incorporates the UNet-like structure [42] as its denoising model, which
consists of an encoder, a middle block, and a decoder, with 12 corresponding blocks in each of the
encoder and decoder modules. For brevity, we denote the encoder as F , the middle block as M , and
the decoder as G, with fi and gi denoting the output of the i-th block in the encoder and decoder,
and m denoting the output of the middle block, respectively. It is important to note that, due to the
adoption of skip connections in UNet, the input for the i-th block in the decoder is given by:{

concat(m, fj) where i = 1, i+ j = 13.

concat(gi−1, fj) where 2 ≤ i ≤ 12, i+ j = 13.
(1)

Skip connections allow the decoder to directly utilize features from the encoder and thereby help
minimize the information loss. In SD, cross-attention layers are employed to capture semantic
information from the input text description. Here we use Z to denote the incoming noise features and
y to denote text token embeddings encoded by the language encoder. The Q,K, V in cross-attention
can be expressed as:

Q = Wq(Z),K = Wk(y), V = Wv(y), (2)
where Wq,Wk and Wv are projection matrices.
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Figure 3: Details of the local and global control adapters.

3.2 Control Adapter

In this paper, we consider seven example local conditions, including Canny edge [43], MLSD
edge [44], HED boundary [45], sketch [46, 47], Openpose [48], Midas depth [49], and segmentation
mask [50]. We also consider one example global condition, i.e., global image embedding of one
reference content image that is extracted from the CLIP image encoder [51]. This global condition
goes beyond simple image features and provides a more nuanced understanding of the semantic
content of the condition image. By employing both local and global conditions, we aim to provide a
comprehensive control over the generation process. We show the overview of our pipeline in Figure 2,
and the details of local control adapter and global control adapter are given in Figure 3.

Local Control Adapter: For our local control adapter, we have taken inspiration from ControlNet.
Specifically, we fix the weights of SD and copy the structures and weights of the encoder and middle
block, designated as F

′
and M

′
respectively. Thereafter, we incorporate the information from the

local control adapter during the decoding process. To achieve it, we ensure that all other elements
remain unchanged while modifying the input of the i-th block of the decoder as{

concat(m+m′, fj + zero(f
′

j)) where i = 1, i+ j = 13.

concat(gi−1, fj + zero(f
′

j)) where 2 ≤ i ≤ 12, i+ j = 13.
(3)

where zero represents one zero convolutional layer whose weights increase from zero to gradually
integrate control information into the main SD model. In contrast to ControlNet that adds the
conditions directly to the input noise and sends them to the copied encoder, we opt for a multi-
scale condition injection strategy. Our approach involves injecting the condition information at all
resolutions. In detail, we first concatenate different local conditions along the channel dimension and
then use a feature extractor H (stacked convolutional layers) to extract condition features at different
resolutions. Subsequently, we select the first block of each resolution (i.e., 64× 64, 32× 32, 16×
16, 8× 8) in the copied encoder (i.e., the Copied Encoder in Figure 3) for condition injection. For the
injection module, we take the inspiration from SPADE [52] and implement Feature Denormalization
(FDN) that uses the condition features to modulate the normalized (i.e.,norm(·)) input noise features:

FDNr(Zr, cl) = norm(Zr) · (1 + convγ(zero(hr(cl)))) + convβ(zero(hr(cl))), (4)

where Zr denotes noise features at resolution r, cl is the concatenated local conditions, hr represents
the output of the feature extractor H at resolution r, and convγ and convβ refer to learnable
convolutional layers that convert condition features into spatial-sensitive scale and shift modulation
coefficients. We will ablate different local feature injection strategies in following sections.

Global Control Adapter: For global controls, we use the image embedding of one condition image
extracted from CLIP image encoder as the example. Inspired by the fact that the text description
in T2I diffusion models can be also viewed as one kind of global control without explicit spatial
guidance, we project the global control signals into condition embeddings by using a condition
encoder hg. The condition encoder consists of stacked feedforward layers, which aligns the global
control signals with the text embeddings in SD. Next, we reshape the projected condition embeddings
into K global tokens (K = 4 by default) and concatenate them with the original K0 text tokens
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Rose Room Edsel ranger Dog, wild A man is running
on the street City Rabbit toy Golden retriever

A man holding a white board A dog sitting by a teddy bear A man on the mountains
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Figure 4: More visual results of Uni-ControlNet. The top two rows show results of a single condition,
with columns 1-7 for local conditions and columns 8-9 for global condition. 3rd row shows the results
of combining two local conditions, while row 4-th shows the results of integrating a local condition
with a global condition. There is no text prompt for the examples in 4-th row.

to create an extended prompt yext (total token number is K +K0) which serves as the input to all
cross-attention layers in both main SD model and control adapters:

yext = [yt1, y
t
2, ..., y

t
K0

, λ∗yg1 , λ∗y
g
2 , ..., λ∗y

g
K ], where ygi = hg(cg)[(i−1) ·d ∼ i ·d], i ∈ [1,K]

(5)
where yt and yg represent the original text tokens and global condition tokens respectively, and λ is a
hyper-parameter that controls the weight of the global condition. cg denotes the global condition and
d is the dimension of text token embedding. hg(·)[is ∼ ie] represents the sub-tensor of hg(·) that
contains elements from the is-th to the ie-th positions. Finally, the Q,K, V cross-attention operation
in all cross-attention layers is changed to:

Q = Wq(Z),K = Wk(yext), V = Wv(yext), (6)

3.3 Training Strategy

As the local control signals and global control signals often contain different amounts of condition
information, we empirically find that directly joint fine-tuning these two types of adapters will
produce poor controllable generation performance. Therefore, we opt to fine-tune these two types
of adapters separately so that both of them can be sufficiently trained and contribute effectively to
the final generation results. When fine-tuning each adapter, we employ a predefined probability to
randomly dropout each condition, along with an additional probability to deliberately keep or drop
all conditions. For the dropped conditions, we set the value of the corresponding input channels to
0. This can facilitate the model to learn generating the results based on one or multiple conditions
simultaneously. Interestingly, by directly integrating these two separately trained adapters during
inference, our Uni-ControlNet can already well combine global and local conditions together in a
composable way, without the need of further joint fine-tuning. In Section 4.3, we will provide more
detailed analysis about different fine-tuning strategies.

4 Experiments
Implementation Details. To fine-tune our model, we randomly sample 10 million text-image
pairs from the LAION dataset [53] and fine-tune Uni-ControlNet for 1 epoch. We use the AdamW
optimizer [54] with a learning rate of 1 × 10−5 and resize the input images and local condition
maps to 512× 512. As described, the local and global control adapters are fine-tuned separately by
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default. During inference, we merge the two adapters and adopt DDIM [55] for sampling, with the
number of time steps set to 50 and the classifier free guidance scale [56] set to 7.5. During training,
the hyper-parameter λ in Equation 6 is with a fixed value 1. At inference time, when there is no
text prompt, λ remains at 1, while when there is a text prompt, the value is adjusted to around 0.75,
depending on the intented weight between the text and global condition. As explained in Section
3.2, we employ 7 local conditions (Canny edge, MLSD edge, HED boundary, sketch, Openpose,
Midas depth, and segmentation mask) and 1 global control condition (CLIP image embeddings) for
control. As annotating a sketch dataset can be challenging, in our experiment, we initially obtain the
HED boundary [45] of an image and subsequently utilize a sketch simplification method [46, 47] to
generate the sketch for the training sample. Regarding the pose condition, as not all images in the
dataset include humans, we opt to not drop the pose condition during training to ensure that the pose
condition is fully trained. Detailed structures of global and local condition adapters can be found in
the appendix.

4.1 Controllable Generation Results

In Figure 4, we provide more controllable generation results of Uni-ControlNet in both single and
multi-condition setups. Notably, for visualization purposes, we use the original condition images
to denote their CLIP image embeddings. It can be seen that our Uni-ControlNet can produce very
promising results in terms of both controllability and generation fidelity. For example, in the case
of a single sketch condition with the text prompt "Dog, wild" (rows 1-2, column 4), the resulting
image accurately depicts a vivid dog and a background of grass and trees that align well with the
given sketch condition. Similarly, when presented with the global CLIP image embedding conditions
with the prompt "Golden retriever" (rows 1-2, columns 8-9), our model can seamlessly change the
background of the dog from the wild to a room. Moreover, our model also handles multi-condition
settings well, as demonstrated in the example of "A man on the mountains" (row 3, columns 7-9),
where the combination of a sketch and a pose produces a cohesive and detailed image of a man on a
mountainside. When presented with a local depth map and global CLIP image embeddings without
any prompt (row 4, columns 1-3), our model produces an image of a forest, taking the contour of an
elephant, which harmonizes with both the depth map and the content of the source global image.

4.2 Comparison with Existing Methods

Here we compare our Uni-ControlNet with ControlNet (Multi-ControlNet) [21], GLIGEN [23] and
T2I-Adapter (CoAdapter) [22]. Since Composer [20] is not open-sourced and trained from scratch,
we do not include it in comparisons.

Quantitative Comparison: For quantitative evaluation, we use the validation set of COCO2017 [57]
at a resolution of 512× 512. Since this set contains 5k images, and each image has multiple captions,
we randomly select one caption per image resulting in 5k generated images for our evaluation. It is
important to note that for quantitative comparison, we limit our testing to different single conditions
only. Additionally, we use Style\Content to represent the global condition as there are different
settings in the ControlNet, GLIGEN and T2I-Adapter. For the ControlNet, the content condition
refers to the content shuffle in ControlNet-V1.1. As T2I-Adapter does not take the MLSD and HED
conditions into account, it has no results for MLSD and HED. Similarly, GLIGEN does not consider
the MLSD and sketch conditions, resulting in the absence of results for MLSD and sketch.

To evaluate the generation quality, We report the FID [58] in Table 2. We can find that our model
reveals superior performance across most conditions quantitatively compared to existing approaches.
We also use quantitative metrics to assess the controllability. We employed the following metrics for
single-condition generation:

• SSIM (Structural Similarity) for Canny, HED, MLSD, and sketch conditions,

• mAP (mean Average Precision) based on OKS (Object Keypoint Similarity) for pose
condition,

• MSE (Mean Squared Error) for depth map,

• mIoU (Mean Intersection over Union) for segmentation map,

• CLIP score for content condition.
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Table 2: FID on different controllable diffusion models. The best results are in bold.

Canny MLSD HED Sketch Pose Depth Segmentation Style\Content

ControlNet 18.90 31.36 26.59 22.19 27.84 21.25 23.08 31.17
GLIGEN 24.74 - 28.57 - 24.57 21.46 27.39 25.12

T2I-Adapter 18.98 - - 18.83 29.57 21.35 23.84 28.86

Ours 17.79 26.18 17.86 20.11 26.61 21.20 23.40 23.98
Table 3: Quantitative evaluation of the controllability. The best results are in bold.

Canny
(SSIM)

MLSD
(SSIM)

HED
(SSIM)

Sketch
(SSIM)

Pose
(mAP)

Depth
(MSE)

Segmentation
(mIoU)

Style\Content
(CLIP Score)

ControlNet 0.4828 0.7455 0.4719 0.3657 0.4359 87.57 0.4431 0.6765
GLIGEN 0.4226 - 0.4015 - 0.1677 88.22 0.2557 0.7458

T2I-Adapter 0.4422 - - 0.5148 0.5283 89.82 0.2406 0.7078

Ours 0.4911 0.6773 0.5197 0.5923 0.2164 91.05 0.3160 0.7753

To calculate these metrics, we compare the extracted conditions from the natural image (the ground
truth) and the corresponding generated image. And we report the results in Table 3. Our method
outperforms other baseline methods in 4 out of 8 evaluation metrics. Notably, ControlNet achieves the
best performance in 3 out of 8 metrics, while T2I-Adapter only excels in 1 out of 8 metrics. However,
it should be noted that all of ControlNet, GLIGEN and T2I-Adapter employ different models for
different conditions, allowing each model to be well-trained for its corresponding condition. In
contrast, we only use a single model and achieved even overall superior results.

To provide a more comprehensive comparison of various controllable models, we also include a
comparison on CLIP score in Table 7 and present the results of user studies in Section G in the
appendix.

Qualitative Comparison: We further provide qualitative comparison of single and composed multi-
conditions in Figure 5 and Figure 6 respectively. For single conditions, as GLIGEN not considering
the sketch condition, we use GLIGEN’s results on the HED boundary as the second case in the first
row for showcase. We find that our Uni-ControlNet, ControlNet, GLIGEN and T2I-Adapter can
all perform overall well in single condition setting, and our results show slightly better alignments
with input conditions. Notably, we only fine-tune 2 adapters for all conditions, whereas ControlNet,
GLIGEN and T2I-Adapter fine-tune eight adapters for eight different single conditions.

Since GLIGEN does not support composed multi-conditions, we only compare Uni-ControlNet
with Multi-ControlNet and CoAdapter under the multi-condition setting. As shown in Figure 6,
Multi-ControlNet and CoAdapter show poorer composability when dealing with two local conditions,
e.g., missing the podium in the first example and no car in the second example. In contrast, our model
can fuse the two conditions much better. As for composing a local condition with a global condition,
Multi-ControlNet is also not that good as shown in the second row in Figure 6. And CoAdapter
performs okay in the case of combing a sketch of a cup and a global condition of a cat. However,
when the two conditions are not that related, e.g., the example where there is a Canny edge of a
Minion and a global condition of a bus in London, the image generated by CoAdapter appears to
be unrealistic and the two elements are not well integrated. And our model effectively creates a
Minion-shaped bus with car windows and vivid background.

4.3 Ablation Analysis

For ablation study, we fine-tune our model using a smaller dataset for resource consideration. In
detail, we utilize the 1 million subset of the 10 million dataset and fine-tune a single epoch, while
keeping all other settings unchanged.

Condition Injection Strategy: For local conditions, we compare our proposed injection method with
two other strategies. The first strategy is to directly use SPADE to inject the conditions, which involves
resizing the conditions to the corresponding resolutions using interpolation. We call this Injection-S1.
The second strategy is similar to Composer, ControlNet and T2I-Adapter, where the conditions are
only sent to the adapter or the main model at the input layer, which we refer to as Injection-S2. When
using these two strategies, all other parts of our method will remain unchanged. We follow the setting
in Section 4.2 and evaluate the FID on different local condition injection strategies. The quantitative
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Condition ControlNet T2I-Adapter Ours Condition ControlNet T2I-Adapter OursGLIGEN GLIGEN

Figure 5: Comparison of existing controllable diffusion models on different single conditions.
Table 4: FID on condition injection methods and training strategies. The best results are in bold.

Canny MLSD HED Sketch Openpose Depth Segmentation Content

Injection-S1 25.89 27.22 22.48 23.51 27.89 24.71 26.25 -
Injection-S2 22.22 27.08 21.94 22.74 26.56 24.21 24.42 -
Injection-S3 - - - - - - - 27.06
Training-S1 21.21 27.20 20.78 23.22 27.83 25.01 24.99 28.51
Training-S2 18.80 26.40 19.12 20.91 27.17 21.59 23.93 24.84

Ours 18.24 26.91 18.61 20.32 27.76 21.97 23.51 24.86

and qualitative results are presented in Table 4 and the upper part of Figure 7. The quantitative
results show our proposed condition injection strategy performs better under most settings. For the
visual results, we observe that for Injection-S1, the alignment with the conditions is poor. This may
be because direct interpolation significantly destroys condition information. As for Injection-S2, it
renders unsatisfactory results for composite control. For instance, in the "An elephant in the temple"
case, the lanterns on the top of the image are not accurately aligned with depth condition. Moreover,
the composite results are not as harmonious as ours. For example, in the "Gorilla wearing glasses"
case, the gorilla’s eyes and glasses are not well-merged. This may be because that if the condition
information is only provided in the input layer of the adapter, the model may lose some information of
the conditions in deeper layers, leading to poor alignment among the combined controls. In contrast,
our proposed FDN employs a multi-scale injection strategy that provides condition information at
different levels, resulting in richer condition information. Furthermore, our feature extractor projects
the conditions to the corresponding latent spaces of different layers, which allows for better alignment
between the conditions and noise features.

For the global condition, we compare our method to one way in which we only add the global
condition into control adapter but not the main SD model, and we denote this injection strategy as
Injection-S3. As shown in the lower part of Figure 7, without using the extended prompt in the main
SD model, this method cannot inject the global condition into the final generated results.

Condition-1 Condition-2 CoAdapter Ours Condition-1 Condition-2 CoAdapter Ours

A nice car on the country roadStormtrooper's lecture in the forest

Multi-ControlNet Multi-ControlNet

Figure 6: Comparison of different controllable diffusion models on composable multi-conditions.
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Condition Injection-S3 Ours Condition Injection-S3 Ours Condition Injection-S3 Ours

Condition Injection-S1 Injection-S2 Ours Injection-S1 Injection-S2 OursCondition-1 Condition-2

Room with ceiling windows An elephant in the temple

Foods in the plate Gorilla wearing glasses

Figure 7: Ablation results on different condition injection strategies.
Boot flower on the sink

Condition OursTraining-S2 Condition-1 Condition-2 OursTraining-S2Training-S1 Training-S1

Figure 8: Ablation results on different training strategies.

Training Strategy: As above mentioned, we fine-tune the local and global control adapters separately
and merge them at inference without any further joint fine-tuning by default. Here, we also investigate
two alternative training strategies: 1) joint fine-tuning together (“Train-S1"), where we fine-tune both
adapters together from scratch; 2) further joint fine-tuning after separate fine-tuning (“Train-S2"),
where we further fine-tune the adapters together after separate fine-tuning.

The quantitative FID results are shown in Table 4. We find that our default strategy and Training-S2
perform much better consistently than Training-S1, but further joint fine-tuning in Train-S2 does not
bring obvious performance gain in most cases. Some visual results are given in Figure 8. Note that,
in order to better assess the controllability of the global condition, we do not provide text prompts
for the cases with global condition. As we described before, the reason why Training-S1 gets poor
controllability on the global condition is that the global control adapter does not learn as much as
local adapter even equally treated during joint fine-tuning. One possible explanation is that the local
conditions often contain more rich guidance information than global conditions, leading the model to
pay less attention to the global condition.

5 Conclusion and Social Impact

In this paper, we propose Uni-ControlNet, a new solution that enhances the capabilities of text-
to-image diffusion models by enabling efficient integration of diverse local and global controls.
With better adapter designs, our Uni-ControlNet only requires two adapters for different conditions
while existing methods often require independent adapters for each condition. The new design of
Uni-ControlNet not only saves both fine-tuning cost and model size, but also facilitates composability,
allowing for the simultaneous utilization of multiple conditions. Extensive experiments validate the
effectiveness of Uni-ControlNet, showcasing its improved controllability, generation fidelity, and
composability. While our system empowers artists, designers, and content creators to realize their
creative visions with precise control, it is crucial to acknowledge the potential negative social impact
that can arise from misuse or abuse, similar to other image generation and editing AI models. To
address these concerns, responsible deployment practices, ethical regulations, and the inclusion of
special flags in generated images to enhance transparency are vital steps towards responsible usage.
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A The Weight of the Global Condition

In the global control module, we have implemented a hyper-parameter λ. This hyper-parameter plays
a role in determining the influence of the global condition while concatenating the projected global
condition to the text. Illustrating the effect of varying λ, we present two representative visualization
results in Figure 9. It can be seen that the value of λ plays a significant role in displaying the elements
of the global conditions in the generated images. As the value of λ increases, the global condition
takes precedence over the original text content, leading to a decrease in the influence of the text
prompt on the results. For instance, in the first case, it appears that the forest has experienced a
reduction in coverage area as compared to an increase in the number of houses with an increase in
the value of λ. Similarly, in the second case, it is evident that the city is shrinking while the desert’s
coverage is expanding with the rise of λ value. In the real-world applications, we can adjust the
hyper-parameter λ to generate our desired results with flexibility.

Fo
re
st

0.5 0.6 0.7 0.8 0.9 1.0

Ci
ty

Condition

Figure 9: The effect of the hyper-parameter λ. On the left side are the textual prompts and global
conditions provided. On the right side are the images generated under increased λ values.

B Condition Conflicts

Since our Uni-ControlNet can support multiple conditions simultaneously, we are curious about
its behavior when providing multiple conflicting conditions. Need to that, this is very rare in the
real-world applications, and this experiment is just for the analysis purpose. For example, we consider
the case of providing the model with two local conditions that are fundamentally incompatible, such
as the conditions of two dogs shown in Figure 10. Through this experiment, we can possibly evaluate
the relative importance of each condition and learn how Uni-ControlNet resolves conflicts, which
may help us design more robust integration of conditions that can adequately handle diverse and
ambiguous situations.

To provide a comprehensive analysis of different condition compositions, we have assigned each
condition in the first column a number 1 and each condition in the first row a number 2. This allows
us to refer to the dog in the first row as dog-1 and the dog in the first line as dog-2. The results
depicted in Figure 10 demonstrate that HED is the most powerful condition, with generated images
closely following the HED boundary when depicting text. Other conditions can only influence areas
that do not overlap. For instance, when we combine the HED boundary of dog-2 with the Canny edge
map of dog-1, the resulting image adopts the HED boundary of dog-2 but recognizes the head of
dog-1 as a small element positioned near the head of dog-2. Similarly, when dog-2’s HED boundary
is combined with the sketch of dog-1, the model fails to identify the head of dog-1 even though it
does not conflict with the HED boundary. Among the other conditions, the Canny edge map is the
next most powerful, followed by the sketch, depth, MLSD, and segmentation map. The Openpose
condition is the weakest, whereby the model generally disregards it in the event of a conflict. Only
when combined with the segmentation map, the Openpose condition produces recognizable human
elements. For better visualization, we have reordered the conditions based on their strength, which
implies that the upper and left conditions have greater influence.
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Figure 10: Study for the cases where composed conditions contradict each other. We choose the
detection results of a room as the condition for MLSD and a man as the condition for Openpose. To
test other conditions, we select two different dogs, which allows us to observe the model’s output
when given different dog-shaped conditions. We use "room" as the prompt for MLSD, "man" for
Openpose, and "dog" for other conditions. When combining two types of conditions, we integrate
their prompts, such as "dog", "dog and room", and "dog and man".
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C Hand-drawn Sketches

For the sketch condition, as mentioned in the main paper, we first get the HED boundary [45] of the
training images. Then, we employ a sketch simplification method [46, 47] to generate the sketches
for the model training. One question is, how does our model perform on hand-drawn sketches? We
show the results of our model on hand-drawn sketches in Figure 11. We can find that although there
are distribution gaps between the hand-drawn sketches and the model-generated sketches, our model
can handle hand-drawn sketches pretty well.

A bicycle in the forest Mountains A book and a pencil on the desk A cottage in the countryside

Condition Sample Condition Sample Condition Sample Condition Sample

Figure 11: Visualization results on hand-drawn sketches.

D Extension to New Conditions

To extend a trained Uni-ControlNet to support new conditions, we conducted an experiment in two
steps for comparison and analysis purpose. Firstly, we train a local adapter specific to N conditions.
Next, we introduce a new type of condition and extend the trained adapter to (N+1) conditions. The
adaptation process involved modifying the input channel of the Uni-ControlNet’s first convolutional
layer within the feature extractor. Then, we try to retrain the local adapter with 4 different retraining
strategies (R1-4) to accommodate the new conditions:

• Retraining the entire feature extractor (R1),

• Only retraining the pre-feature extractor, which is the part that projects the condition from
resolution 512 to 64 (R2),

• Only retraining the first convolutional layer in the feature extractor (R3),

• Without retraining, i.e., random initialization of the first convolutional layer in the feature
extractor (R4).

During the retraining process, we ensure that the weights of the copied encoder in the local adapter
remain fixed. We utilize a training dataset of 300k samples for the retraining. We show the extension
from [MLSD + HED + Sketch + OpenPose + Depth + Seg] to [MLSD + HED + Sketch + OpenPose
+ Depth + Seg + Canny]. The results of this extension process are presented in Figure 12. We
surprisingly observe that retraining solely the first convolutional layer in the feature extractor can
already adequately enable the Uni-ControlNet to handle the newly added conditions.

Stormtrooper's lecture in the forestA deer in the forest

Condition R1 R2 R3 R4 Condition-2 R1 R2 R3 R4Condition-1

Figure 12: Study for extending a trained Uni-ControlNet to newly added conditions.

E Composite Control of Conditions with the Same Type

In real-world applications, users can actually composite two/multiple conditions of the same type
easily before feeding them to the model, e.g., draw the sketch of multiple objects in one canvas.
However, how to achieve composite control of two conditions with the same type is an interesting
research point. We try one simple strategy called "Uni-Channels". Specifically, we augment the input
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by adding three extra condition channels. For instance, if the original inputs had 21 channels (3 for
each condition, totaling 7 local conditions), with Uni-Channels, we now have 21 + 3 channels for the
inputs.

During training, we feed the Uni-Channels with randomly selected types of conditions of the input
natural images. We observe that, as the shared extra condition channels for different condition types,
Uni-Channels can perform well for two-condition composition of the same condition type. The
visualization results are depicted in Figure 13.

A bird perched on a tree.Two man on the beachA dog and a cat

Condition-1 Condition-2 Sample Condition-1 Condition-2 Sample Condition-1 Condition-2 Sample

Figure 13: Visualization results of composite control of two conditions with the same type.

F Comparison with Stable Diffusion 2.1

We compare our method with two Stable Diffusion models, Stable Diffusion 2 - depth ("SD2-depth")
and Stable Diffusion 2 - unclip ("SD2-unclip") which support the inputs of depth map and reference
image respectively. The visualization results are shown in Figure 14. Additionally, we provide the
quantitative results in Table 5 and Table 6.

Table 5: FID on Uni-ControlNet and Stable Diffusion 2.1. The best results are in bold.

FID Depth Content

SD2-depth 17.76 -
SD2-unclip - 24.12

Ours 21.20 23.98

Table 6: CLIP score on Uni-ControlNet and Stable Diffusion 2.1. The best results are in bold.

CLIP Score Depth Content

SD2-depth 0.2516 -
SD2-unclip - 0.2497

Ours 0.2561 0.2402

It is important to note that for SD2-depth and SD2-unclip, the whole model is fine-tuned to learn
the depth map or the reference images instead of only fine-tuning adapters, which is the key factor
contributing to their great performance. Additionally, when compared to other controllable diffusion
models like ControlNet, GLIGEN and T2I-Adapter, SD2-depth and SD2-unclip outperform them, as
demonstrated in Table 2 and Table 7.

G More Quantitative Results

CLIP Score: Besides FID, we also test CLIP score for comparing different controllable diffusion
models, and ablating condition injections methods and training strategies. We follow the settings in
the Section 4.2 and Section 4.3 in the main paper. The results are shown in the Table 7 and Table 8
respectively. Our model demonstrates superior performance quantitatively across most conditions
when compared to existing controllable diffusion models. Moreover, for different condition injection
methods and training strategies, our method, along with Training-S2, consistently outperforms other
strategies. However, joint fine-tuning in Training-S2 does not yield obvious performance gains in
most cases. These finds are consistent with those presented in the Section 4.2 and Section 4.3 of the
main paper.
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Village City Bicycle

Golden Retriever Golden Retriever Flowers

Condition Ours Condition OursCondition SD2-depth/unclip Ours SD2-depth/unclip SD2-depth/unclip

Figure 14: Comparison between Uni-ControlNet and Stable Diffusion 2.1.

Table 7: CLIP score on different controllable diffusion models. The best results are in bold.

Canny MLSD HED Sketch Pose Depth Segmentation Style\Content

ControlNet 0.2538 0.2481 0.2530 0.2499 0.2572 0.2558 0.2531 0.2352
GLIGEN 0.2493 - 0.2403 - 0.2534 0.2526 0.2456 0.2401

T2I-Adapter 0.2513 - - 0.2584 0.2608 0.2559 0.2478 0.2366

Ours 0.2539 0.2485 0.2556 0.2542 0.2514 0.2561 0.2540 0.2402

User Study: As FID and CLIP score may be not always consistent with human preference, we
further conduct user study to quantitatively compare our approach with the baseline methods Control-
Net [21], GLIGEN [23] and T2I-Adapter [22]. More specifically, we carry out tests in both single
and multi-condition settings, with 20 cases for each setting. Each case is evaluated based on three
metrics: the quality of generated images, the match with the given text, and the alignment with the
given conditions. Users should select the best one for each metric from the generated images of
ControlNet, GLIGEN, T2I-Adapter, and our Uni-ControlNet. We collect responses from 20 users
and analyze the total number of votes for each metric under each setting.

The results are presented in Figures 15 and 16. It can be seen that, our approach outperforms
both ControlNet, GLIGEN and T2I-Adapter in the single condition setting, demonstrating a clear
advantage. Additionally, in the multi-conditions setting, our approach performed significantly better
than Multi-ControlNet and CoAdapter.

Generation Quality

ControlNet GLIGEN T2I-Adapter Ours

22.8%

(91)

21.5%

(86)

30.2%

(121)

Match with Text

ControlNet GLIGEN T2I-Adapter Ours

22.1%

(84)

25.3%

(96)

28.4%

(108)

Match with Condition

ControlNet GLIGEN T2I-Adapter Ours

23.8%

(95)

21.5%

(86)

34.5%

(138)

25.5%

(102)

24.2%

(92)
20.2%

(81)

Figure 15: User study of the preference rate for the single condition setting.

H More Visualization Results

In this section, we present additional qualitative results. Figure 17 illustrates the results for the
single-condition setting, while Figure 18 shows the results for the multi-conditions setting. Moreover,
we demonstrate our performance on a more challenging case where there are four conditions, as seen
in rows 7-8 of Figure 18.
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Table 8: CLIP score on condition injection methods and training strategies. The best results are in
bold.

Canny MLSD HED Sketch Openpose Depth Segmentation Content

Injection-S1 0.2513 0.2497 0.2518 0.2507 0.2527 0.2525 0.2508 -
Injection-S2 0.2504 0.2506 0.2518 0.2523 0.2527 0.2544 0.2540 -
Injection-S3 - - - - - - - 0.2502
Training-S1 0.2506 0.2504 0.2511 0.2510 0.2529 0.2538 0.2526 0.2478
Training-S2 0.2528 0.2504 0.2530 0.2537 0.2533 0.2547 0.2545 0.2421

Ours 0.2528 0.2483 0.2535 0.2539 0.2503 0.2549 0.2522 0.2420

Generation Quality

Multi-ControlNet CoAdapter Ours

12.0%

(48)

20.5%

(82)
67.5%

(270)

Match with Text

Multi-ControlNet CoAdapter Ours

25.5%

(51)

18.5%

(37)

56.0%

(112)

Match with Condition

Multi-ControlNet CoAdapter Ours

17.0%

(68)

19.8%

(79)63.2%

(253)

Figure 16: User study of the preference rate for the multi-conditions setting.

I Adapter Details

We provide the details of our proposed local control adapter and global control adapter in Figure 19,
Figure 20 and Figure 21.
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Tools on the ground A beautiful butterfly on the bud

Houses on the street at sunset Books on the shelf

Teddy bears are reading a book, sunny day Spaghetti with toasts on the plate 

A red crab on the beach A tram in an old city

Canny

MLSD

HED

Sketch

A woman is running A man is dancing on the street

A red apple on the books An elephant in the forest

A warm room with sunshine in Flowers in the basket, oil painting

/ Sea and beach

Openpose

Depth

Segmentation

Content

Figure 17: More visual results of Uni-ControlNet for single condition setting.
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Local
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Global

Condition-1 Condition-2 Sample Condition-1 Condition-2 Sample

A cute cat and balloons

Local

+

Local
A photo of a cowboy riding a horse on the street

A house on hills, blue sky A cat on the sofa in an old room, art painting

A man walking on the street, sunny day A yellow flower in a white plate with a fork and a knife

A sofa and a deer in the forest

A man and his car on the mountain, a big moon in the sky

Condition-1 Condition-2 Condition-3 Condition-4 Sample

Figure 18: More visual results of Uni-ControlNet for multi-conditions setting.
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Figure 19: Details of the local control adapter.
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Figure 20: Details of the ResBlock with FDN in local control adapter.
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Figure 21: Details of the global control adapter. d is the dimension of text token embedding and K is
the number of the global tokens.
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