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Topic 7: Strings and Biological Data

In some applications we store, search and 
analyze long sequences of discrete 
characters, which we call “strings”
Typical Applications are Text Retrieval, 
Computational Biology, Signal Processing, etc.
Queries on string sequences often allow 
errors in matches. Therefore an interesting 
and challenging subject is approximate string 
matching 
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Application 1: Information Retrieval
A typical application of information retrieval is text 
searching; given a large collection of documents and 
some text keywords we want to find the documents 
which contain these keywords.
In many cases search should allow errors. For 
example text collections digitized by OCR contain a 
large percentage of errors (7-16%). In addition, 
there could also be typing or spelling errors in 
documents.
Therefore there are two research directions in text 
retrieval: exact search and approximate search. 
Naturally, approximate search is more difficult and 
expensive than exact search.
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Application 2: Computational Biology
The problem is similar in computational biology; here 
we have a long DNA sequence and we want to find 
subsequences in it that match approximately a query 
sequence.
DNA and protein sequences can be seen as long texts 
over specific alphabets (e.g., {A,C,G,T}). Those 
sequences represent the genetic code of living 
beings.
The similarity of two DNA substrings from different 
organisms may correspond to the same functional or 
physical relationship between these organisms.
Exact searching here is of little use, since the query 
patterns rarely match the text exactly; the correct 
results may have small differences due to mutations 
and evolutionary alternations.
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Application 3: Signal Processing
In Speech Recognition the general problem is 
to determine a textual message from a 
transmitted audio signal. The signal could be 
compressed, or some words may not be 
pronounced well, so approximate matching is 
used.
Another related problem is error correction. 
Compression introduces errors in the 
transmitted signals, so approximate search is 
needed for correcting these errors.
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Similarity Metrics

The similarity metric between two strings is 
typically dependent on the application and 
does not allow for general-purpose solutions.
The most widely accepted similarity metric is 
the “edit distance”. The edit distance 
between two strings is defined by the number 
of primitive operations (insert, delete, 
replace) necessary to transform one string to 
the other
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What is the edit distance between 
“survey” and “surgery”?

Example of edit distance

s u r v e y

s u r g e y
replace (+1)

s u r g e r y
insert (+1)

Edit distance = 2
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In the general version of edit distance, different 
operations may have different costs, or the costs 
depend on the characters involved.
For example replacement could be more 
expensive than insertion, or replacing “a” with 
“o” could be less expensive than replacing “a” 
with “k”.
The general edit distance is powerful enough for 
a wide range of applications therefore most 
query processing algorithms consider it as a 
standard.
The general edit distance does not satisfy the 
triangular inequality and thus it is not a metric.

Edit Distance (cont’d)
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Example of generic edit distance: 
String Alignment

In biological string matching 
the similarity metric is often 
called “string alignment”

Let S and T be strings. An 
alignment maps S and T
into string S' and T' by 
inserting spaces into S and 
T, such that |S'|=|T'|.

S=acgcaggtc
T=agcgtc

acgcaggtc
|||||||||
ag_cg__tc

acgcaggtc
|||||||||
a_gc__gtc

Example:

optimal alignment=distance
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Other Similarity Metrics
Edit distance with transpositions (e.g., ab→ba)
LCS distance (allows only insertions/deletions)
Hamming distance (allows only substitutions – only 
when |s1|=|s2|)
Episode distance (allows only insertions – not 
symmetric)
Reversals (allows reversing substribgs)
Block distance (allows rearrangement and 
permutation of substrings)
q-gram distance (based on finding common 
substrings of fixed length q).

Dr. N. Mamoulis Advanced Database Technologies 10

Definition of the basic approximate 
search problem

Given a query substring q and a long 
sequence t, find all substrings in t which are 
similar to q given a distance metric.
Two versions of the problem:

1. We are given a similarity threshold k and ask for 
all substrings within this distance from q

2. We are given a number k and we ask for the k-
Nearest Neighbors

In a more general problem version, the long 
sequences t could be more than one.
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A dynamic progamming algorithm for 
computing the edit distance

Problem: find the edit distance between 
strings x and y.
Create a (|x|+1)×(|y|+1) matrix C, where Ci,j
represents the minimum number of 
operations to match x1..i with y1..j. The matrix 
is constructed as follows.

Ci,0 = i
C0,j = j
Ci,j = 

Ci-1,Cj-1 if xi=yi, 
1+min(Ci-1,Cj, Ci,Cj-1, Ci-1,Cj-1), else. 
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How do we perform substring 
search?

The same dynamic programming algorithm 
can be used to find the most similar 
substrings of a query sting q.
The difference is that we set C0,j=0 for all j, 
since any text position could be the potential 
start of a match.
If the similarity distance bound is k, we report 
all positions, where Cm ≤k (m is the last row –
m = |q|).
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Example: q=survey, t=surgery, k=2
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Comments on the dynamic 
programming algorithm

Observe that essentially it is the same algorithm used 
for Dynamic Time Warping.
It is very flexible, since it can be used to compute 
most distance metrics under the “generic edit 
distance” definition. It also requires only O(|q|) space 
(only the previous column is necessary to compute 
the next one). Thus a single scan of t suffices.
However, it is not efficient. The worst-case 
complexity is O(|q||t|).
Several variations have been proposed to reduce its 
complexity.
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Using diagonals of the matrix to 
compute the edit distance faster

Improved versions of the basic dynamic 
programming algorithm are based on the 
observation that the diagonals of the matrix 
are monotonically increasing.
These are called “diagonal transition” 
algorithms. The dynamic programming matrix 
is computed diagonal-wise instead of column-
wise.
The key to fast computation is to find in 
constant time where each stroke (i.e., 
diagonal sequence with the same error)
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Example: q=survey, t=surgery, k=2

0

1

2

0

0

1

2

0

1

0

1

2

0

1

1

0

1

2

0

1

2

1

1

2

0

1

2

2

2

1

2

0

1

2

2

2

2

0

1

2

2

Strokes with error e≤k, ending at |q|th row indicate results 
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Comments on the diagonal approach
The complexity is O(|t|k), since there 
are O(|t|) diagonals and at which we 
compute at most k strokes.
We can use the ending of previous 
strokes to detect the beginning of 
new ones
The hard part is to find the length of 
the next stroke in constant time.
This is equivalent to finding the 
longest prefix of the remainder of q 
that matches t. It can be computed 
by building a suffix tree for tq.
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Comments on the diagonal approach 
(cont’d)

Several improvements on this method 
have been proposed.
However still the algorithm has a 
relatively high complexity and needs to 
scan the whole string t.
Thus the question is whether we can 
avoid scanning the whole database for 
each query.
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Filtering algorithms for approximate 
string matching

They do not provide solutions, but aim to 
reduce the search effort.
They are based on the idea that it is most 
probable for a text area not to match a query 
rather than to match it.
They work in two steps. 
First a cheap heuristic is used to determine 
whether an area of the text t could match 
with the query q.
If not search is abandoned for this area, 
otherwise an expensive search algorithm (i.e., 
dynamic programming) is applied
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Dynamic Filtering
Scans the text t linearly and at each position 
finds the longest substring that is included in 
q.
Thus the text is transformed to a sequence of 
substrings in q, separated by non-matching 
characters. Each time an area of k+1
substrings is examined.
If this area is shorter than |q|-k, search is 
abandoned for it, otherwise dynamic 
programming is applied
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Dynamic Filtering Example (k=2)

q: agatacat

t: gattacgggaaggtttac

Longer than |q|-k : 
we have to examine it Shorter than |q|-k : 

we do not have to examine it
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A similar method is based on q-grams

All substrings (q-grams) of a specific 
length m in q are computed.
For each area of the text the number of 
q-grams that occur there are computed.
If this number is smaller than (|q|-m+1-
km) the text area is pruned, otherwise 
dynamic programming is applied.
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A sampling method
A sample of non-overlaping substrings of q is 
computed so that they have a fixed gap 
between them.
If a text area does not contain any of the 
samples, it is pruned
Otherwise the neighborhood around the found 
sample is verified.

q: agatacat
t: gattacgggaagatttac

samples sample found
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Sub-linear algorithms
In order to avoid applying the above methods 
at every position of the text, the text is split to 
blocks of (|q|-k)/2 size and substring checking 
is applied only at the beginning of each block.
Blocks should be entirely contained in results, 
so if a block does not qualify, we immediately 
move to the next one.

q: agatacatacagatat

t: gattacgggaaggtttac
discarded
block

move to next
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Comments on the methods discussed 
so far

They mainly focus on improving worst-
case theoretical bounds
In general, they require a linear scan of 
the database, so they are not attractive 
for very large problems
Recently, there are efforts from DB 
researchers to make these methods 
more scalable
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An adaptation of the suffix tree for 
secondary memory [Hunt et al., 2001]

Suffix trees are main memory structures 
used for exact substring search.
Algorithms for performing approximate 
search on suffix trees are also available.
However, there is no version of the 
suffix tree for secondary memory.
A recent paper tries to solve this hard 
problem.
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Example of a suffix trie

1 2 3 4 5 6 7 8
S=A C A T C T T A

String

Suffix trie
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Example of a suffix tree

1 2 3 4 5 6 7 8
S=A C A T C T T A

String

Suffix tree

The suffix tree is 
a suffix trie, 
where unary 
paths are 
compressed

Numbers 
showing the 
substring 
indexed by a 
node are 
added

$

Special 
termination 
characters are 
added

Suffix links connect 
node indexing aw to 
node indexing w Dr. N. Mamoulis Advanced Database Technologies 30

Suffix links
Suffix links were introduced to improve the 
construction cost of the suffix tree to O(n).
However they transform the tree to a graph, 
that cannot be managed in memory unless 
small. If we rely on the virtual memory of the 
machine a lot of swapping takes place and the 
construction algorithm is very slow.
Biological sequences are very long (with 
millions or trillions of characters), thus we 
cannot use the suffix-link algorithm to 
construct them.
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A new method for Suffix tree 
construction is proposed

Suffix links are abandoned.
The algorithm scans the string multiple times 
in order to construct the suffix tree for a 
subrange of suffixes in each pass.
Abandoning suffix links means that the worst-
case construction cost becomes O(n2), but 
due to the pseudo-random nature of DNA, the 
average behavior is O(nlogn)
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Description of the algorithm
First the number of partitions is 
determined. If the expected size of the 
full suffix tree is S and the available 
memory is M, the number of partitions 
is given by S/M.
Each partition corresponds to a set of 
suffixes. For each partition we build a 
separate suffix tree. These suffix trees 
are then connected via a common root.
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Description of the algorithm (cont’d)
The second step is to assign suffixes to 
partitions
The partition for a suffix is determined 
upon its prefix. For example, suffix 
ATCTTA is indexed in the subtree
following branches AT. Notice that these 
subtrees are independent.
Thus the suffixes in the same group 
have the same prefix.
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Description of the algorithm (cont’d)
There are two ways to 
determine the partitions.

We scan the string once and 
count the occurencies of every 
3-character substring. Then split 
them in groups with equal 
cardinality
We just partition 
lexicographically all 3-character 
strings, since we expect them to 
appear with equal probability in 
DNA

AAA 32
AAC 42
AAG 23
AAT 76
ACA 43
ACC 65
.
.
.
TTT 78

3500

P1

P2
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Description of the algorithm (cont’d)

Common root

….

Suffix tree 
for P1 Suffix tree 

for P2

Suffix tree 
for PK
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Description of the algorithm (cont’d)

For each partition j
Initialize the suffix tree that corresponds to 
this partition. Then scan the string. 
For each position i of the string, if the suffix 
si is in partition j, insert the suffix to the 
subtree which corresponds to this partition

Thus one suffix-tree is created at each 
pass and these are stored independently 
on disk
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Example of Suffix tree creation
Create a suffix tree for AGA
The insertion order of suffixes is AGA$, GA$,A$

root

GA

$

AGA

$
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Example of Suffix tree creation
Create a suffix tree for AGA
The insertion order of suffixes is AGA$, GA$,A$

root

GA

$

GA

$

A

$
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Overview of the partitioned suffix tree
The partitioned suffix tree is constructed for long 
sequences at no additional computational cost, 
despite the abandonment of suffix links.
The experiments show that the construction time is 
linear to the sequence length.
However the tree is tested only for exact matches, 
where only one path is traversed for each query.
On the other hand, approximate search needs to 
combine information from multiple paths and it is 
questionable whether this method can perform well.

Dr. N. Mamoulis Advanced Database Technologies 40

A Filtering Algorithm for a Database 
of Long Strings

A new filtering algorithm for large datasets 
(that do not fit in memory) was recently 
proposed.
The database S may contain many, potentially 
long strings S = {s1,s2,…,sd} 
The algorithm transforms the substrings in 
this database to high dimensional points and 
indexes them.
A query is then applied on the indexes using a 
lower bound of the edit distance.
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Idea: A Transformation and a Lower 
Bound for the Edit Distance

Given an alphabet Σ = {α1,α2,...,αd}, we can 
transform a string to a d-dimensional point, 
called frequency vector.
Example m=4, Σ = {A,C,G,T}. String 
s=TACTTAG is transformed to f(s)=[2,1,1,3].
The transformation maps strings of the same 
length n to points on the (n-1) dimensional 
plane

TACTTAG

[2,1,1,3]

sum(f(si))=n
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Relation between edit distance and 
frequency vector

Edit operations (insert, delete, replace) 
has the following effect on the 
frequency vector:

A scalar increases (insert)
A scalar decreases (delete)
A scalar increases and another decreases 
(replace)

Example: TACTTAG TCCTTAG
[2,1,1,3] [1,2,1,3]
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Neighborhood and the frequency 
distance

Two frequency vectors are called neighbors, if 
one can be transformed to the other by a 
single edit operation (e.g., [2,1,1,3] and 
[1,2,1,3] are neighbors).
The frequency distance FD1 between two 
vectors is defined by the minimum number of 
steps in order to go from one to the other by 
moving to a neighbor point at a time.
The frequency distance is a lower bound of 
the edit distance between the corresponding 
strings.
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Computing the frequency distance
Let u, v be two d-dimensional vectors.
Let posDist = 0, negDist = 0
For each dimension i

If ui>vi posDist += ui-vi;
Else negDist += vi-ui;

Return max(posDist, negDist)
Assume w.l.o.g. that posDist>negDist. The 
rationale is that we can combine each deletion 
in negDist with an insertion in posDist, and 
the map the remainder of posDist as an 
insertion.
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Computing the frequency distance 
(example)

s1 = TACTTAG

s2 = TTAGAG

u = [2,1,1,3]

v = [2,0,2,2]

posDist = sum([0,0,1,0]) = 1
negDist = sum([0,1,0,1]) = 2

FD1(u,v) = 2

ED(s1, s2) = 4
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Use of the frequency distance
Suppose we want to find all substrings s 
in t which match query q within edit 
distance k. If the frequency distance 
FD1(f(s),f(q)) is larger than k we can 
prune s because the edit distance is also 
larger than k.
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Using Wavelet Transforms to enrich 
the frequency vector

For biological applications, where Σ = 
{A,C,G,T}, a 4-dimensional vector is too 
small to capture in detail the contents of 
the strings.
Thus we need to capture also the local 
frequencies of the characters
This can be done by applying a wavelet
transformation to the string.
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1st/2nd Wavelet Coefficients
The idea is to break the string s in two parts 
s1, s2 of equal length and compute two 
vectors;
The first vector is f(s).
The second f’(s) is computed by array 
subtraction f(s1)-f(s2). Thus f’(s) gives the 
difference between the frequencies in the left 
substring and the frequences in the right 
substring.
Then we approximate the string by a new 
feature vector ψ(s) = [f(s),f’(s)].
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Example
s = TCACTTAG, f(s) = [2,2,1,3]
s1 = TCAC, s2= TTAG

f(s1) = [1,2,0,1], f(s2) = [1,0,1,2]

f(s’) = f(s1) – f(s2) = [0,2,-1,-1]

ψ(s) = [f(s), f(s’)] = [[2,2,1,3],[0,2,-1,-1]]
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New Lower Bound
The new edit distance lower bound 
between two strings x and y is then 
defined by

FD(x,y) = 
max{FD1(f(x),f(y)),FD2(ψ(x),ψ(y))}
FD1 is the previously defined frequency 
distance between frequency vectors
FD2 is a more complex distance defined on 
the wavelet trasforms (details in the 
paper).
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Generalizing the Idea
We can generalize the idea to derive kth-
level wavelet coefficients ψk(s), longer 
vectors and higher accuracy.
ψk(s) divides the string into |s|/2k 

substrings and gives the Wavelet 
Coefficient for each substring, 
recursively.
larger k provides more information, but 
is more expensive to evaluate.
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Example for k=3

s = TCACTTAG
ψ(s) = ψ3(s) = [[2,2,1,3],[0,2,-1,-1]]

TCAC TTAG

[[1,2,0,1],[-1,0,0,1]]ψ2(s) [[1,0,1,2],[-1,0,-1,2]]

ψ1(s)

TC AC TT AG

[[0,1,0,1],[0,-1,0,1]] …. …. [[1,0,1,0],[1,0,-1,0]]
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The Indexing Method
Assume that we want to index a long sequence S.
Let 2a, be the minimum length of a query (a power of 
2).
We slide a window of length 2a to each position of S 
and compute the first two wavelet coefficients to a 
vector v.
Thus each position is indexed by a 2d-dimensional 
point.
The points are then indexed in an R-tree-like index.

[2,1,2,2,0,2,-2,-1]
[2,1,0,2,0,1,-2,-1]

[1,1,2,22,-2,-2,-1]
[0,1,2,3,-1,2,0,-1]

slide

MBR
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The Indexing Method (cont’d)
We do the same for all window sizes up 
to a maximum length 2b. 
Therefore for each long sequence S a 
number of MBR-lists for various lengths 
are created.
If we have multiple long sequence, a 
matrix-like index structure is created, 
where each row corresponds to a 
resolution level and each column to an 
indexed sequence.
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The Indexing Method (example)
S1

T1,1

T2,1

Tl,1

2a

2a+1

2a+l-1

S2

T1,2

T2,2

Tl,2

… …

.

.

.

Sm

T1,m

T2,m

Tl,m

…
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Query Processing
The query is chopped to as large pieces 
as possible in order to search the 
lowest-possible row of the index.
Example: q=AGAGTATTTACCTG is 
chopped to AGAGTATT, TACC, and TG
The pieces are used to search the 
corresponding index raw.
The qualifying results are merged to get 
the candidate sequences and then 
evaluated using dynamic programming. 
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Comments
This index can also be used to evaluate 
nearest-neighbor queries
It performs well experimentally.
However:

It relies on the quality of the MBRs in the 
index.
It relies on the effectiveness of the wavelet 
coefficients to approximate the structure
It has a high preprocessing cost (i.e., 
building the index is costly).
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Summary
There are many methods proposed for approximate 
string matching. Most are based on the generic edit 
distance function.
Some improve the speed of the dynamic 
programming method.
Some extend exact string search methods (like suffix 
trees) for approximate search
Some apply filtering techniques that avoid expensive 
comparisons in large parts of the queried sequence.
Some apply filtering after transforming the data to an 
approximate space appropriate for conventional 
search techniques.
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Summary (cont’d)
Although there have been many efforts for 
efficient approximate string matching, there is 
still room for improvement.
This is because of the complex distance 
functions which make it hard to use traditional 
search techniques.
Biologist are still not (and will never be!) 
satisfied by computational techniques, since 
they expect them to be general enough to 
solve every special search problem they 
encounter.
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