
1

Dr. N. Mamoulis Advanced Database Technologies 1

Topic 7: Strings and Biological Data

In some applications we store, search and
analyze long sequences of discrete
characters, which we call “strings”
Typical Applications are Text Retrieval,
Computational Biology, Signal Processing, etc.
Queries on string sequences often allow
errors in matches. Therefore an interesting
and challenging subject is approximate string
matching

Dr. N. Mamoulis Advanced Database Technologies 2

Application 1: Information Retrieval
A typical application of information retrieval is text
searching; given a large collection of documents and
some text keywords we want to find the documents
which contain these keywords.
In many cases search should allow errors. For
example text collections digitized by OCR contain a
large percentage of errors (7-16%). In addition,
there could also be typing or spelling errors in
documents.
Therefore there are two research directions in text
retrieval: exact search and approximate search.
Naturally, approximate search is more difficult and
expensive than exact search.

Dr. N. Mamoulis Advanced Database Technologies 3

Application 2: Computational Biology
The problem is similar in computational biology; here
we have a long DNA sequence and we want to find
subsequences in it that match approximately a query
sequence.
DNA and protein sequences can be seen as long texts
over specific alphabets (e.g., {A,C,G,T}). Those
sequences represent the genetic code of living
beings.
The similarity of two DNA substrings from different
organisms may correspond to the same functional or
physical relationship between these organisms.
Exact searching here is of little use, since the query
patterns rarely match the text exactly; the correct
results may have small differences due to mutations
and evolutionary alternations.

Dr. N. Mamoulis Advanced Database Technologies 4

Application 3: Signal Processing
In Speech Recognition the general problem is
to determine a textual message from a
transmitted audio signal. The signal could be
compressed, or some words may not be
pronounced well, so approximate matching is
used.
Another related problem is error correction.
Compression introduces errors in the
transmitted signals, so approximate search is
needed for correcting these errors.

Dr. N. Mamoulis Advanced Database Technologies 5

Similarity Metrics

The similarity metric between two strings is
typically dependent on the application and
does not allow for general-purpose solutions.
The most widely accepted similarity metric is
the “edit distance”. The edit distance
between two strings is defined by the number
of primitive operations (insert, delete,
replace) necessary to transform one string to
the other

Dr. N. Mamoulis Advanced Database Technologies 6

What is the edit distance between
“survey” and “surgery”?

Example of edit distance

s u r v e y

s u r g e y
replace (+1)

s u r g e r y
insert (+1)

Edit distance = 2

2

Dr. N. Mamoulis Advanced Database Technologies 7

In the general version of edit distance, different
operations may have different costs, or the costs
depend on the characters involved.
For example replacement could be more
expensive than insertion, or replacing “a” with
“o” could be less expensive than replacing “a”
with “k”.
The general edit distance is powerful enough for
a wide range of applications therefore most
query processing algorithms consider it as a
standard.
The general edit distance does not satisfy the
triangular inequality and thus it is not a metric.

Edit Distance (cont’d)

Dr. N. Mamoulis Advanced Database Technologies 8

Example of generic edit distance:
String Alignment

In biological string matching
the similarity metric is often
called “string alignment”

Let S and T be strings. An
alignment maps S and T
into string S' and T' by
inserting spaces into S and
T, such that |S'|=|T'|.

S=acgcaggtc
T=agcgtc

acgcaggtc
|||||||||
ag_cg__tc

acgcaggtc
|||||||||
a_gc__gtc

Example:

optimal alignment=distance

Dr. N. Mamoulis Advanced Database Technologies 9

Other Similarity Metrics
Edit distance with transpositions (e.g., ab→ba)
LCS distance (allows only insertions/deletions)
Hamming distance (allows only substitutions – only
when |s1|=|s2|)
Episode distance (allows only insertions – not
symmetric)
Reversals (allows reversing substribgs)
Block distance (allows rearrangement and
permutation of substrings)
q-gram distance (based on finding common
substrings of fixed length q).

Dr. N. Mamoulis Advanced Database Technologies 10

Definition of the basic approximate
search problem

Given a query substring q and a long
sequence t, find all substrings in t which are
similar to q given a distance metric.
Two versions of the problem:

1. We are given a similarity threshold k and ask for
all substrings within this distance from q

2. We are given a number k and we ask for the k-
Nearest Neighbors

In a more general problem version, the long
sequences t could be more than one.

Dr. N. Mamoulis Advanced Database Technologies 11

A dynamic progamming algorithm for
computing the edit distance

Problem: find the edit distance between
strings x and y.
Create a (|x|+1)×(|y|+1) matrix C, where Ci,j
represents the minimum number of
operations to match x1..i with y1..j. The matrix
is constructed as follows.

Ci,0 = i
C0,j = j
Ci,j =

Ci-1,Cj-1 if xi=yi,
1+min(Ci-1,Cj, Ci,Cj-1, Ci-1,Cj-1), else.

Dr. N. Mamoulis Advanced Database Technologies 12

y

e

v

r

u

s

yregrus

Example:

0

1

2

3

4

5

6

1

0

1

2

3

4

5

2

1

0

1

2

3

4

3

2

1

0

1

2

3

4

3

2

1

1

2

3

5

4

3

2

2

1

2

6

5

4

3

3

2

2

7

6

5

4

4

3

2

Optimal alignment

3

Dr. N. Mamoulis Advanced Database Technologies 13

How do we perform substring
search?

The same dynamic programming algorithm
can be used to find the most similar
substrings of a query sting q.
The difference is that we set C0,j=0 for all j,
since any text position could be the potential
start of a match.
If the similarity distance bound is k, we report
all positions, where Cm ≤k (m is the last row –
m = |q|).

Dr. N. Mamoulis Advanced Database Technologies 14

y

e

v

r

u

s

yregrus

Example: q=survey, t=surgery, k=2

0

1

2

3

4

5

6

0

0

1

2

3

4

5

0

1

0

1

2

3

4

0

1

1

0

1

2

3

0

1

2

1

1

2

3

0

1

2

2

2

1

2

0

1

2

2

3

2

2

0

1

2

3

3

3

2

Dr. N. Mamoulis Advanced Database Technologies 15

Comments on the dynamic
programming algorithm

Observe that essentially it is the same algorithm used
for Dynamic Time Warping.
It is very flexible, since it can be used to compute
most distance metrics under the “generic edit
distance” definition. It also requires only O(|q|) space
(only the previous column is necessary to compute
the next one). Thus a single scan of t suffices.
However, it is not efficient. The worst-case
complexity is O(|q||t|).
Several variations have been proposed to reduce its
complexity.

Dr. N. Mamoulis Advanced Database Technologies 16

Using diagonals of the matrix to
compute the edit distance faster

Improved versions of the basic dynamic
programming algorithm are based on the
observation that the diagonals of the matrix
are monotonically increasing.
These are called “diagonal transition”
algorithms. The dynamic programming matrix
is computed diagonal-wise instead of column-
wise.
The key to fast computation is to find in
constant time where each stroke (i.e.,
diagonal sequence with the same error)

Dr. N. Mamoulis Advanced Database Technologies 17

y

e

v

r

u

s

yregrus

Example: q=survey, t=surgery, k=2

0

1

2

0

0

1

2

0

1

0

1

2

0

1

1

0

1

2

0

1

2

1

1

2

0

1

2

2

2

1

2

0

1

2

2

2

2

0

1

2

2

Strokes with error e≤k, ending at |q|th row indicate results
Dr. N. Mamoulis Advanced Database Technologies 18

Comments on the diagonal approach
The complexity is O(|t|k), since there
are O(|t|) diagonals and at which we
compute at most k strokes.
We can use the ending of previous
strokes to detect the beginning of
new ones
The hard part is to find the length of
the next stroke in constant time.
This is equivalent to finding the
longest prefix of the remainder of q
that matches t. It can be computed
by building a suffix tree for tq.

11

1

2

4

Dr. N. Mamoulis Advanced Database Technologies 19

Comments on the diagonal approach
(cont’d)

Several improvements on this method
have been proposed.
However still the algorithm has a
relatively high complexity and needs to
scan the whole string t.
Thus the question is whether we can
avoid scanning the whole database for
each query.

Dr. N. Mamoulis Advanced Database Technologies 20

Filtering algorithms for approximate
string matching

They do not provide solutions, but aim to
reduce the search effort.
They are based on the idea that it is most
probable for a text area not to match a query
rather than to match it.
They work in two steps.
First a cheap heuristic is used to determine
whether an area of the text t could match
with the query q.
If not search is abandoned for this area,
otherwise an expensive search algorithm (i.e.,
dynamic programming) is applied

Dr. N. Mamoulis Advanced Database Technologies 21

Dynamic Filtering
Scans the text t linearly and at each position
finds the longest substring that is included in
q.
Thus the text is transformed to a sequence of
substrings in q, separated by non-matching
characters. Each time an area of k+1
substrings is examined.
If this area is shorter than |q|-k, search is
abandoned for it, otherwise dynamic
programming is applied

Dr. N. Mamoulis Advanced Database Technologies 22

Dynamic Filtering Example (k=2)

q: agatacat

t: gattacgggaaggtttac

Longer than |q|-k :
we have to examine it Shorter than |q|-k :

we do not have to examine it

Dr. N. Mamoulis Advanced Database Technologies 23

A similar method is based on q-grams

All substrings (q-grams) of a specific
length m in q are computed.
For each area of the text the number of
q-grams that occur there are computed.
If this number is smaller than (|q|-m+1-
km) the text area is pruned, otherwise
dynamic programming is applied.

Dr. N. Mamoulis Advanced Database Technologies 24

A sampling method
A sample of non-overlaping substrings of q is
computed so that they have a fixed gap
between them.
If a text area does not contain any of the
samples, it is pruned
Otherwise the neighborhood around the found
sample is verified.

q: agatacat
t: gattacgggaagatttac

samples sample found

5

Dr. N. Mamoulis Advanced Database Technologies 25

Sub-linear algorithms
In order to avoid applying the above methods
at every position of the text, the text is split to
blocks of (|q|-k)/2 size and substring checking
is applied only at the beginning of each block.
Blocks should be entirely contained in results,
so if a block does not qualify, we immediately
move to the next one.

q: agatacatacagatat

t: gattacgggaaggtttac
discarded
block

move to next

Dr. N. Mamoulis Advanced Database Technologies 26

Comments on the methods discussed
so far

They mainly focus on improving worst-
case theoretical bounds
In general, they require a linear scan of
the database, so they are not attractive
for very large problems
Recently, there are efforts from DB
researchers to make these methods
more scalable

Dr. N. Mamoulis Advanced Database Technologies 27

An adaptation of the suffix tree for
secondary memory [Hunt et al., 2001]

Suffix trees are main memory structures
used for exact substring search.
Algorithms for performing approximate
search on suffix trees are also available.
However, there is no version of the
suffix tree for secondary memory.
A recent paper tries to solve this hard
problem.

Dr. N. Mamoulis Advanced Database Technologies 28

Example of a suffix trie

1 2 3 4 5 6 7 8
S=A C A T C T T A

String

Suffix trie

Dr. N. Mamoulis Advanced Database Technologies 29

Example of a suffix tree

1 2 3 4 5 6 7 8
S=A C A T C T T A

String

Suffix tree

The suffix tree is
a suffix trie,
where unary
paths are
compressed

Numbers
showing the
substring
indexed by a
node are
added

$

Special
termination
characters are
added

Suffix links connect
node indexing aw to
node indexing w Dr. N. Mamoulis Advanced Database Technologies 30

Suffix links
Suffix links were introduced to improve the
construction cost of the suffix tree to O(n).
However they transform the tree to a graph,
that cannot be managed in memory unless
small. If we rely on the virtual memory of the
machine a lot of swapping takes place and the
construction algorithm is very slow.
Biological sequences are very long (with
millions or trillions of characters), thus we
cannot use the suffix-link algorithm to
construct them.

6

Dr. N. Mamoulis Advanced Database Technologies 31

A new method for Suffix tree
construction is proposed

Suffix links are abandoned.
The algorithm scans the string multiple times
in order to construct the suffix tree for a
subrange of suffixes in each pass.
Abandoning suffix links means that the worst-
case construction cost becomes O(n2), but
due to the pseudo-random nature of DNA, the
average behavior is O(nlogn)

Dr. N. Mamoulis Advanced Database Technologies 32

Description of the algorithm
First the number of partitions is
determined. If the expected size of the
full suffix tree is S and the available
memory is M, the number of partitions
is given by S/M.
Each partition corresponds to a set of
suffixes. For each partition we build a
separate suffix tree. These suffix trees
are then connected via a common root.

Dr. N. Mamoulis Advanced Database Technologies 33

Description of the algorithm (cont’d)
The second step is to assign suffixes to
partitions
The partition for a suffix is determined
upon its prefix. For example, suffix
ATCTTA is indexed in the subtree
following branches AT. Notice that these
subtrees are independent.
Thus the suffixes in the same group
have the same prefix.

Dr. N. Mamoulis Advanced Database Technologies 34

Description of the algorithm (cont’d)
There are two ways to
determine the partitions.

We scan the string once and
count the occurencies of every
3-character substring. Then split
them in groups with equal
cardinality
We just partition
lexicographically all 3-character
strings, since we expect them to
appear with equal probability in
DNA

AAA 32
AAC 42
AAG 23
AAT 76
ACA 43
ACC 65
.
.
.
TTT 78

3500

P1

P2

Dr. N. Mamoulis Advanced Database Technologies 35

Description of the algorithm (cont’d)

Common root

….

Suffix tree
for P1 Suffix tree

for P2

Suffix tree
for PK

Dr. N. Mamoulis Advanced Database Technologies 36

Description of the algorithm (cont’d)

For each partition j
Initialize the suffix tree that corresponds to
this partition. Then scan the string.
For each position i of the string, if the suffix
si is in partition j, insert the suffix to the
subtree which corresponds to this partition

Thus one suffix-tree is created at each
pass and these are stored independently
on disk

7

Dr. N. Mamoulis Advanced Database Technologies 37

Example of Suffix tree creation
Create a suffix tree for AGA
The insertion order of suffixes is AGA$, GA$,A$

root

GA

$

AGA

$

Dr. N. Mamoulis Advanced Database Technologies 38

Example of Suffix tree creation
Create a suffix tree for AGA
The insertion order of suffixes is AGA$, GA$,A$

root

GA

$

GA

$

A

$

Dr. N. Mamoulis Advanced Database Technologies 39

Overview of the partitioned suffix tree
The partitioned suffix tree is constructed for long
sequences at no additional computational cost,
despite the abandonment of suffix links.
The experiments show that the construction time is
linear to the sequence length.
However the tree is tested only for exact matches,
where only one path is traversed for each query.
On the other hand, approximate search needs to
combine information from multiple paths and it is
questionable whether this method can perform well.

Dr. N. Mamoulis Advanced Database Technologies 40

A Filtering Algorithm for a Database
of Long Strings

A new filtering algorithm for large datasets
(that do not fit in memory) was recently
proposed.
The database S may contain many, potentially
long strings S = {s1,s2,…,sd}
The algorithm transforms the substrings in
this database to high dimensional points and
indexes them.
A query is then applied on the indexes using a
lower bound of the edit distance.

Dr. N. Mamoulis Advanced Database Technologies 41

Idea: A Transformation and a Lower
Bound for the Edit Distance

Given an alphabet Σ = {α1,α2,...,αd}, we can
transform a string to a d-dimensional point,
called frequency vector.
Example m=4, Σ = {A,C,G,T}. String
s=TACTTAG is transformed to f(s)=[2,1,1,3].
The transformation maps strings of the same
length n to points on the (n-1) dimensional
plane

TACTTAG

[2,1,1,3]

sum(f(si))=n

Dr. N. Mamoulis Advanced Database Technologies 42

Relation between edit distance and
frequency vector

Edit operations (insert, delete, replace)
has the following effect on the
frequency vector:

A scalar increases (insert)
A scalar decreases (delete)
A scalar increases and another decreases
(replace)

Example: TACTTAG TCCTTAG
[2,1,1,3] [1,2,1,3]

8

Dr. N. Mamoulis Advanced Database Technologies 43

Neighborhood and the frequency
distance

Two frequency vectors are called neighbors, if
one can be transformed to the other by a
single edit operation (e.g., [2,1,1,3] and
[1,2,1,3] are neighbors).
The frequency distance FD1 between two
vectors is defined by the minimum number of
steps in order to go from one to the other by
moving to a neighbor point at a time.
The frequency distance is a lower bound of
the edit distance between the corresponding
strings.

Dr. N. Mamoulis Advanced Database Technologies 44

Computing the frequency distance
Let u, v be two d-dimensional vectors.
Let posDist = 0, negDist = 0
For each dimension i

If ui>vi posDist += ui-vi;
Else negDist += vi-ui;

Return max(posDist, negDist)
Assume w.l.o.g. that posDist>negDist. The
rationale is that we can combine each deletion
in negDist with an insertion in posDist, and
the map the remainder of posDist as an
insertion.

Dr. N. Mamoulis Advanced Database Technologies 45

Computing the frequency distance
(example)

s1 = TACTTAG

s2 = TTAGAG

u = [2,1,1,3]

v = [2,0,2,2]

posDist = sum([0,0,1,0]) = 1
negDist = sum([0,1,0,1]) = 2

FD1(u,v) = 2

ED(s1, s2) = 4

Dr. N. Mamoulis Advanced Database Technologies 46

Use of the frequency distance
Suppose we want to find all substrings s
in t which match query q within edit
distance k. If the frequency distance
FD1(f(s),f(q)) is larger than k we can
prune s because the edit distance is also
larger than k.

Dr. N. Mamoulis Advanced Database Technologies 47

Using Wavelet Transforms to enrich
the frequency vector

For biological applications, where Σ =
{A,C,G,T}, a 4-dimensional vector is too
small to capture in detail the contents of
the strings.
Thus we need to capture also the local
frequencies of the characters
This can be done by applying a wavelet
transformation to the string.

Dr. N. Mamoulis Advanced Database Technologies 48

1st/2nd Wavelet Coefficients
The idea is to break the string s in two parts
s1, s2 of equal length and compute two
vectors;
The first vector is f(s).
The second f’(s) is computed by array
subtraction f(s1)-f(s2). Thus f’(s) gives the
difference between the frequencies in the left
substring and the frequences in the right
substring.
Then we approximate the string by a new
feature vector ψ(s) = [f(s),f’(s)].

9

Dr. N. Mamoulis Advanced Database Technologies 49

Example
s = TCACTTAG, f(s) = [2,2,1,3]
s1 = TCAC, s2= TTAG

f(s1) = [1,2,0,1], f(s2) = [1,0,1,2]

f(s’) = f(s1) – f(s2) = [0,2,-1,-1]

ψ(s) = [f(s), f(s’)] = [[2,2,1,3],[0,2,-1,-1]]

Dr. N. Mamoulis Advanced Database Technologies 50

New Lower Bound
The new edit distance lower bound
between two strings x and y is then
defined by

FD(x,y) =
max{FD1(f(x),f(y)),FD2(ψ(x),ψ(y))}
FD1 is the previously defined frequency
distance between frequency vectors
FD2 is a more complex distance defined on
the wavelet trasforms (details in the
paper).

Dr. N. Mamoulis Advanced Database Technologies 51

Generalizing the Idea
We can generalize the idea to derive kth-
level wavelet coefficients ψk(s), longer
vectors and higher accuracy.
ψk(s) divides the string into |s|/2k

substrings and gives the Wavelet
Coefficient for each substring,
recursively.
larger k provides more information, but
is more expensive to evaluate.

Dr. N. Mamoulis Advanced Database Technologies 52

Example for k=3

s = TCACTTAG
ψ(s) = ψ3(s) = [[2,2,1,3],[0,2,-1,-1]]

TCAC TTAG

[[1,2,0,1],[-1,0,0,1]]ψ2(s) [[1,0,1,2],[-1,0,-1,2]]

ψ1(s)

TC AC TT AG

[[0,1,0,1],[0,-1,0,1]] …. …. [[1,0,1,0],[1,0,-1,0]]

Dr. N. Mamoulis Advanced Database Technologies 53

The Indexing Method
Assume that we want to index a long sequence S.
Let 2a, be the minimum length of a query (a power of
2).
We slide a window of length 2a to each position of S
and compute the first two wavelet coefficients to a
vector v.
Thus each position is indexed by a 2d-dimensional
point.
The points are then indexed in an R-tree-like index.

[2,1,2,2,0,2,-2,-1]
[2,1,0,2,0,1,-2,-1]

[1,1,2,22,-2,-2,-1]
[0,1,2,3,-1,2,0,-1]

slide

MBR

Dr. N. Mamoulis Advanced Database Technologies 54

The Indexing Method (cont’d)
We do the same for all window sizes up
to a maximum length 2b.
Therefore for each long sequence S a
number of MBR-lists for various lengths
are created.
If we have multiple long sequence, a
matrix-like index structure is created,
where each row corresponds to a
resolution level and each column to an
indexed sequence.

10

Dr. N. Mamoulis Advanced Database Technologies 55

The Indexing Method (example)
S1

T1,1

T2,1

Tl,1

2a

2a+1

2a+l-1

S2

T1,2

T2,2

Tl,2

… …

.

.

.

Sm

T1,m

T2,m

Tl,m

…

Dr. N. Mamoulis Advanced Database Technologies 56

Query Processing
The query is chopped to as large pieces
as possible in order to search the
lowest-possible row of the index.
Example: q=AGAGTATTTACCTG is
chopped to AGAGTATT, TACC, and TG
The pieces are used to search the
corresponding index raw.
The qualifying results are merged to get
the candidate sequences and then
evaluated using dynamic programming.

Dr. N. Mamoulis Advanced Database Technologies 57

Comments
This index can also be used to evaluate
nearest-neighbor queries
It performs well experimentally.
However:

It relies on the quality of the MBRs in the
index.
It relies on the effectiveness of the wavelet
coefficients to approximate the structure
It has a high preprocessing cost (i.e.,
building the index is costly).

Dr. N. Mamoulis Advanced Database Technologies 58

Summary
There are many methods proposed for approximate
string matching. Most are based on the generic edit
distance function.
Some improve the speed of the dynamic
programming method.
Some extend exact string search methods (like suffix
trees) for approximate search
Some apply filtering techniques that avoid expensive
comparisons in large parts of the queried sequence.
Some apply filtering after transforming the data to an
approximate space appropriate for conventional
search techniques.

Dr. N. Mamoulis Advanced Database Technologies 59

Summary (cont’d)
Although there have been many efforts for
efficient approximate string matching, there is
still room for improvement.
This is because of the complex distance
functions which make it hard to use traditional
search techniques.
Biologist are still not (and will never be!)
satisfied by computational techniques, since
they expect them to be general enough to
solve every special search problem they
encounter.

Dr. N. Mamoulis Advanced Database Technologies 60

References
G. Navarro, A Guided Tour to Approximate
String Matching, ACM Computing Surveys,
33(1): 31-88, March 2001.
Ela Hunt, Malcolm P. Atkinson, Robert W.
Irving: A Database Index to Large Biological
Sequences. VLDB 2001.
Tamer Kahveci, Ambuj K. Singh: Efficient
Index Structures for String Databases, VLDB
2001.
HKU CSIS7402 (Computer Technology for
Bioinformatics) Lecture Notes,
http://i.csis.hku.hk/~c7402/information.php
Special thanks to Lok Lam Cheng

