
HeadSculpt: Crafting 3D Head Avatars with Text

Xiao Han1,4∗ Yukang Cao2∗ Kai Han2 Xiatian Zhu1,5

Jiankang Deng3 Yi-Zhe Song1,4 Tao Xiang1,4† Kwan-Yee K. Wong2†

1University of Surrey 2The University of Hong Kong 3Imperial College London
4iFlyTek-Surrey Joint Research Centre on AI 5Surrey Institute for People-Centred AI

Abstract

Recently, text-guided 3D generative methods have made remarkable advancements
in producing high-quality textures and geometry, capitalizing on the proliferation of
large vision-language and image diffusion models. However, existing methods still
struggle to create high-fidelity 3D head avatars in two aspects: (1) They rely mostly
on a pre-trained text-to-image diffusion model whilst missing the necessary 3D
awareness and head priors. This makes them prone to inconsistency and geometric
distortions in the generated avatars. (2) They fall short in fine-grained editing. This
is primarily due to the inherited limitations from the pre-trained 2D image diffusion
models, which become more pronounced when it comes to 3D head avatars. In
this work, we address these challenges by introducing a versatile coarse-to-fine
pipeline dubbed HeadSculpt for crafting (i.e., generating and editing) 3D head
avatars from textual prompts. Specifically, we first equip the diffusion model
with 3D awareness by leveraging landmark-based control and a learned textual
embedding representing the back view appearance of heads, enabling 3D-consistent
head avatar generations. We further propose a novel identity-aware editing score
distillation strategy to optimize a textured mesh with a high-resolution differentiable
rendering technique. This enables identity preservation while following the editing
instruction. We showcase HeadSculpt’s superior fidelity and editing capabilities
through comprehensive experiments and comparisons with existing methods. ‡

1 Introduction

Modeling 3D head avatars underpins a wide range of emerging applications (e.g., digital telepresence,
game character creation, and AR/VR). Historically, the creation of intricate and detailed 3D head
avatars demanded considerable time and expertise in art and engineering. With the advent of deep
learning, existing works [87, 28, 33, 72, 8, 38, 15] have shown promising results on the reconstruction
of 3D human heads from monocular images or videos. However, these methods remain restricted
to head appearance contained in their training data which is often limited in size, resulting in the
inability to generalize to new appearance beyond the training data. This constraint calls for the need
of more flexible and generalizable methods for 3D head modeling.

Recently, vision-language models (e.g., CLIP [55]) and diffusion models (e.g., Stable Diffusion [69,
61, 59]) have attracted increasing interest. These progresses have led to the emergence of text-to-3D
generative models [34, 62, 44, 27] which create 3D content in a self-supervised manner. Notably,
DreamFusion [54] introduces a score distillation sampling (SDS) strategy that leverages a pre-trained
image diffusion model to compute the noise-level loss from the textual description, unlocking the
potential to optimize differentiable 3D scenes (e.g., neural radiance field [45], tetrahedral mesh [66],
texture [58, 9], or point cloud [50]) with 2D diffusion prior only. Subsequent research efforts [43, 6,
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Figure 1: Examples of generation and editing results obtained using the proposed HeadSculpt.
It enables the creation and fine-grained editing of high-quality head avatars, featuring intricate
geometry and texture, for any type of head avatar using simple descriptions or instructions. Symbols
indicate the following prompt prefixes: ∗ “a head of [text]” and † “a DSLR portrait of [text]”.
The captions in gray are the prompt suffixes while the blue ones are the editing instructions.

65, 79, 42, 75, 40, 56, 76] improve and extend DreamFusion from various perspectives (e.g., higher
resolution [39] and better geometry [10]).

Considering the flexibility and versatility of natural languages, one might think that these SDS-based
text-to-3D generative methods would be sufficient for generating diverse 3D avatars. However, it is
noted that existing methods have two major drawbacks (see Fig. 6): (1) Inconsistency and geometric
distortions: The 2D diffusion models used in these methods lack 3D awareness particularly regarding
camera pose; without any remedy, existing text-to-3D methods inherited this limitation, leading to
the multi-face “Janus” problem in the generated head avatars. (2) Fine-grained editing limitations:
Although previous methods propose to edit 3D models by naively fine-tuning trained models with
modified prompts [54, 39], we find that this approach is prone to biased outcomes, such as identity
loss or inadequate editing. This problem arises from two causes: (a) inherent bias in prompt-based
editing in image diffusion models, and (b) challenges with inconsistent gradient back-propagation at
separate iterations when using SDS calculated from a vanilla image diffusion model.

In this paper, we introduce a new head-avatar-focused text-to-3D method, dubbed HeadSculpt,
that supports high-fidelity generation and fine-grained editing. Our method comprises two novel
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components: (1) Prior-driven score distillation: We first arm the pre-trained image diffusion model
with 3D awareness by integrating a landmark-based ControlNet [84]. Specifically, we adopt the
parametric 3D head model, FLAME [38], as a prior to obtain a 2D landmark map [41, 31], which
serves as an additional condition for the diffusion model, ensuring the consistency of generated head
avatars across different views. Further, to remedy the front-view bias in the pre-trained diffusion
model, we utilize an improved view-dependent prompt through textual inversion [17], by learning a
specialized <back-view> token to emphasize back views of heads and capture their unique visual
details. (2) Identity-aware editing score distillation (IESD): To address the challenges of fine-grained
editing for head avatars, we introduce a novel method called IESD. It blends two scores, one for
editing and the other for identity preservation, both predicted by a ControlNet-based implementation
of InstructPix2Pix [5]. This approach maintains a controlled editing direction that respects both
the original identity and the editing instructions. To further improve the fidelity of our method, we
integrate these two novel components into a coarse-to-fine pipeline [39], utilizing NeRF [48] as the
low-resolution coarse model and DMTET [66] as the high-resolution fine model. As demonstrated
in Fig. 1, our method can generate high-fidelity human-like and non-human-like head avatars while
enabling fine-grained editing, including local changes, shape/texture modifications, and style transfers.

2 Related work

Text-to-2D generation. In recent years, groundbreaking vision-language technologies such as
CLIP [55] and diffusion models [25, 13, 59, 68] have led to significant advancements in text-to-2D
content generation [61, 57, 1, 69, 70]. Trained on extensive 2D multimodal datasets [63, 64], they
are empowered with the capability to “dream” from the prompt. Follow-up works endeavor to
efficiently control the generated results [84, 85, 47], extend the diffusion model to video sequence [67,
3], accomplish image or video editing [23, 32, 81, 5, 77, 14, 22], enhance the performance for
personalized subjects [60, 17], etc. Although significant progress has been made in generating 2D
content from text, carefully crafting the prompt is crucial, and obtaining the desired outcome often
requires multiple attempts. The inherent randomness remains a challenge, especially for editing tasks.

Text-to-3D generation. Advancements in text-to-2D generation have paved the way for text-to-3D
techniques. Early efforts [82, 27, 44, 62, 34, 29, 11] propose to optimize the 3D neural radiance field
(NeRF) or vertex-based meshes by employing the CLIP language model. However, these models
encounter difficulties in generating expressive 3D content, primarily because of the limitations of CLIP
in comprehending natural language. Fortunately, the development of image diffusion models [69, 1]
has led to the emergence of DreamFusion [54]. It proposes Score Distillation Sampling (SDS)
based on a pre-trained 2D diffusion prior [61], showcasing promising generation results. Subsequent
works [37] have endeavored to improve DreamFusion from various aspects: Magic3D [39] proposes
a coarse-to-fine pipeline for high-resolution generations; Latent-NeRF [43] includes shape guidance
for more robust generation on the latent space [59]; DreamAvatar [6] leverages SMPL [4] to generate
3D human full-body avatars under controllable shapes and poses; Guide3D [7] explores the usage
of multi-view generated images to create 3D human avatars; Fantasia3D [10] disentangles the
geometry and texture training with DMTET [66] and PBR texture [49] as their 3D representation;
3DFuse [65] integrates depth control and semantic code sampling to stabilize the generation process.
Despite notable progress, current text-to-3D generative models still face challenges in producing
view-consistent 3D content, especially for intricate head avatars. This is primarily due to the absence
of 3D awareness in text-to-2D diffusion models. Additionally, to the best of our knowledge, there
is currently no approach that specifically focuses on editing the generated 3D content, especially
addressing the intricate fine-grained editing needs of head avatars.

3D head modeling and creation. Statistical mesh-based models, such as FLAME [38, 15], enable the
reconstruction of 3D head models from images. However, they struggle to capture fine details like hair
and wrinkles. To overcome this issue, recent approaches [8, 71, 72, 51] employ Generative Adversarial
Networks (GANs) [46, 20, 30] to train 3D-aware networks on 2D head datasets and produce 3D-
consistent images through latent code manipulation. Furthermore, neural implicit methods [87, 16, 28,
88] introduce implicit and subject-oriented head models based on neural rendering fields [45, 48, 2].
Recently, text-to-3D generative methods have gained traction, generating high-quality 3D head
avatars from natural language using vision-language models [55, 69]. Typically, T2P [85] predicts
bone-driven parameters of head avatars via a game engine under the CLIP guidance [55]. Rodin [80]
proposes a roll-out diffusion network to perform 3D-aware diffusion. DreamFace [83] employs a
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Figure 2: Overall architecture of HeadSculpt. We craft high-resolution 3D head avatars in a coarse-
to-fine manner. (a) We optimize neural field representations for the coarse model. (b) We refine
or edit the model using the extracted 3D mesh and apply identity-aware editing score distillation
if editing is the target. (c) The core of our pipeline is the prior-driven score distillation, which
incorporates landmark control, enhanced view-dependent prompts, and an InstructPix2Pix branch.

selection strategy in the CLIP embedding space to generate coarse geometry and uses SDS [54] to
optimize UV-texture. Despite producing promising results, all these methods require a large amount
of data for supervised training and struggle to generalize well to non-human-like avatars. In contrast,
our approach relies solely on pre-trained text-to-2D models, generalizes well to out-of-domain avatars,
and is capable of performing fine-grained editing tasks.

3 Methodology

HeadSculpt is a 3D-aware text-to-3D approach that utilizes a pre-trained text-to-2D Stable Diffusion
model [69, 59] to generate high-resolution head avatars and perform fine-grained editing tasks. As
illustrated in Fig. 2, the generation pipeline has two stages: coarse generation via the neural radiance
field (NeRF) [48] and refinement/editing using tetrahedron mesh (DMTET) [66]. Next, we will first
introduce the preliminaries that form the basis of our method in Sec. 3.1. We will then discuss the key
components of our approach in Sec. 3.2 and Sec, 3.3, including (1) the prior-driven score distillation
process via landmark-based ControlNet [84] and textual inversion [17], and (2) identity-aware editing
score distillation accomplished in the fine stage using the ControlNet-based InstructPix2Pix [5].

3.1 Preliminaries

Score distillation sampling. Recently, DreamFusion [54] proposed score distillation sampling (SDS)
to self-optimize a text-consistent neural radiance field (NeRF) based a the pre-trained text-to-2D
diffusion model [61]. Due to the unavailability of the Imagen model [61] used by DreamFusion, we
employ the latent diffusion model in [59] instead. Specifically, given a latent feature z encoded from
an image x, SDS introduces random noise ϵ to z to create a noisy latent variable zt and then uses a
pre-trained denoising function ϵϕ (zt; y, t) to predict the added noise. The SDS loss is defined as the
difference between predicted and added noise and its gradient is given by

∇θLSDS(ϕ, g(θ)) = Et,ϵ∼N (0,1)

[

w(t) (ϵϕ (zt; y, t)− ϵ)
∂z

∂x

∂x

∂θ

]

, (1)

where y is the text embedding, w(t) weights the loss from noise level t. With the expressive text-to-
2D diffusion model and self-supervised SDS loss, we can back-propagate the gradients to optimize
an implicit 3D scene g(θ), eliminating the need for an expensive 3D dataset.

3D scene optimization. HeadSculpt explores the potential of two different 3D differentiable repre-
sentations as the optimization basis for crafting 3D head avatars. Specifically, we employ NeRF [48]
in the coarse stage due to its greater flexibility in geometry deformation, while utilizing DMTET [66]
in the fine stage for efficient high-resolution optimization.
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(1) 3D prior-based NeRF. DreamAvatar [6] recently proposed a density-residual setup to enhance the
robustness and controllability of the generated 3D NeRF. Given a point x inside the 3D volume, we
can derive its density and color value based on a prior-based density field σ̄:

F (x, σ̄) = Fθ(γ(x)) + (σ̄(x),0) 7→ (σ, c), (2)

where γ(·) denotes a hash-grid frequency encoder [48], and σ and c are the density and RGB color
respectively. We can derive σ̄ from the signed distance d(x) of a given 3D shape prior (e.g., a
canonical FLAME model [38] by default in our implementation):

σ̄(x) = max
(
0, softplus−1(τ(x))

)
, τ(x) =

1

a
sigmoid(−d(x)/a),where a = 0.005. (3)

To obtain a 2D RGB image from the implicit volume defined above, we employ a volume rendering
technique that involves casting a ray r from the 2D pixel location into the 3D scene, sampling points
µi along the ray, and calculating their density and color value using F in Eq. (2):

C(r) =
∑

i

Wici, Wi = αi

∏

j<i

(1− αj), αi = 1− e(−σi||µi
−µ

i+1||). (4)

(2) DMTET. It discretizes a deformable tetrahedral grid (VT , T ), where VT denotes the vertices
within grid T [19, 66], to model the 3D space. Every vertex vi ∈ VT ⊂ R

3 possesses a signed
distance value si ∈ R, along with a position offset ∆vi ∈ R

3 of the vertex relative to its initial
canonical coordinates. Subsequently, the underlying mesh can be extracted based on si with the
differentiable marching tetrahedra algorithm. In addition to the geometry, we adopt the Magic3D
approach [39] to construct a neural color field. This involves re-utilizing the MLP trained in the
coarse NeRF stage to predict the RGB color value for each 3D point. During optimization, we render
this textured surface mesh into high-resolution images using a differentiable rasterizer [36, 49].

3.2 3D-Prior-driven score distillation

Existing text-to-3D methods with SDS [54] assume that maximizing the likelihood of images rendered
from various viewpoints of a scene model g(·) is equivalent to maximizing the overall likelihood of
g(·). This assumption can result in inconsistencies and geometric distortions [54, 65]. A notable issue
is the “Janus problem” characterized by multiple faces on a single object (see Fig. 6). There are two
possible causes: (1) the randomness of the diffusion model which can cause inconsistencies among
different views, and (2) the lack of 3D awareness in controlling the generation process, causing the
model to struggle in determining the front view, back view, etc. To address these issues in generating
head avatars, we integrate 3D head priors into the diffusion model.

Landmark-based ControlNet. In Section 3.1, we explain our adoption of FLAME [38] as the density
guidance for our NeRF. Nevertheless, this guidance by itself is insufficient to have a direct impact on
the SDS loss. What is missing is a link between the NeRF and the diffusion model, incorporating the
same head priors. Such a link is key to improving the view consistency of the generated head avatars.
To achieve this objective, as illustrated in Fig. 2, we propose the incorporation of 2D landmark maps
as an additional condition for the diffusion model using ControlNet [84]. Specifically, we employ a
ControlNet C trained on a large-scale 2D face dataset [86, 12], using facial landmarks rendered from
MediaPipe [41, 31] as ground-truth data. When given a randomly sampled camera pose π, we first
project the vertices of the FLAME model onto the image. Following that, we select and render some
of these vertices into a landmark map Pπ based on some predefined vertex indexes. The landmark
map will be fed into ControlNet and its output features are added to the intermediate features within
the diffusion U-Net. The gradient of our SDS loss can be re-written as

∇θLSDS(ϕ, g(θ)) = Et,ϵ∼N (0,1),π

[

w(t) (ϵϕ (zt; y, t, C(Pπ))− ϵ)
∂z

∂x

∂x

∂θ

]

. (5)

Enhanced view-dependent prompt via textual inversion. Although the landmark-based ControlNet
can inject 3D awareness into the pre-trained diffusion models, it struggles to maintain back view head
consistency. This is expected as the 2D image dataset used for training mostly contains only front or
side face views. Consequently, when applied directly to back views, the model introduces ambiguity
as front and back 3D landmark views can appear similar, as shown in Fig. 8. To address this issue,
we propose a simple yet effective method. Our method is inspired by previous works [54, 65, 39]
which found it beneficial to append view-dependent text (e.g., “front view”, “side view” or “back
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view”) to the provided input text based on the azimuth angle of the randomly sampled camera. We
extend this idea by learning a special token <back-view> to replace the plain text “back view” in
order to emphasize the rear appearance of heads. This is based on the assumption that a pre-trained
Stable Diffusion does has the ability to “imagine” the back view of a head - it has seen some during
training. The main problem is that a generic text embedding of “back view” is inadequate in telling
the model what appearance it entails. A better embedding for “back view” is thus required. To this
end, we first randomly download 34 images of the back view of human heads, without revealing
any personal identities, to construct a tiny dataset D, and then we optimize the special token v (i.e.,
<back-view>) to better fit the collected images, similar to the textual inversion [17]:

v∗ = argmin
v

Et,ϵ∼N (0,1),z∼D

[

∥ϵ− ϵϕ (zt; v, t)∥22
]

, (6)

which is achieved by employing the same training scheme as the original diffusion model, while
keeping ϵϕ fixed. This constitutes a reconstruction task, which we anticipate will encourage the
learned embedding to capture the fine visual details of the back views of human heads. Notably, as
we do not update the weights of ϵϕ, it stays compatible with the landmark-based ControlNet.

3.3 Identity-aware editing score distillation

After generating avatars, editing them to fulfill particular requirements poses an additional challenge.
Previous works [54, 39] have shown promising editing results by fine-tuning a trained scene model
with a new target prompt. However, when applied to head avatars, these methods often suffer from
identity loss or inadequate appearance modifications (see Fig. 10). This problem stems from the
inherent constraint of the SDS loss, where the 3D models often sacrifice prominent features to
preserve view consistency. Substituting Stable Diffusion with InstructPix2Pix [5, 21] might seem
like a simple solution, but it also faces difficulties in maintaining facial identity during editing based
only on instructions, as it lacks a well-defined anchor point.

To this end, we propose identity-aware editing score distillation (IESD) to regulate the editing
direction by blending two predicted scores, i.e., one for editing instruction and another for the original
description. Rather than using the original InstructPix2Pix [5], we employ a ControlNet-based
InstructPix2Pix I [84] trained on the same dataset, ensuring compatibility with our landmark-based
ControlNet C and the learned <back-view> token. Formally, given an initial textual prompt y
describing the avatar to be edited and an editing instruction ŷ, we first input them separately into
the same diffusion model equipped with two ControlNets, I and C. This allows us to obtain two
predicted noises, which are then combined using a predefined hyper-parameter ωe like classifier-free
diffusion guidance (CFG) [26]:

∇θLIESD(ϕ, g(θ)) = Et,ϵ∼N (0,1),π

[

w(t)

(

ϵ̂ϕ (zt; y, ŷ, t, C(Pπ), I(Mπ))
︸ ︷︷ ︸

−ϵ

)
∂z

∂x

∂x

∂θ

]

,

ωeϵϕ (zt; ŷ, t, C(Pπ), I(Mπ)) + (1− ωe)ϵϕ (zt; y, t, C(Pπ), I(Mπ))

(7)

where Pπ and Mπ represent the 2D landmark maps and the reference images rendered in the coarse
stage, both being obtained under the sampled camera pose π. The parameter ωe governs a trade-off
between the original appearance and the desired editing, which defaults to 0.6 in our experiments.

4 Experiments

We will now assess the efficacy of our HeadSculpt across different scenarios, while also conducting a
comparative analysis against state-of-the-art text-to-3D generation pipelines.

Implementation details. HeadSculpt builds upon Stable-DreamFusion [73] and Huggingface
Diffusers [78, 53]. We utilize version 1.5 of Stable Diffusion [69] and version 1.1 of ControlNet [84,
12] in our implementation. In the coarse stage, we optimize our 3D model at 64× 64 grid resolution,
while using 512× 512 grid resolution for the fine stage (refinement or editing). Typically, each text
prompt requires approximately 7, 000 iterations for the coarse stage and 5, 000 iterations for the fine
stage. It takes around 1 hour for each stage on a single Tesla V100 GPU with a default batch size
of 4. We use Adam [35] optimizer with a fixed learning rate of 0.001. Additional implementation
details can be found in the supplementary material.
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Shape 1 Shape 2 Shape 3

a DSLR portrait of Saul Goodman

Figure 3: Generation results with various shapes. The first row shows three randomly sampled
FLAME models, while the second row presents our generated results (incl. normals) using these
FLAME models as initialization. All results are under the same text prompt.

‡ sad ‡ surprised ‡ disgusted make him bald give him a beard give him a sunglass

Figure 4: More specific editing results. ‡ Instruction prefix: make his expression as [text].

Baseline methods for generation evaluation. We compare the generation results with five baselines:
DreamFusion [73], Latent-NeRF [43], 3DFuse [65] (improved version of SJC [79]), Fantasia3D [10],
and DreamFace [83]. We do not directly compare with DreamAvatar [6] as it involves deformation
fields for full-body-related tasks.

Baseline methods for editing evaluation. We assess IESD’s efficacy for fine-grained 3D head avatar
editing by comparing it with various alternatives since no dedicated method exists for this: (B1)
One-step optimization on the coarse stage without initialization; (B2) Initialized from the coarse
stage, followed by optimization of another coarse stage with an altered description; (B3) Initialized
from the coarse stage, followed by optimization of a new fine stage with an altered description; (B4)
Initialized from the coarse stage, followed by optimization of a new fine stage with an instruction
based on the vanilla InstructPix2Pix [5]; (B5) Ours without edit scale (i.e., ωe = 1). Notably, B2
represents the editing method proposed in DreamFusion [54], while B3 has a similar performance as
Magic3D [39], which employs a three-stage editing process (i.e., Coarse + Coarse + Fine).

4.1 Qualitative evaluations

Head avatar generation with various prompts. In Fig. 1, we show a diverse array of 3D head avatars
generated by our HeadSculpt, consistently demonstrating high-quality geometry and texture across
various viewpoints. Our method’s versatility is emphasized by its ability to create an assortment of
avatars, including humans (both celebrities and ordinary individuals) as well as non-human characters
like superheroes, comic/game characters, paintings, and more.

Head avatar generation with different shapes. HeadSculpt leverages shape-guided NeRF initializa-
tion and landmark-guided diffusion priors. This allows controlling geometry by varying the FLAME
shape used for initialization. To demonstrate adjustability, Fig. 3 presents examples generated from
diverse FLAME shapes. The results fit closely to the shape guidance, highlighting HeadSculpt’s
capacity for geometric variation when provided different initial shapes.

Head avatar editing with various instructions. As illustrated in Fig. 1 and Fig. 4, HeadSculpt’s
adaptability is also showcased through its ability to perform fine-grained editing, such as local
changes (e.g., adding accessories, changing hairstyles, or altering expressions), shape and texture
modifications, and style transfers.

Head avatar editing with different edit scales. In Fig. 5, we demonstrate the effectiveness of IESD
with different ωe values, highlighting its ability to control editing influence on the reference identity.
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Reference Avatar ωe = 0.2 ωe = 0.4 ωe = 0.6 ωe = 0.8 ωe = 1.0

Saul Goodman turn him into a clown

Figure 5: Impact of the edit scale ωe in IESD. It balances the preservation of the initial appearance
and the extent of the desired editing, making the editing process more controllable and flexible.

DreamFusion* [73] Latent-NeRF [43] 3DFuse [65] Fantasia3D* [74] DreamFace† [83] HeadSculpt (Ours)

a DSLR portrait of Salvador Dalí

a head of Stormtrooper

a DSLR portrait of a female soldier, wearing a helmet

a DSLR portrait of a young black lady with short hair, wearing a headphone

Figure 6: Comparison with existing text-to-3D methods. Unlike other methods that struggle or fail
to generate reasonable results, our approach consistently achieves high-quality geometry and texture,
yielding superior results. *Non-official implementation. † Generated from the online website demo.

Comparison with existing methods on generation results. We provide qualitative comparisons
with existing methods in Fig. 6. We employ the same FLAME model for Latent-NeRF [43] to
compute their sketch-guided loss and for Fantasia3D [74] as the initial geometry. The following
observations can be made: (1) All baselines tend to be more unstable during training than ours, often
resulting in diverged training processes; (2) Latent-NeRF occasionally produces plausible results due
to its use of the shape prior, but its textures are inferior to ours since optimization occurs solely in
the latent space; (3) Despite 3DFuse’s depth control to mitigate the Janus problem, it still struggles
to generate 3D consistent head avatars; (4) While Fantasia3D can generate a mesh-based 3D avatar,
its geometry is heavily distorted, as its disentangled geometry optimization might be insufficient for
highly detailed head avatars; (5) Although DreamFace generates realistic human face textures, it falls
short in generating (i) complete heads, (ii) intricate geometry, (iii) non-human-like appearance, and
(iv) composite accessories. In comparison, our method consistently yields superior results in both
geometry and texture with much better consistency for the given prompt. More comparisons can be
found in the supplementary material.
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Generation
Dream
Fusion

Latent-
NeRF

3DFuse Fantasia3D Ours

CLIP-R [52] 95.83 87.50 70.83 62.50 100.00
CLIP-S [24] 26.06 26.30 23.41 23.26 29.52

Editing B3 B4 B5 Ours

CLIP-DS [18] 16.62 8.76 14.03 16.84

Table 1: Objective evaluation with CLIP-based met-
rics. All numbers are calculated with CLIP-L/14.

HeadSculpt (Ours) w/o Landmark Ctrl HeadSculpt (Ours) w/o Textual Inversion

a head of Woody in the Toy Story a head of Walter White, wearing a bowler hat

a head of Bumblebee in Transformers a head of Mario in Mario Franchise

Figure 8: Analysis of prior-driven score distillation.

∗Sun Wukong ∗Freddy Krueger

∗Japanese Geisha remove his nose

Figure 9: Failure cases.

4.2 Quantitative evaluations

User studies. We conducted user studies comparing with four baselines [73, 74, 65, 43]. 42 volunteers
ranked them from 1 (worst) to 5 (best) individually based on three dimensions: (1) consistency with
the text, (2) texture quality, and (3) geometry quality. The results, shown in Fig. 7, indicate that our
method achieved the highest rank in all three aspects by large margins.

CLIP-based metrics. Following DreamFusion [54], (1) We calculate the CLIP R-Precision (CLIP-
R) [52] and CLIP-Score (CLIP-S) [24] metrics, which evaluate the correlation between the generated
images and the input texts, for all methods using 30 text prompts. As indicated in Tab. 1, our
approach significantly outperforms the competing methods according to both metrics. This outcome
provides additional evidence for the subjective superiority observed in the user studies and qualitative
results. (2) We employ the CLIP Directional Similarity (CLIP-DS) [5, 18], to evaluate the editing
performance. This metric measures the alignment between changes in text captions and corresponding
image modifications. Specifically, we encode a pair of images (the original and edited 3D models
rendered from a specific viewpoint) along with a pair of text prompts describing the original and edited
subjects, e.g., “a DSLR portrait of Saul Goodman” and “a DSLR portrait of Saul Goodman dressed
like a clown”. We compare our approach against B3, B4, and B5 by evaluating 10 edited examples.
The results, presented in Tab. 1, highlight the superiority of our editing framework according to this
metric, indicating improved editing fidelity and identity preservation compared to alternatives.

4.3 Further analysis

Effectiveness of prior-driven score distillation. In Fig. 8, we conduct ablation studies to examine the
impact of the proposed landmark control and textual inversion priors in our method. We demonstrate
this on the coarse stage because the refinement and editing results heavily depend on this stage.
The findings show that landmark control is essential for generating spatially consistent head avatars.
Without it, the optimized 3D avatar faces challenges in maintaining consistent facial views, particularly
for non-human-like characters. Moreover, textual inversion is shown to be another vital component
in mitigating the Janus problem, specifically for the back view, as landmarks cannot exert control
on the rear view. Overall, the combination of both components enables HeadSculpt to produce
view-consistent avatars with high-quality geometry.
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B1: One-stage B2: Coarse + Coarse B3: Coarse + Fine B4: Naive IP2P B5: Ours w/o ωe HeadSculpt (Ours)

Modified description: a DSLR portrait of +[older] Saul Goodman Instruction: make him older

Modified description: a DSLR portrait skull of Vincent van Gogh Instruction: turn his face into a skull

Figure 10: Analysis of identity-aware editing score distillation.

Effectiveness of IESD. In Fig. 10, we present two common biased editing scenarios produced by the
baseline methods: insufficient editing and loss of identity. With Stable Diffusion, specific terms like
“Saul Goodman” and “skull” exert a more substantial influence on the text embeddings compared
to other terms, such as “older” and “Vincent van Gogh”. B1, B2, and B3, all based on vanilla
Stable Diffusion, inherit such bias in their generated 3D avatars. Although B4 does not show such
bias, it faces two other issues: (1) the Janus problem reemerges due to incompatibility between
vanilla InstructPix2Pix and the proposed prior-driven score distillation; (2) it struggles to maintain
facial identity during editing based solely on instructions, lacking a well-defined anchor point. In
contrast, B5 employs ControlNet-based InstructPix2Pix [84] with the proposed prior score distillation,
resulting in more view-consistent editing. Additionally, our IESD further uses the proposed edit scale
to merge two predicted scores, leading to better identity preservation and more effective editing. This
approach allows our method to overcome the limitations faced by the alternative solutions, producing
high-quality 3D avatars with improved fine-grained editing results.

Limitations and failure cases. While setting a new state-of-the-art, we acknowledge HeadSculpt
has limitations, as the failure cases in Fig. 9 demonstrate: (1) non-deformable results hinder further
extensions and applications in audio or video-driven problems; (2) generated textures are highly
saturated and less realistic, especially for characters with highly detailed appearances (e.g., Freddy
Krueger); (3) some inherited biases from Stable Diffusion [69] still remain, such as inaccurate
and stereotypical appearances of Asian characters (e.g., Sun Wukong and Japanese Geisha); and
(4) limitations inherited from InstructPix2Pix [5], such as the inability to perform large spatial
manipulations (e.g., remove his nose).

5 Conclusions

We have introduced HeadSculpt, a novel pipeline for generating high-resolution 3D human avatars
and performing identity-aware editing tasks through text. We proposed to utilize a prior-driven score
distillation that combines a landmark-based ControlNet and view-dependent textual inversion to
address the Janus problem. We also introduced identity-aware editing score distillation that preserves
both the original identity information and the editing instruction. Extensive evaluations demonstrated
that our HeadSculpt produces high-fidelity results under various scenarios, outperforming state-of-
the-art methods significantly.

Societal impact. The advancements in geometry and texture generation for human head avatars
could be deployed in many AR/VR use cases but also raises concerns about their potential malicious
use. We encourage responsible research and application, fostering open and transparent practices.

Acknowledgment. This work is partially supported by Hong Kong Research Grant Council - Early
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Table 2: Hyper-parameters of HeadSculpt.

Camera setting

θ range (20, 110)

Radius range (1.0, 1.5)

FoV range (30, 50)

Render setting

Resolution for coarse (64, 64)

Resolution for fine (512, 512)

Max num steps sampled per ray 1024

Iter interval to update extra status 16

Diffusion setting

Guidance scale 100

t range (0.02, 0.98)

ω(t)
√
αt(1− αt)

Training setting

#Iterations for coarse 70k

#Iterations for fine 50k

Batch size 4

LR of grid encoder 1e-3

LR of NeRF MLP 1e-3

LR of si and ∆vi in DMTET 1e-2

LR scheduler constant

Warmup iterations 20k

Optimizer Adam (0.9, 0.99)

Weight decay 0

Precision fp16

Hardware
GPU 1 × Tesla V100 (32GB)

Training duration 1h (coarse) + 1h (fine)

A Implementation details

A.1 Details about 3D scene models

In the coarse stage, we make use of the grid frequency encoder γ(·) from the publicly available Stable
DreamFusion [73]. This encoder maps the input x ∈ R

3 to a higher-frequency dimension, yielding
γ(x) ∈ R

32. The MLP within our NeRF model consists of three layers with dimensions [32, 64, 64,
3+1+3]. Here, the output channels ‘3’, ‘1’, and ‘3’ represent the predicted normals, density value, and
RGB colors, respectively. In the fine stage, we directly optimize the signed distance value si ∈ R,
along with a position offset ∆vi ∈ R

3 for each vertex vi. We found that fitting si and vi into MLP,
as done by Fantasia3D [74], often leads to diverged training.

To ensure easy reproducibility, we have included all the hyperparameters used in our experiments in
Tab 2. The other hyper-parameters are set to be the default of Stable-DreamFusion [73].

A.2 Details about textual inversion

In the main paper, we discussed the collection of a tiny dataset consisting of 34 images depicting
the back view of heads. This dataset was used to train a special token, <back-view>, to address the
ambiguity associated with the back view of landmarks. The images in the dataset were selected to
encompass a diverse range of gender, color, age, and other characteristics. A few samples from the
dataset are shown in Fig. 11. While our simple selection strategy has proven effective in our specific
case, we believe that a more refined collection process could further enhance the controllability
of the learned <back-view> token. We use the default training recipe provided by HuggingFace
Diffusers 2, which took us 1 hour on a single Tesla V100 GPU.

2https://github.com/huggingface/diffusers/blob/main/examples/textual_inversion
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Figure 11: Samples of the tiny dataset collected for learning <back-view> token.

B Further analysis

B.1 Effectiveness of textual inversion on 2D generation

To show the effectiveness of the learned <back-view> token, we conduct an analysis of its control
capabilities in the context of 2D generation results. Specifically, we compare two generation results
using Stable Diffusion [69], with both experiments sharing the same random seed. One experiment
has the plain text prompt appended with the plain phrase “back view,” while the other experiment
utilizes the learned special token <back-view> in the prompt. We present a selection of randomly
generated results in Fig. 12. The observations indicate that the <back-view> token effectively
influences the pose of the generated heads towards the back, resulting in a distinct appearance.
Remarkably, the <back-view> token demonstrates a notable generalization ability, as evidenced by
the Batman case, despite not having been trained specifically on back views of Batman in the textual
inversion process.

B.2 Inherent bias in 2D diffusion models

In our main paper, we discussed the motivation behind our proposed identity-aware editing score
distillation (IESD), which can be attributed to two key factors. Firstly, the limitations of prompt-
based editing [54, 39] are due to the inherent bias present in Stable Diffusion (SD). Secondly, while
InstructPix2Pix (IP2P) [5] offers a solution by employing instruction-based editing to mitigate bias, it
often results in identity loss. To further illustrate this phenomenon, we showcase the biased 2D outputs
of SD and ControlNet-based IP2P in Fig. 13. Modified descriptions and instructions are utilized
in these respective methods to facilitate the editing process and achieve the desired results. The
results provide clear evidence of the following: (1) SD generates biased outcomes, with a tendency to
underweight the “older” aspect and overweight the “skull” aspect in the modified description; (2)
IP2P demonstrates the ability to edit the image successfully, but it faces challenges in preserving the
identity of the avatar.

The aforementioned inherent biases are amplified in the domain of 3D generation (refer to Fig. 10
in the main paper) due to the optimization process guided by SDS loss, which tends to prioritize
view consistency at the expense of sacrificing prominent features. To address this issue, our proposed
IESD approach combines two types of scores: one for editing and the other for identity preservation.
This allows us to strike a balance between preserving the initial appearance and achieving the desired
editing outcome.
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w/ “back view” w/ <back-view> w/ “back view” w/ <back-view> w/ “back view” w/ <back-view>

seed: 413 seed: 16772 seed: 40805

a DSLR portrait of Obama

seed: 50682 seed: 93440 seed: 96458

a DSLR portrait of Hillary Clinton

seed: 2367 seed: 19656 seed: 62156

a DSLR portrait of a boy with facial painting

seed: 53236 seed: 62424 seed: 72649

a DSLR portrait of Batman

Figure 12: Analysis of the learned <back-view> on 2D image generation. For each pair of images,
we present two 2D images generated with the same random seed, where the left image is conditioned
on the plain text "back view" and the right image is conditioned on the <back-view> token.

Landmark Map Stable Diffusion Reference Image InstructPix2Pix

seed: 19056 seed: 72854 seed: 50233 seed: 64136

Modified description: a DSLR portrait of +[older] Saul Goodman Instruction: make him older

seed: 5427 seed: 91282 seed: 60104 seed: 88141

Modified description: a DSLR portrait skull of Vincent van Gogh Instruction: turn his face into a skull

Figure 13: Analysis of the inherent bias in 2D diffusion models. For each case, we display
several 2D outputs of SD and IP2P, utilizing modified descriptions and instructions, respectively, with
reference images from our coarse-stage NeRF model to facilitate the editing process.
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DreamFusion* [73] Latent-NeRF [43] 3DFuse [65] Fantasia3D* [74] HeadSculpt (Ours)

a DSLR portrait of Batman

a DSLR portrait of Black Panther in Marvel

a DSLR portrait of Two-face in DC

a DSLR portrait of Doctor Strange

a head of Terracotta Army

Figure 14: Additional comparisons with existing methods on generation (Part 1). *Non-official.

C Additional qualitative comparisons

C.1 Comparison with existing methods on generation results

We provide more qualitative comparisons with four baseline methods [73, 43, 65, 74] in Fig. 14 and
Fig. 15. These results serve to reinforce the claims made in Sec. 4.1 of the main paper, providing
further evidence of the superior performance of our HeadSculpt in generating high-fidelity head
avatars. These results showcase the ability of our method to capture intricate details, realistic textures,
and overall visual quality, solidifying its position as a state-of-the-art solution in this task.

Notably, to provide a more immersive and comprehensive understanding of our results, we include
multiple outcomes of our HeadSculpt in the form of 360◦ rotating videos. These videos can be
accessed on https://brandonhan.uk/HeadSculpt, enabling viewers to observe the generated
avatars from various angles and perspectives.
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DreamFusion* [73] Latent-NeRF [43] 3DFuse [65] Fantasia3D* [74] HeadSculpt (Ours)

a head of Simpson in the Simpsons

a head of Naruto Uzumaki

a DSLR portrait of Napoleon Bonaparte

a DSLR portrait of Leo Tolstoy

a DSLR portrait of Audrey Hepburn

a DSLR portrait of Obama with a baseball cap

a DSLR portrait of Taylor Swift

Figure 15: Additional comparisons with existing methods on generation (Part 2). *Non-official.
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DreamFusion* [73] Latent-NeRF [43] Fantasia3D* [74] HeadSculpt (Ours)

a DSLR portrait of Saul Goodman

a DSLR portrait of +[older] Saul Goodman make him older

a DSLR portrait of Vincent van Gogh

a DSLR portrait skull of Vincent van Gogh turn his face into a skull

Figure 16: Comparisons with existing methods on editing.*Non-official.

C.2 Comparison with existing methods on editing results

Since the absence of alternative methods specifically designed for editing, we conduct additional
evaluations of the editing results generated by existing methods by modifying the text prompts.
Fig. 16 illustrates that bias in editing is a pervasive issue encountered by all the baselines. This
bias stems from the shared SDS guidance function, which is based on a diffusion prior, despite the
variations in representation and optimization methods employed by these approaches. Instead, IESD
enables the guidance function to incorporate information from two complementary sources: (1) the
original image gradient, which preserves identity, and (2) the editing gradient, which captures desired
modifications. By considering both terms, our approach grants more explicit and direct control over
the editing process compared to the conventional guidance derived solely from the input.

21



Latent-NeRF [43] Fantasia3D* [74] HeadSculpt (Ours)

a head of ant-man in Marvel

Figure 17: Results across random seeds (0, 1, 2).*Non-official.

C.3 Comparison with existing methods on stability

We observe that all baselines tend to have diverged training processes as they do not integrate 3D
prior to the diffusion model. Taking two shape-guided prior methods (i.e., Latent-NeRF [43] and
Fantasia3D [10]) as examples, we compare their generation results and ours across different random
seeds. We conduct comparisons under the same default hyper-parameters and present the results in
Fig. 17. We notice that prior methods need to try several runs to get the best generation while ours
can achieve consistent results among different runs. Our method is thus featured with stable training,
without the need for cherry-picking over many runs.
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